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Likelihood- vs. Discriminant-based Classification 

n  Likelihood-based: Assume a model for p(x|Ci), use 
Bayes’ rule to calculate P(Ci|x)  

  Choose Ci if    gi(x) = log P(Ci|x)  is maximum 
 
n  Discriminant-based: Assume a model for the 

discriminant gi (x|Φi); no density estimation 
¨  Estimating the boundaries is enough; no need to accurately 

estimate the densities inside the boundaries 
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Linear Discriminant 

n  Linear discriminant: 

n  Advantages: 
¨ Simple: O(d) space/computation  

¨ Knowledge extraction: Weighted sum of attributes; 
positive/negative weights, magnitudes (credit scoring) 

¨ Optimal when p(x|Ci) are Gaussian with shared cov 
matrix; useful when classes are (almost) linearly 
separable 
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Generalized Linear Model 

n  Quadratic discriminant: 

n  Instead of higher complexity, we can still use a linear 
classifier if we use higher-order (product) terms. 

n  Map from x to z using nonlinear basis functions and use 
a linear discriminant in z-space 

n  The linear function defined in the z space corresponds to 
a non-linear function in the x space.  
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Two Classes 
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Learning the Discriminants  

As we have seen before, when p (x | Ci ) ~ N ( μi , ∑), 

the optimal discriminant is a linear one: 
 

( )

( )ii
T
iiii

i
T
iiii

CPw

ww,g

 log
2
1

   

|

1
0

1

00

+−==

+=

−− µµµ ΣΣw

xwwx

So,  estimate  µi  and  Σ  from  data,  and  plug  into  the  
gi’s  to  find  the  linear  discriminant  functions.	
	
Of  course  any  way  of  learning  can  be  used  (e.g.  
perceptron,  gradient  descent,  logistic  regression...).	
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n  When K > 2 
¨  Combine K two-class problems, each one separating one 

class from all other classes 
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Multiple Classes 
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Why? Any problem? 
 
Convex decision regions  
based on gis (indicated with blue) 
    dist is |gi(x)|/||wi|| 
 
Assumes that classes  
are linearly separable: 
    reject may be used 
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Pairwise Separation 
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linear discriminants 
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A  Bit  of  Geometry	
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n  Dot Product and Projection 

n  <w,p> =wTp = ||w||||p||Cosθ

n  proj. of p onto w  

        = ||p||Cosθ              
  

   = wT.p/||w|| 
  

p	

w	

θ

p	
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Geometry 
The points x on the separating hyperplane have g(x) = 
wTx+w0=0. Hence for the points on the boundary wTx=-
w0. 
 
Thus, these points also have the same projection onto 
the weight vector w, namely wTx/||w|| (by definition of 
projection and dot product). But this is equal to –w0/||w||.  
Hence ... 

 
The perpendicular distance of the 
boundary to the origin is  
|w0|/||w||.  
 
The distance of any point x to the 
decision boundary is |g(x)|/||w||.  
 



Support  Vector  Machines	



n  Vapnik and Chervonenkis – 1963 
n  Boser, Guyon and Vapnik – 1992 (kernel trick) 
n  Cortes and Vapnik – 1995 (soft margin) 

n  The SVM is a machine learning algorithm which  
¨  solves classification problems  
¨  uses a flexible representation of the class boundaries  
¨  implements automatic complexity control to reduce overfitting  
¨  has a single global minimum which can be found in polynomial 

time  

n  It is popular because 
• it can be easy to use 
• it often has good generalization performance 
• the same algorithm solves a variety of problems with little tuning  
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SVM Concepts 

n  Convex programming and duality 
n  Using maximum margin to control complexity 
n  Representing non-linear boundaries with feature 

expansion  
n  The kernel trick for efficient optimization 
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Linear Separators 

n Which of the linear separators is 
optimal?  
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Classification Margin 

n  Distance from example xi to the separator is  
n  Examples closest to the hyperplane are support vectors.  
n  Margin ρ of the separator is the distance between support 

vectors from two classes. 
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Maximum Margin Classification 

n  Maximizing the margin is good according to intuition. 

n  Implies that only support vectors matter; other training 
examples are ignorable.  
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SVM as 2-class Linear Classifier 

{ }

1for    -1 

1for  1

such that  and  find
 if1
 if1

  where,

0

0

0

2

1

−=≤+

+=+≥+

⎩
⎨
⎧

∈−

∈+
==

ttT

ttT

t

t
t

t
tt

rw
rw

w
C
C

rr

xw
xw
w

x
x

xX

	
Optimal separating hyperplane: Separating hyperplane maximizing the  
margin 

(Cortes and Vapnik, 1995; Vapnik, 1995) 

Note the condition >= 1 (not just 
0). We can always do this if the 
classes are linearly separable by 
rescaling w and w0, without 
affecting the separating 
hyperplane: 

 0 0 =+ wtTxw
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Optimal Separating Hyperplane 

(Cortes and Vapnik, 1995; Vapnik, 1995) 
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Maximizing the Margin 
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To maximize margin,  
minimize the Euclidian norm  

of the weight vector w 

w
22 == dρ

Distance from the discriminant to the closest instances on either 
side is called the margin 
 
In general this relationship holds (geometry):  
 
So, for the support vectors, we have: 
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Maximizing the Margin-Alternate explanation 

n  Distance from the discriminant to the closest instances on 
either side is called the margin 

n  Distance of x to the hyperplane is 

n  We require that this distance is  
    at least some value ρ > 0.

n  We would like to maximize ρ, but we can do so in infinitely  
many ways by scaling w. 

n  For a unique sol’n, we fix ρ||w||=1 and minimize ||w||. 
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min 1
2
w 2  subject to rt wTxt +w0( ) ≥ +1,∀t

Lp =
1
2
w 2

− α t rt wTxt +w0( )−1$
%

&
'

t=1

N

∑
Unconstrained 
problem using 
Lagrange 
multipliers  
(+ numbers) 

The solution, if it exists, is 
always at a saddle point of the Lagrangian 
 
Lp should be minimized w.r.t w and  
                    maximized w.r.t αts 
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Convex quadratic optimization 
problem can be solved using 
the dual form where we use 
these local minima constraints 
and maximize w.r.t αts	
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from:  hIp://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/lagrang/lagrang.html	
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• Maximize Ld with 
respect to αt only 

•  Quadratic 
programming 
problem 
•  Thanks to the 
convexity of the 
problem, optimal 
value of Lp = Ld 



n  To every convex program corresponds a dual  

n  Solving original (primal) is equivalent to solving dual  
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Support vectors 
for which 

( ) 10 =+wr tTt xw
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Calculating the parameters w and w0 

Note that: 
¨  either the constraint  is exactly satisfied (=1) 

 (and αt can be non-zero) 
¨  or the constraint is clearly satisfied (> 1) 

 (then αt must be zero) 
 
 
 
 
 

n  Once we solve for αt, we see that most of them are 0 and only 
a small number have αt >0 
¨  the corresponding xts are called the support vectors 
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Calculating the parameters w and w0 

Once we have the Lagrange multipliers, we can compute w and w0:  
 
 
 
 
 
                           where SV is the set of the Support Vectors. 
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n  We make decisions by comparing each query x with only 
the support vectors  

n  Choose class C1 if +, C2 if negative 
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y = sign(wTx+w0 ) = ( α trtxt )x +w0
t∈SV

N

∑



Not-‐‑Linearly  Separable  Case	
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n  The non-separable case cannot find a feasible 
solution using the previous approach 
¨ The objective function (LD) grows arbitrarily large. 

n  Relax the constraints, but only when necessary 
¨  Introduce a further cost for this 
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Soft Margin Hyperplane 

n  Not linearly separable 
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Soft Margin Hyperplane 

n  Define Soft error  

n  New primal is 

n  Parameter C can be viewed as a way to control overfitting:  it “trades 
off” the relative importance of maximizing the margin and fitting the 
training data. 
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Soft Margin Hyperplane 

n  New dual is the same as the old one 

 subject to 

n  As in the separable case, instances that are not support 
vectors vanish with their αt=0 and the remaining define 
the boundary. 
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Kernel  Functions  in  SVM	



n  We can handle the overfitting problem: even if we have 
lots of parameters, large margins make simple classifiers  

n  “All” that is left is efficiency 

n  Solution: kernel trick 
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Kernel Functions 

n  Instead of trying to fit a non-linear model, we can  
¨ map the problem to a new space through a non-linear 

transformation and 
¨ use a linear model in the new space 

n  Say we have the new space calculated by the basis 
functions z = φ(x)  where zj=φj(x) , j=1,...,k 

 
 d-dimensional x space   k-dimensional z space 

φ(x) = [φ1(x) φ2(x) ... φk(x)]  
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Kernel Functions 

( ) ( )

( ) ( )

( ) xx

xx

xx

∀=

=

+=

∑

∑

=

=

for   1 assume   weif 0

0

1

ϕ

ϕ

ϕ

k
kk

k
kk

wg

bwg



Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 
56	

( )

( ) ( ) ( ) ( )

( ) ( )∑

∑

∑∑

α=

α==

α=α=

t

ttt

t

TtttT

t

ttt

t

ttt

,Krg

rg

rr

xxx

xφxφxφwx

xφzw

Kernel Machines 

n  Preprocess input x by basis functions 
  z = φ(x)   g(z)=wTz   

     g(x)=wT φ(x) 

n  SVM solution: Find Kernel functions K(x,y) such that the 
inner product of basis functions are replaced by a Kernel 
function in the original input space 
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Kernel Functions 

n  Consider polynomials of degree q: 
   

K x, y( ) = xTy+1( )
q

(Cherkassky and Mulier, 1998) 
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Examples of Kernel Functions 

n  Linear: K(xi,xj)= xi
Txj   

¨  Mapping Φ:    x  →  φ(x), where φ(x) is x itself 

n  Polynomial of power p: K(xi,xj)= (1+ xi
Txj)p 

¨  Mapping Φ:    x  →  φ(x), where  
 φ(x) has                  dimensions  

n  Gaussian (radial-basis function): K(xi,xj) = 
¨  Mapping Φ:  x →  φ(x), where φ(x) is infinite-dimensional: 

every point is mapped to a function (a Gaussian) 

n  Higher-dimensional space still has intrinsic 
dimensionality d, but linear separators in it correspond to 
non-linear separators in original space. 
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n  Typically k is much larger than d, and possibly larger 
than N 
¨  Using the dual where the complexity depends on N rather than k 

is advantageous 

n  We use the soft margin hyperplane 
¨  If C is too large, too high a penalty for non-separable points (too 

many support vectors) 
¨  If C is too small, we may have underfitting 

n  Decide by cross-validation 
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Other Kernel Functions 

n  Polynomials of degree q: 
   

n  Radial-basis functions: 

n  Sigmoidal functions such  as: 
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What Functions are Kernels? Advanced 

n  For some functions K(xi,xj) checking that K(xi,xj)= φ(xi) Tφ(xj) can 
be cumbersome.  

n  Any function that satisfies some constraints called the Mercer 
conditions can be a Kernel function - (Cherkassky and Mulier, 1998) 

Every semi-positive definite symmetric function is a kernel 
 

n  Semi-positive definite symmetric functions correspond to a semi-
positive definite symmetric Gram matrix: 

 

K(x1,x1) K(x1,x2) K(x1,x3) …  K(x1,xn) 

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xn) 

…  …  …  …  …  

K(xn,x1) K(xn,x2) K(xn,x3) …  K(xn,xn) 

K= 



Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1) 
64	

n  Informally, kernel methods implicitly define the class of 
possible patterns by introducing a notion of similarity 
between data 
¨  Choice of similarity -> Choice of relevant features 

n  More formally, kernel methods exploit information about 
the inner products between data items 
¨  Many standard algorithms can be rewritten so that they only 

require inner products between data (inputs) 
¨  Kernel functions = inner products in some feature space 

(potentially very complex) 
¨  If kernel given, no need to specify what features of the data are 

being used 
¨  Kernel functions make it possible to use infinite dimensions 

n  efficiently in time / space 



String kernels 

n  For example, given two documents, D1 and D2, the 
number of words appearing in both may form a kernel. 

n  Define φ(D1) as the M-dimensional binary vector where 
dimension i is 1 if word wi appears in D1; 0 otherwise. 

n  Then φ(D1)Tφ(D2) indicates the number of shared words. 

n  If we define K(D1,D2) as the number of shared words; 
¨  no need to preselect the M words 
¨  no need to create the bag-of-words model explicitly 
¨  M can be as large as we want 
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Projecting into Higher Dimensions 
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SVM Applications 

n  Cortes and Vapnik 1995: 
¨  Handwritten digit classification 

¨  16x16 bitmaps -> 256 dimensions 

¨  Polynomial kernel where q=3 -> feature space with 106 
dimensions 

¨  No overfitting on a training set of 7300 instances 

¨  Average of 148 support vectors over different training sets 

 

Expected test error rate: 

  

 ExpN[P(error)] = ExpN[#support vectors] / N 
                            (= 0.02 for the above example) 
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SVM history and applications 

n  SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 
and gained increasing popularity in late 1990s. 

n  SVMs represent a general methodology for many PR problems: 
classification,regression, feature extraction, clustering, novelty detection, 
etc. 

n  SVMs can be applied to complex data types beyond feature vectors 
(e.g. graphs, sequences, relational data) by designing kernel functions 
for such data. 

n  SVM techniques have been extended to a number of tasks such as 
regression [Vapnik et al. ’97], principal component analysis [Schölkopf et 
al. ’99], etc.  

n  Most popular optimization algorithms for SVMs use decomposition to 
hill-climb over a subset of αi’s at a time, e.g. SMO [Platt ’99] and  
[Joachims ’99] 
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Advantages of SVMs 

¨  There are no problems with local minima, because the solution is a 
Qaudratic Programming problem with a global minimum. 

¨  The optimal solution can be found in polynomial time 

¨  There are few model parameters to select: the penalty term C, the 
kernel function and parameters (e.g., spread σ in the case of RBF 
kernels) 

¨  The final results are stable and repeatable (e.g., no random initial 
weights) 

¨  The SVM solution is sparse; it only involves the support vectors 

¨  SVMs rely on elegant and principled learning methods 

¨  SVMs provide a method to control complexity independently of 
dimensionality 

¨  SVMs have been shown (theoretically and empirically) to have 
excellent generalization capabilities 
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Challenges 

n  Can the kernel functions be selected in a principled manner?  

n  SVMs still require selection of a few parameters, typically through 
cross-validation 

n  How does one incorporate domain knowledge?  
¨  Currently this is performed through the selection of the kernel and the 

introduction of “artificial” examples 

n  How interpretable are the results provided by an SVM? 

n  What is the optimal data representation for SVM? What is the effect of 
feature weighting? How does an SVM handle categorical or missing 
features? 

n  Do SVMs always perform best? Can they beat a hand-crafted solution for a 
particular problem? 

n  Do SVMs eliminate the model selection problem?  
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n  More explanations or demonstrations can be found at: 
¨  http://www.support-vector-machines.org/index.html 
¨  Haykin Chp. 6 pp. 318-339  
¨  Burges tutorial (under/reading/) 

n  Burges, CJC "A Tutorial on Support Vector Machines for Pattern Recognition" Data 
Mining and Knowledge Discovery, Vol 2 No 2, 1998.  

¨  http://www.dtreg.com/svm.htm 
 

n  Software 
¨  SVMlight, by Joachims, is one of the most widely used SVM classification and 

regression package. Distributed as C++ source and binaries for Linux, Windows, 
Cygwin, and Solaris. Kernels: polynomial, radial basis function, and neural (tanh).  

¨  LibSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM (Library for 
Support Vector Machines), is developed by Chang and Lin; also widely used. 
Developed in C++ and Java, it supports also multi-class classification, weighted 
SVM for unbalanced data, cross-validation and automatic model selection. It has 
interfaces for Python, R, Splus, MATLAB, Perl, Ruby, and LabVIEW. Kernels: 
linear, polynomial, radial basis function, and neural (tanh).  

n  Applet to play with: 
¨  http://lcn.epfl.ch/tutorial/english/svm/html/index.html 
¨  http://cs.stanford.edu/people/karpathy/svmjs/demo/ 
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