
CHAPTER  10:  

Logistic  Regression	




Logistic Regression - Motivation 

n  Lets now focus on the binary classification problem in 
which  
¨  y can take on only two values, 0 and 1. 
¨  x is a vector of real-valued features, < x1 … xn > 

n  We could approach the classification problem ignoring 
the fact that y is discrete-valued, and use our old linear 
regression algorithm to try to predict y given x.  
¨  However, it doesn’t make sense for f(x) to possibly take values 

larger than 1 or smaller than 0 when we know that y ∈ {0, 1}. 
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n  Since the output must be 0 or 1, we cannot directly use a linear 
model to estimate f(x). 

n  Furthermore, we would like to f(x) to represent the probability 
     P(C1|x). Lets call it p. 

n  We will model the log of the odds of the probability p as a linear 
function of the input x. 

 ln (odds of p) = ln (p/(1-p)) = w.x 

n  This is the logit function. I.e. logit(p) = ln (p/(1-p)) 
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If there is a 75% 
chance that it will rain 
tomorrow, then the 
odds of it raining 
tomorrow are 3 to 1.  
(¾)/¼=3/1. 



 

We want: f(x) = P(C1 | x) = p 
We will model as:  ln (p/(1-p))  = w.x 

n  By applying the inverse of the logit function, that is  the logistic 
function, on both sides, we get: 

 

 logit-1 ( ln (p/(1-p)) )= sigmoid ( ln (p/(1-p)) ) = p  
 
 

n  Applying it on the RHS as well, we get  

  p = logit-1 (w.x) =  1 / (1 + e-w.x) 
 
n  Thus: f(x) = 1 / (1 + e-w.x)  and we will interpret it as p = P(C1 | x)  
n                                                                                                = P (y=1 | x) 
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Odds  &  Odds  Ratios	


The odds has a range of 0 to ∞ with values : 
 

•  greater than 1 associated with an event being more likely to occur than 
not to occur and  

•  values less than 1 associated with an event that is less likely to occur 
than not occur. 

	


•  The logit is defined as the log of the odds (-∞ to +∞) 

 As  β.x gets really big, p approaches 1  
 As  β.x gets really small, p approaches 0 

( ) ( ) ( )ln ln ln ln 1
1
podds p p
p

⎛ ⎞
= = − −⎜ ⎟−⎝ ⎠
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The Logistic Regression Model 
 

ln[p/(1-p)] =  β0 + β1X  
 

 
§  p is the probability that the event Y occurs, p(Y=1)  

§  [range=0 to 1] 

§  p/(1-p) is the "odds ratio"  
§  [range=0 to ∞] 

§  ln[p/(1-p)]: log odds ratio, or "logit“ 
§  [range=-∞ to +∞]  



n  We have: 
         f(x) = 1 / (1 + e-w.x)  and we will interpret it as f(x) = P(y=1 | x)  

                                                                                            (in short p)
  

Thus we have:  
  P(y=1 | x) = f(x)  
  P(y=0 | x) = 1 − f(x) 

¨  Which can be written more compactly by unifying the two rules : 

     P(y | x) = (f(x))y (1 − f(x))1−y     where y ∈ {0, 1} 
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Logistic Regression Decision 
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1. Calculate wTx and choose C1  if wTx > 0, or

2. Calculate f(x)=sigmoid wTx( )  and choose C1  if f (x)> 0.5



Logistic Regression Decision 

n  Properties 
¨  Linear Decision boundary 

¨  Need for scaling input features:  
n  Strictly speaking not needed, but useful in regularized 

version where we add the weight vector norm (which in turn 
depends on the scale of the input dimensions) as penalty. 
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n   P(y | x; w) = (f(x))y (1 − f(x))1−y 

n  Find w that   maximizes the log likelihood of data 
     Equivalently, minimizes the negative log likelihood of data 
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X = xt, yt{ }t    yt |xt ~ Bernoulli p( )

f (x) = P y =1|x( ) = 1
1+ exp − wTx+w0( )"

#
$
%

l w,w0 |X( ) = f (xt )( )
yt( )

t
∏ 1− f (xt )( )

1−yt( )

E = − log l

E w,w0 |X( )= − ytlog 
t
∑ f (xt )+ 1− yt( ) log 1− f (xt )( )

        cross-entropy loss 



Cross-entropy loss 
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Softmax  Regression	


Multinomial  Logistic  Regression	

MaxEnt  Classifier	




Softmax Regression 

n  Softmax regression model generalizes logistic regression 
to classification problems where the class label y can 
take on more than two possible values.  

¨   The response variable y can take on any one of k values, so  
y ∈ {1, 2, . . . , k}.  



Softmax Regression 

n  Softmax regression model generalizes logistic regression 
to classification problems where the class label y can 
take on more than two possible values.  

¨   The response variable y can take on any one of k values, so  
y ∈ {1, 2, . . . , K}.  
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x f(x) =
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X = xt, yt{ }t    yt |xt ~ Multinomial(...)

ok = P̂ y = k|x( ) =
exp wk

Tx!" #$

exp w j
Tx!" #$j=1
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∑
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l wk{ }|X( ) = ok
t( )
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t=1
∑

exp wk
Txt!" #$

exp w j
Txt!" #$j=1

K
∑

Maximizing the 
likelihood is equivalent 
to minimizing the 
negative log likelihood 
(cross-entropy error)  

ok  where  k  is  the  
correct  class	



