CHAPTER 10: Logistic Regression

Binary classification

- Two classes Y = {0,1}
- Goal is to learn how to correctly classify the input into one of these two classes
 - □ Class 0 labeled as 0
 - □ Class 1 labeled as 1
- We would like to learn $f: X \rightarrow \{0,1\}$
 - □ Since the output must be 0 or 1, we cannot directly use an unlimited linear model to estimate $f(x_i)$.

Very much like a simple neuron with a sigmoid activation function, we will let:

$$f(\mathbf{x}) = g(\mathbf{w}^{\mathrm{T}}\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{W}^{T}\mathbf{X}}}$$

where w forms the weights to be determined and x is the input vector.

$$g(z) = \frac{1}{1 + e^{-z}}$$
 is the logistic function (also called sigmoid)

We would also like to interpret $f(\mathbf{x})$ as P(y=1|x)

$$P(y=1 \mid \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + w_1 x_1 + \dots + w_m x_m)}}$$

In fact, we learn the log odds of P(y=1|x) as a linear function of the input variables:

$$\log \frac{P(y=1 \mid x)}{P(y=0 \mid x)} = w_0 + w_1 x_1 + ... + w_m x_m$$
Odds of y=1

Side Note:

the odds in favor of an event are the quantity p / (1 - p), where p is the probability of the event If I toss a fair dice, what are the odds that I will have a six?

- If f(x) = P(y=1|x) > 0.5 then choose class C1
- Otherwise choose class C0
- Linear decision boundary.

Learning w for logistic regression

We can use Maximum Likelihood Estimation to find the parameters (w) that maximizes (log) likelihood of the class labels in the training data.

$$L(\mathbf{w}) = \sum_{i} \log P(y^{i} | \mathbf{x}^{i}, \mathbf{w})$$

$$= \sum_{i} [y^{i} \log P(y^{i} = 1 | \mathbf{x}^{i}, \mathbf{w}) + (1 - y^{i}) \log(1 - P(y^{i} = 1 | \mathbf{x}^{i}, \mathbf{w}))]$$

where the superscript i is an index to the examples in the training set.

- No closed form => Iterative solution.
 - □ Iteratively reweighted least squares
 - Gradient descent

- Let $p_i = Pr(y_i = 1 | x_i)$. We would like to estimate p_i as f(x).
- We model the log odds of the probability p_i as: $In (p_i/(1-p_i)) = β.x_i \text{ where } In (p_i/(1-p_i)) = g(p_i) \text{ is the logit function}$
- By applying the *inverse of logit* (the logistic function), we get back p_i : $logit^{-1} [ln (p_i/(1-p_i))] = p_i$
- Applying it on the RHS as well, we get $p_i = logit^{-1} (\beta.x_i) = 1 / (1 + e^{-\beta.x_i})$

Logistic Regression vs Perceptron

- Logistic Regression learns a linear decision boundary like the perceptron
 - What is the decision boundary?
- Logistic Regression is trained to produce probability estimations.

Logistic Regression vs Naive Bayes

- If we use Naïve Bayes and assume Gaussian distribution for p(x_i|y), we can show that p(y=1|X) takes the exact same functional form of Logistic Regression
- What are the differences here?
 - Different ways of training
 - Naïve bayes estimates θ_i by maximizing $P(X|y=v_i, \theta_i)$, and while doing so assumes conditional independence among attributes
 - Logistic regression estimates w by maximizing P(y|x, w) and make no conditional independence assumption.

Logistic Regression vs Naive Bayes

- Naïve Bayes generative model: P(x|y)
 - makes strong conditional independence assumption about the data attributes
 - When the assumptions are ok, Naïve Bayes can use a small amount of training data and estimate a reasonable model
- Logistic regression-discriminative model: directly learn p(y|X)
 - has fewer parameters to estimate, but they are tied together and make learning harder
 - Makes weaker assumptions
 - May need large number of training examples

Bottom line: if the naïve bayes assumption holds and the probabilistic models are accurate (i.e., x is gaussian given y etc.), NB would be a good choice; otherwise, logistic regression works better