CHAPTER 10:
Logistic Regression

Logistic Regression - Motivation

- Lets now focus on the binary classification problem in which
$\square \mathrm{y}$ can take on only two values, 0 and 1.
$\square x$ is a vector of real-valued features, $\left\langle x_{1} \ldots x_{n}\right\rangle$
- We could approach the classification problem ignoring the fact that y is discrete-valued, and use our old linear regression algorithm to try to predict y given x.
\square However, it doesn't make sense for $f(x)$ to possibly take values larger than 1 or smaller than 0 when we know that $y \in\{0,1\}$.
- Since the output must be 0 or 1, we cannot directly use a linear model to estimate $f(x)$.
- Furthermore, we would like to $f(x)$ to represent the probability $P\left(C_{1} \mid x\right)$. Lets call it p.
- We will model the log of the odds of the probability p as a linear function of the input x.

$$
\begin{aligned}
& o d d s=\frac{p}{1-p} \\
& \ln (\text { odds of } p)=\ln (p /(1-p))=w \cdot x
\end{aligned}
$$

$$
\begin{aligned}
& \text { If there is a } 75 \% \\
& \text { chance that it will rain } \\
& \text { tomorrow, then the } \\
& \text { odds of it raining } \\
& \text { tomorrow are } 3 \text { to } 1 \text {. } \\
& (3 / 4) / 1 / 4=3 / 1 \text {. }
\end{aligned}
$$

- This is the logit function. I.e. $\operatorname{logit}(p)=\ln (p /(1-p))$

We want: $f(x)=P\left(C_{1} \mid x\right)=p$
We will model as: $\ln (p /(1-p))=\mathbf{w . x}$

- By applying the inverse of the logit function, that is the logistic function, on both sides, we get:

$$
\operatorname{logit}^{-1}(\ln (p /(1-p)))=\operatorname{sigmoid}(\ln (p /(1-p)))=p
$$

- Applying it on the RHS as well, we get

$$
p=\log ^{-1}{ }^{-1}(\mathbf{w} \cdot \mathbf{x})=1 /\left(1+e^{-w \cdot x}\right)
$$

$$
\text { Thus: } \begin{aligned}
f(x)=1 /\left(1+e^{-w \cdot x}\right) \text { and we will interpret it as } p & =P\left(C_{1} \mid x\right) \\
& =P(y=1 \mid x)
\end{aligned}
$$

Odds \& Odds Ratios

The odds has a range of 0 to ∞ with values:

- greater than 1 associated with an event being more likely to occur than not to occur and
- values less than 1 associated with an event that is less likely to occur than not occur.

$$
\ln (o d d s)=\ln \left(\frac{p}{1-p}\right)=\ln (p)-\ln (1-p)
$$

- The logit is defined as the log of the odds ($-\infty$ to $+\infty$)

As $\beta . x$ gets really big, p approaches 1
As $\beta . x$ gets really small, p approaches 0

"The Logistic Regression Model

$$
\ln [p /(1-p)]=\beta_{0}+\beta_{1} x
$$

- p is the probability that the event Y occurs, $p(Y=1)$
- [range=0 to 1]
- $p /(1-p)$ is the "odds ratio"
- [range=0 to ∞]
- $\ln [\mathrm{p} /(1-\mathrm{p})]$: log odds ratio, or "logit"
" [range $=-\infty$ to $+\infty$]
- We have:

$$
f(\mathbf{x})=1 /\left(1+e^{-w \cdot x}\right) \text { and we will interpret it as } f(\mathbf{x})=P(y=1 \mid \mathbf{x})
$$ (in short p)

Thus we have:

$$
\begin{aligned}
& P(y=1 \mid x)=f(x) \\
& P(y=0 \mid x)=1-f(x)
\end{aligned}
$$

\square Which can be written more compactly by unifying the two rules :

$$
P(y \mid \mathbf{x})=(f(\mathbf{x}))^{y}(1-f(\mathbf{x}))^{1-y} \quad \text { where } y \in\{0,1\}
$$

- Logistic Regression Decision

1. Calculate $\mathbf{w}^{T} \mathbf{x}$ and choose C_{1} if $\mathbf{w}^{T} \mathbf{x}>0$, or 2. Calculate $\mathrm{f}(\mathrm{x})=\operatorname{sigmoid}\left(\mathbf{w}^{T} \mathbf{x}\right)$ and choose C_{1} if $f(\mathbf{x})>0.5$

Logistic Regression Decision

- Properties
\square Linear Decision boundary
\square Need for scaling input features:
- Strictly speaking not needed, but useful in regularized version where we add the weight vector norm (which in turn depends on the scale of the input dimensions) as penalty.
- $P(y \mid \mathbf{x} ; \mathbf{w})=(f(\mathbf{x}))^{y}(1-f(\mathbf{x}))^{1-y}$
- Find w that maximizes the log likelihood of data

Equivalently, minimizes the negative log likelihood of data

$$
\begin{aligned}
& \mathcal{X}=\left\{\mathbf{x}^{t}, y^{t}\right\}_{t} \quad y^{t} \mid \mathbf{x}^{t} \sim \operatorname{Bernoulli}(p) \\
& f(\mathbf{x})=P(y=1 \mid \mathbf{x})=\frac{1}{1+\exp \left[-\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)\right]} \\
& l\left(\mathbf{w}, w_{0} \mid \mathcal{X}\right)=\prod_{t}\left(f\left(x^{t}\right)\right)^{\left(y^{t}\right)}\left(1-f\left(x^{t}\right)\right)^{\left(1-y^{t}\right)} \\
& E=-\log l \\
& E\left(\mathbf{w}, w_{0} \mid \mathcal{X}\right)=-\sum_{t} y^{t} \log f\left(x^{t}\right)+\left(1-y^{t}\right) \log \left(1-f\left(x^{t}\right)\right) \\
& \text { cross-entropy loss }
\end{aligned}
$$

- Cross-entropy loss

Softmax Regression

Multinomial Logistic Regression MaxEnt Classifier

Softmax Regression

- Softmax regression model generalizes logistic regression to classification problems where the class label y can take on more than two possible values.
\square The response variable y can take on any one of k values, so
$y \in\{1,2, \ldots, k\}$.

Softmax Regression

- Softmax regression model generalizes logistic regression to classification problems where the class label y can take on more than two possible values.
\square The response variable y can take on any one of k values, so $y \in\{1,2, \ldots, K\}$.

$$
\left.\begin{array}{rl}
\mathcal{X}=\left\{\mathbf{x}^{t}, y^{t}\right\}_{t} y^{t} \mid \mathbf{x}^{t} \sim \operatorname{Multinomial}(\ldots) \\
o_{k}=\hat{P}(y=k \mid \mathbf{x})=\frac{\exp \left[\mathbf{w}_{k}^{T} \mathbf{x}\right]}{\sum_{j=1}^{K} \exp \left[\mathbf{w}_{j}^{T} \mathbf{x}\right]}, k=1, \ldots, K \quad \begin{array}{l}
\text { Maximizing the } \\
\text { likelihood is equivalent } \\
\text { to minimizing the } \\
\text { negative log likelihood } \\
\text { (cross-entropy error) }
\end{array}
\end{array}\right\} \begin{aligned}
& l\left(\left\{\mathbf{w}_{k}\right\} \mid \mathcal{X}\right)=\prod_{t} \prod_{k}\left(o_{k}^{t}\right)^{\left(y_{k}^{t}\right)} \\
& E\left(\left\{\mathbf{w}_{k}\right\} \mid \mathcal{X}\right)=-\sum_{t=1} \sum_{k=1}^{K} 1\left\{y^{t}=k\right\} \log o_{k}^{t}=-\sum_{t=1} \sum_{k=1}^{K} 1\left\{y^{t}=k\right\} \log \frac{\exp \left[\mathbf{w}_{k}^{T} \mathbf{x}^{t}\right]}{\sum_{j=1}^{K} \exp \left[\mathbf{w}_{j}^{T} \mathbf{x}^{t}\right]} \\
& \mathbf{x} \longrightarrow \longrightarrow \begin{array}{l}
\longrightarrow
\end{array} \\
& \mathbf{o}_{\mathbf{k}} \text { where k is the }
\end{aligned}
$$

