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CHAPTER 10:

Linear Discrimination




Likelihood- vs. Discriminant-based Classification

Assume a model for p(x|C), use
Bayes’ rule to calculate P(C|x)

Choose C;if g{x) =log P(C|x) is maximum

Assume a model for the
discriminant g; (x| ® ;); no density estimation

Estimating the boundaries is enough; no need to accurately
estimate the densities inside the boundaries
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Linear Discriminant

Linear discriminant:

d
T
gi(x | WiJWi()) =W; X+ W, = ZWUXJ + Wi
J=

Advantages:
Simple: O(d) space/computation

Knowledge extraction: Weighted sum of attributes;
positive/negative weights, magnitudes (credit scoring)

Optimal when p(x|C,) are Gaussian with shared cov
matrix; useful when classes are (almost) linearly
separable
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Generalized Linear Model

Quadratic discriminant:
T T
gi(x | VVquWz‘o) =X WX+WwW; X+Ww,

Instead of higher complexity, we can still use a linear
classifier if we use higher-order (product) terms.

Map from x to z using and use

a linear discriminant in z-space ,
Zy =Xy, Zo =Xy, Z3 =Xy, Z;, =X5, Z: = XX,

The linear function defined in the z space corresponds to
a non-linear function in the x space.

9. 3 w,p,(x)
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Two Classes

choose C, if g;(x) > g,(x)

C, if g,(x) > g;(x) Define:
g(x)=g,(x)- g,(x)
*NA =(W{X+W1o)_(W2TX+W20)
gx)=w x, +wx,+w, =0 ;
2(x)>0 = (Wl - Wz) X + (W10 - Wzo)
g(x)<0 T
=wix+w,
C2
X :
f
o  choose {Cl if glx) ~ 0
X C, otherwise
X
>
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Learning the Discriminants

As we have seen before, when p (x| C;) ~ N ( «;, ),
the optimal discriminant is a linear one:

gi(x | Wi!WiO) = WiTX + Wi

W, = 2_1Hi Wio = _%H?Z_lui + log P(Ci)

So, estimate u, and X from data, and plug into the
gi’ s to find the linear discriminant functions.

Of course any way of learning can be used (e.g.
perceptron, gradient descent, logistic regression...).

7
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When K > 2

Combine K two-class problems, each one separating one
class from all other classes
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Multiple Classes

gi(x | WiJWiO) = WiTX + Wi

How to train?
How to decide on a test?

Choose C, it
K

gi(x) = njl.fxgj(x)

Why? Any problem?

Convex decision regions
based on g;s (indicated with blue
dist is |g;(x)|/|[will

Assumes that classes
are

reject may be used ’
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Pairwise Separation

If the classes are not
linearly separable:

~ A

T
glj(x | Wij’WijO)= W, X+ Wy

( >0 it xeC,
glj(x)=< <0 ifxECj
don't care otherwise

I 1 choose C; it
Vj=1i,g,(x)>0

> Uses k(k-1)/2
X linear discriminants

10
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Pairwise linear separation 1s much more likely than linear
separability
None of the classes may satisfy the condition

Reject
Use max

choose C 1f choose C, maximizing
. ->
vj ¢lagij(x)>0 gi(x)=zgij(x)
J#i
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A Bit of Geometry




Dot Product and Projection
<w,p>=w'p = ||Wl|l|p[|Cos

proj. of p onto w
= ||plICoso

\ 4

v

= whp/[[wl
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Geometry

A
§ 2(x)=0
g(x)<0
w, /][]
/

g(x)>0

The points x on the separating hyperplane have g(x) =
wTx+w,=0. Hence for the points on the boundary wTx=-
W,.

Thus, these points also have the same projection onto
the weight vector w, namely wx/||w|| (by definition of
projection and dot product). But this is equal to —w,/||w||.
Hence ...

The perpendicular distance of the
boundary to the origin is
Iwol/llwll.

The distance of any point x to the
decision boundary is |g(x)|/||w]|.

/

gx)|/][wl]

Lectu

14
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Support Vector Machines




Vapnik and Chervonenkis — 1963
Boser, Guyon and Vapnik — 1992 (kernel trick)
Cortes and Vapnik — 1995 (soft margin)

The SVM is a machine learning algorithm which
solves classification problems
uses a flexible representation of the class boundaries
implements automatic complexity control to reduce overfitting

has a single global minimum which can be found in polynomial
time

It is popular because

* it can be easy to use

* it often has good generalization performance

* the same algorithm solves a variety of problems with little tuning

16
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SVM Concepts

Convex programming and duality
Using maximum margin to control complexity

Representing non-linear boundaries with feature
expansion

The kernel trick for efficient optimization
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Linear Separators

Which of the linear separators is
optimal?
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Classification Margin
w'x +b
Distance from example x; to the separator is T [w|
Examples closest to the hyperplane are support vectors.

Margin p of the separator is the distance between support
vectors from two classes.

19
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Maximum Margin Classification

Maximizing the margin is good according to intuition.

Implies that only support vectors matter; other training
examples are ignorable.
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SVM as 2-class Linear Classifier

(Cortes and Vapnik, 1995; Vapnik, 1995)

+1 ifx' E€C,

X={xt,rt}twherert= 1 ifxec,

find w and w, such that
w'x' +w, = +1forr' = +1

wx' +w,=<-1 forr' =-1

Note the condition >= 1 (not just
0). We can always do this if the
classes are linearly separable by
rescaling w and w0, without
affecting the separating

hyperplane:
YPeIp w'x +w, =0

margin

Optimal separating hyperplane: Separating hyperplane maximizing the

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

21




Optimal Separating Hyperplane

Must satisty :

w x' +w, = +1forr' = +1

T 4 4
w' x' +w, = -1forr' =-1

which can be rewritten as

(
r'iw x' + wo)z +1

(Cortes and Vapnik, 1995; Vapnik, 1995)
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Maximizing the Margin

Distance from the discriminant to the closest instances on either
side is called the margin

In general this relationship holds (geometry): d = | ‘T;‘(T‘) |
W
So, for the support vectors, we have:
(1
— 2
W P2 =1

To maximize margin,
| -1 | minimize the Euclidian norm
of the weight vector w
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Maximizing the Margin-Alternate explanation

Distance from the discriminant to the closest instances on
either side is called the margin

T ot
Distance of x to the hyperplane is ‘W X + Wo‘
W
. . . ] t T §,t
We require that this distance is r (W X + Wo) > 0,Vt
at least some value p > 0. HWH -

We would like to maximize p, but we can do so in infinitely
many ways by scaling w.

For a unique sol’ n, we fix o||wl|l=1 and minimize ||W||.
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min %HWHZ subject to r’ (WTX’ + wo) >+1,V1

N
L, = %HWHZ ~ Eat [rt (WTXI + W, ) - 1]
t=1

The solution, if it exists, is
always at a saddle point of the Lagrangian

Lp should be minimized w.r.t w and
maximized w.r.t als
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Unconstrained
problem using
Lagrange
multipliers

(+ numbers)
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In the figure below we have illustrated an extreme value problem with constraints. The point A
is the largest value of the function z=f{x,y) while the point B is the largest value of the function
under the constraint g(x,y)=0.

26
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Steep slope
280 m
260 m
240
220 m
O

N —~—

=

S~

Gradual slope
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=
The method of Lagrange multipliers allows us to maximize or minimize functions with the constraint
that we only consider points on a certain surface. To find critical points of a function f(z,y,2) ona

level surface g(z,y, z) = C (or subject to the constraint g(z,y, z) = C), we must solve the following
system of simultaneous equations:

Vf(z,y,z) = AVg(z,y, 2)
9(z,y,2) =C

Remembering that Vf and Vg are vectors, we can write this as a collection of four equations in
the four unknowns z, y, z, and A:

fz(xaya z) = ’\gx(x:ya z)
fy(@,y,2) = Agy(,y, 2)
f:(z,y,2) = Ag:(z, 9, 2)
9(z,y,2) =C

The variable A is a dummy variable called a “Lagrange multiplier”; we only really care about the
values of z, y, and 2.

28
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The diagram shows a linear function f(x, y) = ax + by subject to a constraint x*> + y* = ¢. Here
Vf = (a, b) is constant, Vg = (2x, 2y), and the constrained extrema of f occur at the points where
(a, b) is perpendicular to the circle.

Maximum of f

Minimum of f

|
\  Constraint: g(z) = ¢

~-
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oL

p
dw

min %HWHZ subject to 7' (WTXt + W, )2 +1,V1

L=l = Sl (v s )-1]

1 2 - t tl...T_¢ A !
=W - S wx )+ Sa

N
=O=W=Eatrtxt
t=1
N
=0:>Eafrf =0

Convex quadratic optimization
problem can be solved using
the dual form where we use
these local minima constraints

and maximize w.r.t ots
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Problem: maximize

f(z,y) = 62 + 8y
subject to
g(z,y) =a®>+y*>—-1>0

Using a Lagrange multiplier a,

max min :
yaxmin f(z,y) + ag(z,y)

At optimum,

0=Vf(z,y) +aVg(z,y) = (g)+2a(3)

from: http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/lagrang/lagrang.html

35
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IR R E

1 2~ b oL N
= —|w| —Eatrt(wat+wo)+zat £ =0:2atrt=0
2 =1 =1 W, =
1 T T to. bt ty.t t
t t t respect to a'only

1

_E( TW)+ Eat

1 T
- Eatasrtrs(xt) X5+ Eat
2 t S t

subject to E a'r' =0and o' =0,Vt
t
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* Quadratic
programming
problem

* Thanks to the
convexity of the
problem, optimal
value of L, = L,
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To every convex program corresponds a dual

Solving original (primal) is equivalent to solving dual
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glx)=+1

Support vectors e
for which

rt(wa’ + w0)= 1

38
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l\)Ir—*

—E(WTW)+ Za’

__l t st 5|t S t
- 222amr(x)fx+2a

*Maximize L4 with respect to a'only

subject to Ea’rt =0anda’' =0,V¢
t

*Quadratic programming problem

-~ (W'w)-w me _WOEW +Ea

Size of the dual
depends on N
and noton d

*Thanks to the convexity of the problem, optimal value of L = L
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Calculating the parameters w and w,

Note that:

either the constraint is exactly satisfied (=1)
(and af can be non-zero)

or the constraint is clearly satisfied (> 1)
(then a! must be zero)

L =3Il = S o)1

Once we solve for at, we see that most of them are 0 and only
a small number have at>0

the corresponding x's are called the support vectors

40
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Calculating the parameters w and w,

Once we have the Lagrange multipliers, we can compute w and w,,
N
W = Eatrtxt =;a’rtxt
t=1 =SV

where SV is the set of the Support Vectors.

t T t
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We make decisions by comparing each query x with only
the support vectors

N
y=sign(W x+w,)=( E a'r'’x")x+w,
resSv

Choose class C1 if +, C2 if negative

43
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Not-Linearly Separable Case




The non-separable case cannot find a feasible
solution using the previous approach

The objective function (L) grows arbitrarily large.

Relax the constraints, but only when necessary
Introduce a further cost for this
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Soft Margin Hyperplane

Not linearly separable = 4

g(x)=+1
gx)=-1 : O
© C O
¢ Iy
rt(WTxt_l_W )>1 gz X 2)( O
o)==+ 3
X X o o
t X
& =20 X X
W
\ >
Three cases (shown in fig): X
|
Case 1: £ =
Case 2: §’ > |
Case3: (<& <l
48

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)



Soft Margin Hyperplane

Define Soft error

New primal is

25

Upper bound on the
number of training
errors

Lagrange multipliers
to enforce positivity

of E

_HWH +CE§ E [ (WX +WO) 1+§:| EME

Parameter C can be viewed as a way to control overfitting:
off” the relative importance of maximizing the margin and fitting the

training data.
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it “trades
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Soft Margin Hyperplane

New dual is the same as the old one

L, = —%2 Zatasrtrs(xt)[xs + Zat

subject to

Eatrt =0andO0=< o' <C,Vt
t

As In the separable case, instances that are not support
vectors vanish with their a!=0 and the remaining define
the boundary.
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Kernel Functions in SVM




We can handle the overfitting problem: even if we have
lots of parameters, large margins make simple classifiers

“All” that is left is efficiency

Solution: kernel trick

52
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)



Kernel Functions

Instead of trying to fit a non-linear model, we can

map the problem to a new space through a non-linear
transformation and

use a linear model in the new space

Say we have the new space calculated by the basis
functions z = @(x) where z=¢,(x) , |=1,....k

d-dimensional x space —— k-dimensional z space

P(X)=[d,(%) PAX) ... DN

53
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0:R* >R’

(X1,X2)I—>(Z1,22,23): (X':',\/EX1X2,X3)

X Z X
2 2
X s X «
X b4 X X
y Xx X X X X
J“'ﬂ'-— ° -”-"'q..\
X "'! ® ® \"'\ X
/ ® ®
| |
'..\ ° & ;’, X,
o N o #zx X
X o .- |- X
X B X X
X 4
X X X X
X X
X X
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Kernel Functions

=0

if we assume ¢, (x) =1 for Vx
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Kernel Machines

Preprocess input x by basis functions
z= @(x) g(2)=w'z
gx)=w! g (x)

SVM solution: Find Kernel functions K(x,y) such that the
inner product of basis functions are replaced by a Kernel
function in the original input space

W = Eatrtzt = Eatrtq)(xt)
g(x)=wlglx)= Eoc rfq;(xt)Tgo(x)
glx =Zocr1<(x,x)

56
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Kernel Functions

Consider polynomials of degree g:

K(x,y)= (XTy + 1)q

K(x,y)=(x"y+1f
2
= (xlyl T+ X, ), + 1)
=14+2x,y, +2x,y, +2x,%,9,), + x12y12 + x22y22

¢(X) = [1, \/Exl, \/Exz, \/Exlxz, xlz, xzz]r

(Cherkassky and Mulier, 1998)

57
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2 2
(x,2)" = (x1z1+ x222)” =
=Xz X025 +2X1z1x000 =
= <(.}c‘1"E Xa N2x1x2), (20,25, ﬁ:1:z)> =
<¢(I)-" ¢(:)> www support-vector net
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Examples of Kernel Functions

Linear: K(x,X)= Xl-TXJ-
Mapping ®: x — ¢ (x), where ¢ (x) is x itself

Polynomial of power p: K(x,x)= (1+ x;'x)?
Mapping ®: x — ¢(x), where

¢ (x) has (d +p) dimensions
p

Gaussian (radial-basis function): K(x,x) = ¢ **

Mapping ®: x— ¢ (x), where ¢ (x) is infinite-dimensional:
every point is mapped to a function (a Gaussian)

Higher-dimensional space still has intrinsic
dimensionality d, but linear separators in it correspond to
non-linear separators in original space.

60
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Typically k is much larger than d, and possibly larger
than N

Using the dual where the complexity depends on N rather than k
Is advantageous

We use the soft margin hyperplane

If C is too large, too high a penalty for non-separable points (too
many support vectors)

If C is too small, we may have underfitting

Decide by cross-validation

61
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Other Kernel Functions

Polynomials of degree ¢: K (Xt, X)= (XTXt)q
K(xt,x) = (xTxt + ly
i 5
t < - %
Radial-basis functions: K (X , X ) = eXp| - -

Sigmoidal functions such as: K (Xt,x) = tanh(ZxTxt + 1)
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What Functions are Kernels? Advanced

For some functions K(Xl-,XJ-) checking that K(Xl-,XJ-)= dx)To (Xj) can
be cumbersome.

Any function that satisfies some constraints called the Mercer
conditions can be a Kernel function - (Cherkassky and Mulier, 1998)

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-
positive definite symmetric Gram matrix:

K(x,,x;) | K(x,X,) | K(X{,X5) K(x,,Xx,)
K(x,,x;) | K(X,,X,) |K(X,,X;) K(x,,X,)
Kx,,x;) |KX,,X,) |K(X,,X3) K(x,,x,)

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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Informally, kernel methods implicitly define the class of
possible patterns by introducing a notion of similarity
between data

Choice of similarity -> Choice of relevant features

More formally, kernel methods exploit information about
the inner products between data items

Many standard algorithms can be rewritten so that they only
require inner products between data (inputs)

Kernel functions = inner products in some feature space
(potentially very complex)

If kernel given, no need to specify what features of the data are
being used

Kernel functions make it possible to use infinite dimensions
efficiently in time / space

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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String kernels

For example, given two documents, D, and D,, the
number of words appearing in both may form a kernel.

Define ¢(D,) as the M-dimensional binary vector where
dimension i is 1 if word w, appears in D,; O otherwise.

Then ¢(D,)"¢(D,) indicates the number of shared words.

If we define K(D,,D,) as the number of shared words;

no need to preselect the M words
no need to create the bag-of-words model explicitly

M can be as large as we want

65
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Projecting into Higher Dimensions

= Naive application of this concept by simply projecting to a high-
dimensional non-linear manifold has two major problems
o Statistical: operation on high-dimensional spaces is ill-conditioned due to the
“curse of dimensionality” and the subsequent risk of overfitting

+ Computational: working in high-dimensions requires higher computational
power, which poses limits on the size of the problems that can be tackled

s SVMs bypass these two problems in a robust and efficient manner

¢ First, generalization capabilities in the high-dimensional manifold are ensured by
enforcing a largest margin classifier
» Recall that generalization in SVMs is strictly a function of the margin (or the VC
dimension), regardless of the dimensionality of the feature space
¢ Second, projection onto a high-dimensional manifold is only implicit

= Recall that the SVM solution depends only on the dot product (x;x;) between training
examples

n Therefore, operations in high dimensional space o(x) do not have to be performed
explicitly if we find a function K(x;x) such that K(x;x)=(a(x;),0(x))

n K(x,,x,) is called a kernel function in SVM terminology

66
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SVM Applications

Cortes and Vapnik 1995:
Handwritten digit classification
16x16 bitmaps -> 256 dimensions

Polynomial kernel where q=3 -> feature space with 10°
dimensions
No overfitting on a training set of 7300 instances

Average of 148 support vectors over different training sets

Expected test error rate:

Expy[P(error)] = Expy[#support vectors] / N
(= 0.02 for the above example)
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SVM history and applications

SVMs were originally proposed by Boser, Guyon and Vapnik in 1992
and gained increasing popularity in late 1990s.

SVMs represent a general methodology for many PR problems:
classification,regression, feature extraction, clustering, novelty detection,
etc.

SVMs can be applied to complex data types beyond feature vectors
(e.g. graphs, sequences, relational data) by designing kernel functions
for such data.

SVM techniques have been extended to a number of tasks such as
regression [Vapnik et al. '97], principal component analysis [Scholkopf et
al. '99], etc.

Most popular optimization algorithms for SVMs use decomposition to
hill-climb over a subset of a;’s at a time, e.g. SMO [Platt '99] and
[Joachims '99]

70
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Advantages of SVMs

There are no problems with local minima, because the solution is a
Qaudratic Programming problem with a global minimum.

The optimal solution can be found in polynomial time

There are few model parameters to select: the penalty term C, the
kernel function and parameters (e.g., spread o in the case of RBF
kernels)

The final results are stable and repeatable (e.g., no random initial
weights)

The SVM solution is sparse; it only involves the support vectors
SVMs rely on elegant and principled learning methods

SVMs provide a method to control complexity independently of
dimensionality

SVMs have been shown (theoretically and empirically) to have
excellent generalization capabilities

71
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)



Challenges

Can the kernel functions be selected in a principled manner?

SVMs still require selection of a few parameters, typically through
cross-validation

How does one incorporate domain knowledge?

Currently this is performed through the selection of the kernel and the
introduction of “artificial” examples

How interpretable are the results provided by an SVM?

What is the optimal data representation for SVM? What is the effect of
]Eeature v’v?eighting? How does an SVM handle categorical or missing
eatures”

Do SVMs always perform best? Can they beat a hand-crafted solution for a

particular problem?

Do SVMs eliminate the model selection problem?

Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)
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More explanations or demonstrations can be found at:
http://www.support-vector-machines.org/index.html
Haykin Chp. 6 pp. 318-339

Burges tutorial (under/reading/)

Burges, CJC "A Tutorial on Support Vector Machines for Pattern Recognition" Data
Mining and Knowledge Discovery, Vol 2 No 2, 1998.

http://www.dtreg.com/svm.htm

Software

SVMlight, by Joachims, is one of the most widely used SVM classification and
regression package. Distributed as C++ source and binaries for Linux, Windows,
Cygwin, and Solaris. Kernels: polynomial, radial basis function, and neural (tanh)

LibSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM (Library for
Support Vector Machines), is developed by Chang and Lin; also widely used.
Developed in C++ and Java, it supports also multi-class classmcatlon weighted
SVM for unbalanced data, cross-validation and automatic model selection. It has
interfaces for Python, R, Splus, MATLAB, Perl, Ruby, and LabVIEW. Kernels:
linear, polynomial, radial basis function, and neural (tanh).

Applet to play with:
http://Icn.epfl.ch/tutorial/english/svm/html/index.html
http://cs.stanford.edu/people/karpathy/svmjs/demo/
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-Kernel Options

(el

Kernel : Linear Kernel
Formula: (s a*b+c)
A
< >
v

-SWh Data Display

[Select Predefined Samples... |E] Clear |

rDetailed SWh Options

Stopping Criteria (Epsilon) :

Use Shrinking :

Cache In Mega Bytes :

Coefficient of the Error Term (C) :

SVM Applet...

Developed for :
EE-583 Pattern

Recognition

Developed by :
Hakan Serge, 2005

This applet demonstrates

SVM (Support Vector

-SWh Results Display

#lterations : 250

rho : [-12.602075185863285]
probA ;-

probB : -

number of support vectors : 3

0.001

#lterations : 260

rho : [-12.609075185863285]
probA: -

prohB : -

number of supportvectors : 3

I—lll

)

Add 10 Random Points |

Perform 5 lterations |

Perform 10 lterations |

Reset I

Close |
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-Kernel Options

-3V Data Display

[Select Predefined Samples... [v] Clear |

N

\

-
T

N

Kernel : |Po|ynomia| Kernel
Formula: (s a*b+c)'d

Degree (d): 2.0

S: 1.0

C: 1.0

SVM Applet...

Developed for :
EE-583 Pattern

Recognition

Developed by :
Hakan Serge, 2005

This applet demonstrates

SVM (Support Vector

-Detailed SVM Options

Stopping Criteria (Epsilon) :
Coefficient of the Error Term (C) :
Use Shrinking :

Cache In Mega Bytes :

0.001

Ijll

-5V Results Display

#lterations : 410

rho : [-1.1753402851755455]
probA ;-

probB : -

number of suppoertvectors : 10

#lterations : 420

rho : [-5.6947504910938695]
probA ;-

probB : -

number of support vectors : 10

Add 10 Random Points |

Perform 5 lterations |

Perform 10 lterations |

Reset |

Close |
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-Kernel Options

Kernel:  |RBF Kemel v

Formula: exp(-gamma ||3-h||"2)

Gamma: |0.0010
N
& >
V]

-aWM Data Display

|SelectPredeﬁned Samples...Ll Clearl

-Detailed S¥YM Options

-SWM Results Display

SVM Applet...

Developed for:
EE-583 Pattern

Recognition

Developed by :
Hakan Serce, 2005

This applet demonstrates
SVM (Support Vector

. o I 0001 #lterations : 5
Stopping Criteria (Epsilon) - rho : [0.3013952991115437]
Coefficient of the Error Term (C): |1 ProbA: -
probB: -
Use Shrinking r number of supportvectors : 10
Cache In Mega Bytes : 2

Add 10 Random Points

i Perform 5 lterations

..................................................................

Perform 10 Iterations

Reset

Close
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