CHAPTER 10:

Logistic Regression




Binary classification

Two classes Y ={0,1}

Goal is to learn how to correctly classify the input into one
of these two classes

Class 0 — labeled as 0

Class 1 — labeled as 1

We would like to learn f : X — {0,1}

Since the output must be 0 or 1, we cannot directly use an
unlimited linear model to estimate f(x;).
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Very much like a simple neuron with a sigmoid activation function,
we will let:

SN
f(X)_g(W X)_ 1+e_WTX

where w forms the weights to be determined and x is the input vector.

1

g(z) = 1—_Z is the logistic function (also called sigmoid)
+e
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We would also like to interpret f(x) as P(y=1|x)

1
P(y=1|x)=
(y | ) 1+ e—(w0+wlx1+...+wmxm)
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In fact, we learn the log odds of P(y=1|x) as a linear
function of the input variables:

log Ply=11x) W, +wx, +...+w x_
P(y = O|x)
Odds of y=1

Side Note:
the odds in favor of an event are the quantity p / (1 - p), where p is

the probability of the event
If | toss a fair dice, what are the odds that | will have a six?

Few slides from Xiaoli Fern - Oregon State



If f(x) = P(y=1|x) > 0.5 then choose class C1
Otherwise choose class CO

Linear decision boundary.

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)



Learning w for logistic regression

We can use Maximum Likelihood Estimation to find the
parameters (w) that maximizes (log) likelihood of the
class labels in the training data.

L(w) =2 log P(y'|x', W)
- Ziy" log P(y' =1|x',w)+(1-y")log(l- P(y' =1|x',W))]

where the superscript i is an index to the examples in the training set.

No closed form => lterative solution.
lteratively reweighted least squares
Gradient descent
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Let p=Pr(y,=1]x;). We would like to estimate pi as f(x).

We model the log odds of the probability p, as:
In (p/(1-p;)) = B-x; where In (p,/(1-p;))=g(p;) is the logit function

By applying the inverse of logit (the logistic function), we get back p;:
logit™ [ In (p/(1-p)) 1= p,

Applying it on the RHS as well, we get
p, = logit? (B.x) = 1/ (1 + eBx)
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Logistic Regression vs Perceptron

Logistic Regression learns a linear decision boundary
like the perceptron
What is the decision boundary?

Logistic Regression is trained to produce probability
estimations.
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Logistic Regression vs Naive Bayes

* |f we use Naive Bayes and assume Gaussian
distribution for p(x.|y), we can show that p(y=1|X)
takes the exact same functional form of Logistic
Regression

* What are the differences here?

— Different ways of training
* Naive bayes estimates 6, by maximizing P(X|y=v;, 6,), and while
doing so assumes conditional independence among attributes

* Logistic regression estimates w by maximizing P(y|x, w) and make
no conditional independence assumption.
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Logistic Regression vs Naive Bayes

* Naive Bayes - generative model: P(x]|y)

— makes strong conditional independence assumption about
the data attributes

— When the assumptions are ok, Naive Bayes can use a small
amount of training data and estimate a reasonable model

* Logistic regression-discriminative model: directly
learn p(y| X)

— has fewer parameters to estimate, but they are tied
together and make learning harder

— Makes weaker assumptions
— May need large number of training examples

Bottom line: if the naive bayes assumption holds and the probabilistic
models are accurate (i.e., x is gaussian given y etc.), NB would be a good
choice; otherwise, logistic regression works better
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