Lecture Slides for

Machine Learning

ETHEM ALPAYDIN
© The MIT Press, 2004
alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml

CHAPTER 10:
Linear Discrimination

Likelihood-vs. Discriminant-based Classification

- Likelihood-based: Assume a model for $p\left(\boldsymbol{x} \mid C_{i}\right)$, use Bayes' rule to calculate $P\left(C_{i} \mid \boldsymbol{x}\right)$

Choose C_{i} if $\quad g_{i}(\boldsymbol{x})=\log P\left(C_{i} \mid \boldsymbol{x}\right)$ is maximum

- Discriminant-based: Assume a model for the discriminant $g_{i}\left(\boldsymbol{x} \mid \Phi_{i}\right)$; no density estimation
\square Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries

Linear Discriminant

- Linear discriminant:

$$
\mathcal{G}_{i}\left(\boldsymbol{x} \mid \boldsymbol{w}_{i}, \mathcal{W}_{i 0}\right)=\boldsymbol{w}_{i}^{T} \boldsymbol{x}+\mathcal{W}_{i 0}=\sum_{j=1}^{d} \mathcal{W}_{i j} \boldsymbol{x}_{j}+\mathcal{W}_{i 0}
$$

- Advantages:
\square Simple: O(d) space/computation
\square Knowledge extraction: Weighted sum of attributes; positive/negative weights, magnitudes (credit scoring)
\square Optimal when $p\left(x \mid C_{i}\right)$ are Gaussian with shared cov matrix; useful when classes are (almost) linearly separable

Generalized Linear Model

- Quadratic discriminant:

$$
g_{i}\left(\boldsymbol{x} \mid \mathbf{W}_{i}, \boldsymbol{w}_{i}, w_{i 0}\right)=\boldsymbol{x}^{T} \mathbf{W}_{i} \boldsymbol{x}+\boldsymbol{w}_{i}^{T} \boldsymbol{x}+w_{i 0}
$$

- Instead of higher complexity, we can still use a linear classifier if we use higher-order (product) terms.
- Map from \boldsymbol{x} to \boldsymbol{z} using nonlinear basis functions and use a linear discriminant in z-space

$$
Z_{1}=X_{1}, \quad Z_{2}=X_{2}, Z_{3}=X_{1}^{2}, Z_{4}=X_{2}^{2}, Z_{5}=X_{1} X_{2}
$$

- The linear function defined in the \mathbf{z} space corresponds to a non-linear function in the \mathbf{x} space.

$$
g_{i}(\boldsymbol{x})=\sum_{j=1}^{k} w_{i j} \phi_{j}(\mathbf{x})
$$

Two Classes

choose C_{1} if $g_{1}(x)>g_{2}(x)$ C_{2} if $g_{2}(x)>g_{1}(x)$

Define:

Learning the Discriminants

As we have seen before, when $p\left(\boldsymbol{x} \mid C_{i}\right) \sim \mathcal{N}\left(\mu_{i}, \Sigma\right)$, the optimal discriminant is a linear one:

$$
\begin{aligned}
& g_{i}\left(\boldsymbol{x} \mid \boldsymbol{w}_{i}, w_{i 0}\right)=\boldsymbol{w}_{i}^{T} \boldsymbol{x}+w_{i 0} \\
& \boldsymbol{w}_{i}=\boldsymbol{\Sigma}^{-1} \mu_{i} \quad w_{i 0}=-\frac{1}{2} \mu_{i}^{T} \boldsymbol{\Sigma}^{-1} \mu_{i}+\log P\left(C_{i}\right)
\end{aligned}
$$

So, estimate μ_{i} and Σ from data, and plug into the gi's to find the linear discriminant functions.

Of course any way of learning can be used (e.g. perceptron, gradient descent, logistic regression...).

- When K > 2
\square Combine K two-class problems, each one separating one class from all other classes

Multiple Classes

$$
g_{i}\left(\boldsymbol{x} \mid \boldsymbol{w}_{i}, w_{i 0}\right)=\boldsymbol{w}_{i}^{T} \boldsymbol{X}+w_{i 0}
$$

How to train?
How to decide on a test?

Choose C_{i} if
 $g_{i}(x)=\max _{j=1}^{K} g_{j}(x)$

Why? Any problem?
Convex decision regions based on g_{i} (indicated with blue), dist is $\left|\mathrm{g}_{\mathrm{i}}(\mathrm{x})\right| /||\mathrm{wi}||$

Assumes that classes are linearly separable: reject may be used

Pairwise Separation

If the classes are not linearly separable:

$$
g_{i j}\left(\boldsymbol{x} \mid \boldsymbol{w}_{i j}, w_{i j 0}\right)=\boldsymbol{w}_{i j}^{T} \boldsymbol{x}+w_{i j 0}
$$

- Pairwise linear separation is much more likely than linear separability
- None of the classes may satisfy the condition
\square Reject
\square Use max

$$
\begin{aligned}
& \text { choose } C_{i} \text { if } \\
& \forall j \neq i, g_{i j}(\mathbf{x})>0
\end{aligned} \quad \begin{aligned}
& g_{i}(\mathbf{x})=\sum_{j \neq i} g_{i j}(\mathbf{x})
\end{aligned}
$$

A Bit of Geometry

- Dot Product and Projection
- $\langle w, p\rangle=w^{T} p=\|\mathrm{w}|\|\mid \mathrm{p}\| \operatorname{Cos} \theta$
- proj. of p onto w

$$
\begin{aligned}
& =\|p\| \cos \theta \\
& =w^{\mathrm{T}} \cdot p /\|\mathrm{w}\|
\end{aligned}
$$

The points \mathbf{x} on the separating hyperplane have $\mathrm{g}(\mathbf{x})=$ $\mathbf{w}^{\top} \mathbf{x}+\mathbf{w}_{0}=0$. Hence for the points on the boundary $\mathbf{w}^{\top} \mathbf{x}=-$ w_{0}.

Thus, these points also have the same projection onto the weight vector \mathbf{w}, namely $\mathbf{w}^{\top} \mathbf{x} /\|\mathbf{w}\|$ (by definition of projection and dot product). But this is equal to $-\mathrm{w}_{0} /\|\mathrm{w}\|$. Hence ...

The perpendicular distance of the boundary to the origin is
$\left|w_{0}\right| /||w||$.
The distance of any point \mathbf{x} to the decision boundary is $|\mathrm{g}(\mathrm{x})| /||\mathrm{w}||$.

Support Vector Machines

- Vapnik and Chervonenkis - 1963
- Boser, Guyon and Vapnik - 1992 (kernel trick)
- Cortes and Vapnik - 1995 (soft margin)
- The SVM is a machine learning algorithm which
\square solves classification problems
\square uses a flexible representation of the class boundaries
\square implements automatic complexity control to reduce overfitting
\square has a single global minimum which can be found in polynomial time
- It is popular because
- it can be easy to use
- it often has good generalization performance
- the same algorithm solves a variety of problems with little tuning

SVM Concepts

- Convex programming and duality
- Using maximum margin to control complexity
- Representing non-linear boundaries with feature expansion
- The kernel trick for efficient optimization
- Which of the linear separators is optimal?

- Classification Margin

- Distance from example \mathbf{x}_{i} to the separator is $r=\frac{\mathbf{w}^{T} \mathbf{x}_{i}+b}{\|\mathbf{w}\|}$
- Examples closest to the hyperplane are support vectors.
- Margin ρ of the separator is the distance between support vectors from two classes.

Maximum Margin Classification

- Maximizing the margin is good according to intuition.
- Implies that only support vectors matter; other training examples are ignorable.

- SVM as 2-class Linear Classifier

(Cortes and Vapnik, 1995; Vapnik, 1995)
$\mathrm{X}=\left\{\mathbf{x}^{t}, r^{t}\right\}_{t}$ where $r^{t}= \begin{cases}+1 & \text { if } \mathbf{x}^{t} \in C_{1} \\ -1 & \text { if } \mathbf{x}^{t} \in C_{2}\end{cases}$
find \mathbf{w} and w_{0} such that
$\mathbf{w}^{T} \mathbf{x}^{t}+w_{0} \geq+1$ for $r^{t}=+1$
$\mathbf{w}^{T} \mathbf{x}^{t}+w_{0} \leq-1$ for $r^{t}=-1$

Note the condition >= 1 (not just 0). We can always do this if the classes are linearly separable by rescaling w and w0, without affecting the separating hyperplane:

$$
\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}=0
$$

Optimal separating hyperplane: Separating hyperplane maximizing the margin

Optimal Separating Hyperplane

Must satisfy:
$\mathbf{w}^{T} \mathbf{x}^{t}+w_{0} \geq+1$ for $r^{t}=+1$
$\mathbf{w}^{T} \mathbf{x}^{t}+w_{0} \leq-1$ for $r^{t}=-1$
which can be rewritten as
$r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right) \geq+1$
(Cortes and Vapnik, 1995; Vapnik, 1995)

Maximizing the Margin

Distance from the discriminant to the closest instances on either side is called the margin
In general this relationship holds (geometry): $\quad d=\frac{|g(x)|}{\|\mathbf{w}\|}$
So, for the support vectors, we have:

$$
d=\left\{\begin{array}{l}
\frac{1}{\|\mathbf{w}\|} \\
\frac{|-1|}{\|\mathbf{w}\|}
\end{array}\right.
$$

$$
\begin{aligned}
& \rho=2 d=\frac{2}{\|\mathbf{w}\|} \\
& \begin{array}{l}
\text { To maximize margin, } \\
\text { minimize the Euclidian norm } \\
\text { of the weight vector } w
\end{array}
\end{aligned}
$$

Maximizing the Margin-Alternate explanation

- Distance from the discriminant to the closest instances on either side is called the margin
- Distance of x to the hyperplane is

$$
\frac{\left|\boldsymbol{w}^{T} \boldsymbol{x}^{t}+\boldsymbol{w}_{0}\right|}{\|\boldsymbol{w}\|}
$$

- We require that this distance is at least some value $\rho>0$.

$$
\frac{r^{t}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{t}+w_{0}\right)}{\|\boldsymbol{w}\|} \geq \rho, \forall t
$$

- We would like to maximize ρ, but we can do so in infinitely many ways by scaling w.
- For a unique sol' n, we fix $\rho\|w\|=1$ and minimize $\|w\|$.

$$
\min \frac{1}{2}\|\mathbf{w}\|^{2} \text { subject to } r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right) \geq+1, \forall t
$$

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)-1\right]
$$

Unconstrained problem using Lagrange multipliers (+ numbers)

The solution, if it exists, is
always at a saddle point of the Lagrangian
L_{p} should be minimized w.r.t w and maximized w.r.t $\alpha^{\text {ts }}$

In the figure below we have illustrated an extreme value problem with constraints. The point A is the largest value of the function $z=f(x, y)$ while the point B is the largest value of the function under the constraint $g(x, y)=0$.

The method of Lagrange multipliers allows us to maximize or minimize functions with the constraint that we only consider points on a certain surface. To find critical points of a function $f(x, y, z)$ on a level surface $g(x, y, z)=C$ (or subject to the constraint $g(x, y, z)=C$), we must solve the following system of simultaneous equations:

$$
\begin{aligned}
\nabla f(x, y, z) & =\lambda \nabla g(x, y, z) \\
g(x, y, z) & =C
\end{aligned}
$$

Remembering that ∇f and ∇g are vectors, we can write this as a collection of four equations in the four unknowns x, y, z, and λ :

$$
\begin{aligned}
f_{x}(x, y, z) & =\lambda g_{x}(x, y, z) \\
f_{y}(x, y, z) & =\lambda g_{y}(x, y, z) \\
f_{z}(x, y, z) & =\lambda g_{z}(x, y, z) \\
g(x, y, z) & =C
\end{aligned}
$$

The variable λ is a dummy variable called a "Lagrange multiplier"; we only really care about the values of x, y, and z.

The diagram shows a linear function $f(x, y)=a x+b y$ subject to a constraint $x^{2}+y^{2}=c$. Here $\nabla f=(a, b)$ is constant, $\nabla g=(2 x, 2 y)$, and the constrained extrema of f occur at the points where (a, b) is perpendicular to the circle.

$$
\begin{aligned}
\min & \frac{1}{2}\|\mathbf{w}\|^{2} \text { subject to } r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right) \geq+1, \forall t \\
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)-1\right] \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t} r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)+\sum_{t=1}^{N} \alpha^{t}
\end{aligned}
$$

$\frac{\partial L_{p}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{t=1}^{N} \alpha^{t} r^{t} \mathbf{x}^{t}$
$\frac{\partial L_{p}}{\partial w_{0}}=0 \Rightarrow \sum_{t=1}^{N} \alpha^{t} r^{t}=0$

Convex quadratic optimization problem can be solved using the dual form where we use these local minima constraints and maximize w.r.t $\alpha^{\text {t }}$ S

Problem: maximize

$$
f(x, y)=6 x+8 y
$$

subject to

$$
g(x, y)=x^{2}+y^{2}-1 \geq 0
$$

Using a Lagrange multiplier a,

$$
\max _{x y} \min _{a \geq 0} f(x, y)+a g(x, y)
$$

At optimum,

$$
0=\nabla f(x, y)+a \nabla g(x, y)=\binom{6}{8}+2 a\binom{x}{y}
$$

from: http://math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/lagrang/lagrang.html

$$
\begin{aligned}
L_{p} & =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)-1\right] & \frac{\partial L_{p}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{t=1}^{N} \alpha^{t} r^{t} \mathbf{x}^{t} \\
& =\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t} r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)+\sum_{t=1}^{N} \alpha^{t} & \frac{\partial L_{p}}{\partial w_{0}}=0 \Rightarrow \sum_{t=1}^{N} \alpha^{t} r^{t}=0
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\begin{array}{rl}
L_{d} & =\frac{1}{2}\left(\boldsymbol{w}^{T} \boldsymbol{w}\right)-\boldsymbol{w}^{T} \sum_{t} \alpha^{t} \boldsymbol{r}^{t} \boldsymbol{x}^{t}-w_{0} \sum_{t} \alpha^{t} \boldsymbol{r}^{t}+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2}\left(\boldsymbol{w}^{T} \boldsymbol{w}\right)+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(\boldsymbol{x}^{t}\right)^{T} \boldsymbol{x}^{s}+\sum_{t} \alpha^{t}
\end{array} \begin{array}{l}
\text { •Maximize } L_{d} \text { with } \\
\text { respect to } \alpha^{t} \text { only }
\end{array} \\
\text { - Quadratic } \\
\text { programming } \\
\text { problem } \\
\text { - Thanks to the } \\
\text { onvexity of the } \\
\text { problem, optimal } \\
\text { value of } L_{p}=L_{d}
\end{array}\right]
$$

$$
\text { subject to } \sum_{t} \alpha^{t} r^{t}=0 \text { and } \alpha^{t} \geq 0, \forall t
$$

- To every convex program corresponds a dual
- Solving original (primal) is equivalent to solving dual

$$
\begin{aligned}
L_{d} & =\frac{1}{2}\left(\mathbf{w}^{T} \mathbf{w}\right)-\mathbf{w}^{T} \sum_{t} \alpha^{t} r^{t} \mathbf{x}^{t}-w_{0} \sum_{t} \alpha^{t} r^{t}+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2}\left(\mathbf{w}^{T} \mathbf{w}\right)+\sum_{t} \alpha^{t} \\
& =-\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(\mathbf{x}^{t}\right)^{T} \mathbf{x}^{s}+\sum_{t} \alpha^{t} \quad \begin{array}{l}
\begin{array}{l}
\text { Size of the dual } \\
\text { depends on } \mathrm{N} \\
\text { and not on d }
\end{array}
\end{array}
\end{aligned}
$$

-Maximize L_{d} with respect to α^{t} only

$$
\text { subject to } \sum_{\mathrm{t}} \alpha^{t} r^{t}=0 \text { and } \alpha^{t} \geq 0, \forall t
$$

-Quadratic programming problem
-Thanks to the convexity of the problem, optimal value of $L_{p}=L_{d}$

- Calculating the parameters w and w_{0}

Note that:

\square either the constraint is exactly satisfied (=1) (and α^{t} can be non-zero)
\square or the constraint is clearly satisfied (> 1) (then α^{t} must be zero)

$$
L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)-1\right]
$$

- Once we solve for αt, we see that most of them are 0 and only a small number have $\alpha^{t}>0$
\square the corresponding $x^{\text {ts }}$ are called the support vectors

- Calculating the parameters w and w_{0}

Once we have the Lagrange multipliers, we can compute \mathbf{w} and w_{0} :

$$
\mathbf{W}=\sum_{t=1}^{N} \alpha^{t} r^{t} \mathbf{x}^{t}=\sum_{t \in S V} \alpha^{t} r^{t} \mathbf{x}^{t}
$$

where $S V$ is the set of the Support Vectors.

$$
w_{0}=r^{t}-\mathbf{W}^{\mathrm{T}} \mathrm{X}^{\mathrm{t}}
$$

- We make decisions by comparing each query x with only the support vectors

$$
y=\operatorname{sign}\left(\mathbf{w}^{T} \mathbf{x}+w_{0}\right)=\left(\sum_{t \in S V}^{N} \alpha^{t} r^{t} \mathbf{x}^{t}\right) x+w_{0}
$$

- Choose class C1 if +, C2 if negative

Not-Linearly Separable Case

- The non-separable case cannot find a feasible solution using the previous approach
\square The objective function $\left(L_{D}\right)$ grows arbitrarily large.
- Relax the constraints, but only when necessary
\square Introduce a further cost for this
- Soft Margin Hyperplane
- Not linearly separable $\overbrace{}^{4}$

Case 1: $\quad \xi^{t}=0$
Case 2: $\quad \xi^{t} \geq 1$
Case 3: $\quad 0 \leq \xi^{t}<1$

Soft Margin Hyperplane

- Define Soft error

Upper bound on the number of training errors

- New primal is

Lagrange multipliers to enforce positivity of ξ

$$
L_{p}=\frac{1}{2}\|w\|^{2}+C \sum_{t} \xi^{t}-\sum_{t} \alpha^{t}\left[r^{t}\left(w^{T} x^{t}+w_{0}\right)-1+\xi^{t}\right]-\sum_{t} \mu^{t} \xi^{t}
$$

- Parameter C can be viewed as a way to control overfitting: it "trades off" the relative importance of maximizing the margin and fitting the training data.

Soft Margin Hyperplane

- New dual is the same as the old one

$$
L_{d}=-\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(\mathbf{x}^{t}\right)^{T} \mathbf{x}^{s}+\sum_{t} \alpha^{t}
$$

subject to

$$
\sum_{\mathrm{t}} \alpha^{t} r^{t}=0 \text { and } 0 \leq \alpha^{t} \leq C, \forall t
$$

- As in the separable case, instances that are not support vectors vanish with their $\alpha^{\mathrm{t}}=0$ and the remaining define the boundary.

Kernel Functions in SVM

- We can handle the overfitting problem: even if we have lots of parameters, large margins make simple classifiers
- "All" that is left is efficiency
- Solution: kernel trick

Kernel Functions

- Instead of trying to fit a non-linear model, we can
\square map the problem to a new space through a non-linear transformation and
\square use a linear model in the new space
- Say we have the new space calculated by the basis functions $\boldsymbol{z}=\boldsymbol{\varphi}(\boldsymbol{x})$ where $\mathrm{z}_{\mathrm{j}}=\phi_{j}(\boldsymbol{x}), \mathrm{j}=1, \ldots, \mathrm{k}$
d-dimensional \boldsymbol{x} space \longrightarrow k-dimensional \boldsymbol{z} space

$$
\phi(\boldsymbol{x})=\left[\begin{array}{llll}
\phi_{1}(x) & \phi_{2}(x) & \ldots & \phi_{k}(x)
\end{array}\right]
$$

Kernel Functions

$$
\begin{aligned}
& g(\mathbf{x})=\sum_{k=1} w_{k} \varphi_{k}(\mathbf{x})+b \\
& g(\mathbf{x})=\sum_{k=0} w_{k} \varphi_{k}(\mathbf{x}) \\
& \text { if we assume } \varphi_{0}(\mathbf{x})=1 \text { for } \forall \mathbf{x}
\end{aligned}
$$

Kernel Machines

- Preprocess input \boldsymbol{x} by basis functions

$$
\begin{array}{ll}
\boldsymbol{Z}=\phi(\boldsymbol{x}) \quad & g(\mathbf{Z})=\boldsymbol{w}^{T} \boldsymbol{Z} \\
& g(\boldsymbol{x})=\boldsymbol{w}^{T} \phi(\boldsymbol{x})
\end{array}
$$

- SVM solution: Find Kernel functions K(x,y) such that the inner product of basis functions are replaced by a Kernel function in the original input space

$$
\begin{aligned}
& \boldsymbol{w}=\sum_{t} \alpha^{t} \boldsymbol{r}^{t} \boldsymbol{z}^{t}=\sum_{t} \alpha^{t} \boldsymbol{r}^{t} \boldsymbol{\varphi}\left(\boldsymbol{x}^{t}\right) \\
& \boldsymbol{g}(\boldsymbol{x})=\boldsymbol{w}^{T} \boldsymbol{\varphi}(\boldsymbol{x})=\sum_{t} \alpha^{t} \boldsymbol{r}^{t} \varphi\left(\boldsymbol{x}^{t}\right)^{T} \varphi(\boldsymbol{x}) \\
& \boldsymbol{g}(\boldsymbol{x})=\sum_{t} \alpha^{t} \boldsymbol{r}^{t} K\left(\boldsymbol{x}^{t}, \boldsymbol{x}\right)
\end{aligned}
$$

Kernel Functions

- Consider polynomials of degree q :

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}+1\right)^{q}
$$

$$
\begin{aligned}
K(\mathbf{x}, \mathbf{y}) & =\left(\mathbf{x}^{T} \mathbf{y}+1\right)^{2} \\
& =\left(x_{1} y_{1}+x_{2} y_{2}+1\right)^{2} \\
& =1+2 x_{1} y_{1}+2 x_{2} y_{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2} \\
\phi(\mathbf{x}) & =\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right]
\end{aligned}
$$

(Cherkassky and Mulier, 1998)

$$
\begin{aligned}
& x=\left(x_{1}, x_{2}\right) ; \\
& z=\left(z_{1}, z_{2}\right) ; \\
& \langle x, z\rangle^{2}=\left(x_{1} z_{1}+x_{2} z_{2}\right)^{2}= \\
& =x_{1}^{2} z_{1}^{2}+x_{2}^{2} z_{2}^{2}+2 x_{121} x_{2} z_{2}= \\
& =\left\langle\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right),\left(z_{1}^{2}, z_{2}^{2}, \sqrt{2} z_{1} z_{2}\right)\right\rangle= \\
& =\langle\phi(x), \phi(z)\rangle \quad \text { mwsuppotivectornet }
\end{aligned}
$$

Examples of Kernel Functions

- Linear: $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}$
\square Mapping $\Phi: \quad \mathbf{x} \rightarrow \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is \mathbf{x} itself
- Polynomial of power p : $K\left(\mathbf{x}_{i j} \mathbf{x}_{j}\right)=\left(1+\mathbf{x}_{i}{ }^{\mathbf{T}} \mathbf{x}_{j}\right)^{p}$
\square Mapping $\Phi: \quad \mathbf{x} \rightarrow \boldsymbol{\phi}(\mathbf{x})$, where

$$
\boldsymbol{\phi}(\mathbf{x}) \text { has } \quad\binom{d+p}{p} \quad \text { dimensions }
$$

Gaussian (radial-basis function): $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=e^{-\frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}}{2 \sigma^{2}}}$
\square Mapping $\Phi: \mathbf{x} \rightarrow \phi(\mathbf{x})$, where $\phi(\mathbf{x})$ is infinite-dimensional: every point is mapped to a function (a Gaussian)

- Higher-dimensional space still has intrinsic dimensionality d, but linear separators in it correspond to non-linear separators in original space.
- Typically k is much larger than d, and possibly larger than N
\square Using the dual where the complexity depends on N rather than k is advantageous
- We use the soft margin hyperplane
\square If C is too large, too high a penalty for non-separable points (too many support vectors)
\square If C is too small, we may have underfitting
- Decide by cross-validation

Other Kernel Functions

- Polynomials of degree q :

$$
\begin{aligned}
& K\left(\mathbf{x}^{t}, \mathbf{x}\right)=\left(\mathbf{x}^{T} \mathbf{x}^{t}\right)^{t} \\
& K\left(\boldsymbol{x}^{t}, \boldsymbol{x}\right)=\left(\boldsymbol{x}^{T} \boldsymbol{x}^{t}+1\right)^{a}
\end{aligned}
$$

- Radial-basis functions:

$$
K\left(\boldsymbol{x}^{t}, \boldsymbol{x}\right)=\exp \left[-\frac{\left\|\boldsymbol{x}^{t}-\boldsymbol{x}\right\|^{2}}{\sigma^{2}}\right]
$$

- Sigmoidal functions such as: $K\left(\boldsymbol{x}^{t}, \boldsymbol{x}\right)=\tanh \left(2 \boldsymbol{x}^{T} \boldsymbol{x}^{t}+1\right)$

What Functions are Kernels? Advanced

- For some functions $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$ checking that $K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{\mathbf{T}} \phi\left(\mathbf{x}_{j}\right)$ can be cumbersome.
- Any function that satisfies some constraints called the Mercer conditions can be a Kernel function - (Cherkassky and Mulier, 1998)

Every semi-positive definite symmetric function is a kernel

- Semi-positive definite symmetric functions correspond to a semipositive definite symmetric Gram matrix:

$K=$| $K\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ | $K\left(\mathbf{x}_{1}, \mathbf{x}_{3}\right)$ | \ldots | $K\left(\mathbf{x}_{1}, \mathbf{x}_{n}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| $K\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right)$ | $K\left(\mathbf{x}_{2}, \mathbf{x}_{3}\right)$ | | $K\left(\mathbf{x}_{2}, \mathbf{x}_{n}\right)$ |
| | | | | |
| \ldots | \ldots | \ldots | \ldots | \ldots |
| $K\left(\mathbf{x}_{n}, \mathbf{x}_{1}\right)$ | $K\left(\mathbf{x}_{n}, \mathbf{x}_{2}\right)$ | $K\left(\mathbf{x}_{n}, \mathbf{x}_{3}\right)$ | \ldots | $K\left(\mathbf{x}_{n}, \mathbf{x}_{n}\right)$ |

- Informally, kernel methods implicitly define the class of possible patterns by introducing a notion of similarity between data
\square Choice of similarity -> Choice of relevant features
- More formally, kernel methods exploit information about the inner products between data items
\square Many standard algorithms can be rewritten so that they only require inner products between data (inputs)
\square Kernel functions = inner products in some feature space (potentially very complex)
\square If kernel given, no need to specify what features of the data are being used
\square Kernel functions make it possible to use infinite dimensions
- efficiently in time / space

String kernels

- For example, given two documents, D_{1} and D_{2}, the number of words appearing in both may form a kernel.
- Define $\phi\left(D_{1}\right)$ as the M-dimensional binary vector where dimension i is 1 if word w_{i} appears in $D_{1} ; 0$ otherwise.
- Then $\phi\left(\mathrm{D}_{1}\right)^{\top} \phi\left(\mathrm{D}_{2}\right)$ indicates the number of shared words.
- If we define $K\left(D_{1}, D_{2}\right)$ as the number of shared words;
\square no need to preselect the M words
\square no need to create the bag-of-words model explicitly
$\square \mathrm{M}$ can be as large as we want

Projecting into Higher Dimensions

- Naïve application of this concept by simply projecting to a highdimensional non-linear manifold has two major problems
- Statistical: operation on high-dimensional spaces is ill-conditioned due to the "curse of dimensionality" and the subsequent risk of overfitting
- Computational: working in high-dimensions requires higher computational power, which poses limits on the size of the problems that can be tackled
- SVMs bypass these two problems in a robust and efficient manner
- First, generalization capabilities in the high-dimensional manifold are ensured by enforcing a largest margin classifier
- Recall that generalization in SVMs is strictly a function of the margin (or the VC dimension), regardless of the dimensionality of the feature space
- Second, projection onto a high-dimensional manifold is only implicit
- Recall that the SVM solution depends only on the dot product $\left\langle\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right\rangle$ between training examples
- Therefore, operations in high dimensional space $\varphi(x)$ do not have to be performed explicitly if we find a function $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)$ such that $\mathrm{K}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\left\langle\varphi\left(\mathrm{x}_{\mathrm{i}}\right), \varphi\left(\mathrm{x}_{\mathrm{j}}\right)\right\rangle$
- $K\left(x_{1}, x_{2}\right)$ is called a kernel function in SVM terminology

- SVM Applications

- Cortes and Vapnik 1995:
\square Handwritten digit classification
$\square 16 \times 16$ bitmaps -> 256 dimensions
\square Polynomial kernel where $\mathrm{q}=3$-> feature space with 10^{6} dimensions
\square No overfitting on a training set of 7300 instances
\square Average of 148 support vectors over different training sets

Expected test error rate:

$$
\begin{aligned}
\operatorname{Exp}_{N}[P(\text { error })] & =\operatorname{Exp}_{N}[\# \text { support vectors }] / \mathrm{N} \\
& (=0.02 \text { for the above example })
\end{aligned}
$$

- SVM history and applications

- SVMs were originally proposed by Boser, Guyon and Vapnik in 1992 and gained increasing popularity in late 1990s.
- SVMs represent a general methodology for many PR problems: classification,regression, feature extraction, clustering, novelty detection, etc.
- SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
- SVM techniques have been extended to a number of tasks such as regression [Vapnik et al. '97], principal component analysis [Schölkopf et al. '99], etc.
- Most popular optimization algorithms for SVMs use decomposition to hill-climb over a subset of α_{i} 's at a time, e.g. SMO [Platt '99] and [Joachims '99]

Advantages of SVMs

\square There are no problems with local minima, because the solution is a Qaudratic Programming problem with a global minimum.
\square The optimal solution can be found in polynomial time
\square There are few model parameters to select: the penalty term C, the kernel function and parameters (e.g., spread σ in the case of RBF kernels)
\square The final results are stable and repeatable (e.g., no random initial weights)
\square The SVM solution is sparse; it only involves the support vectors
\square SVMs rely on elegant and principled learning methods
\square SVMs provide a method to control complexity independently of dimensionality
\square SVMs have been shown (theoretically and empirically) to have excellent generalization capabilities

Challenges

- Can the kernel functions be selected in a principled manner?
- SVMs still require selection of a few parameters, typically through cross-validation
- How does one incorporate domain knowledge?
\square Currently this is performed through the selection of the kernel and the introduction of "artificial" examples
- How interpretable are the results provided by an SVM?
- What is the optimal data representation for SVM? What is the effect of feature weighting? How does an SVM handle categorical or missing features?
- Do SVMs always perform best? Can they beat a hand-crafted solution for a particular problem?
- Do SVMs eliminate the model selection problem?
- More explanations or demonstrations can be found at:
$\square \mathrm{http}: / / \mathrm{www}$. support-vector-machines.org/index.html
\square Haykin Chp. 6 pp. 318-339
\square Burges tutorial (under/reading/)
- Burges, CJC "A Tutorial on Support Vector Machines for Pattern Recognition" Data Mining and Knowledge Discovery, Vol 2 No 2, 1998.
\square http://www.dtreg.com/svm.htm
- Software
\square SVMlight, by Joachims, is one of the most widely used SVM classification and regression package. Distributed as C++ source and binaries for Linux, Windows, Cygwin, and Solaris. Kernels: polynomial, radial basis function, and neural (tanh).
\square LibSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm/ LIBSVM (Library for Support Vector Machines), is developed by Chang and Lin; also widely used. Developed in C++ and Java, it supports also multi-class classification, weighted SVM for unbalanced data, cross-validation and automatic model selection. It has interfaces for Python, R, Splus, MATLAB, Perl, Ruby, and LabVIEW. Kernels: linear, polynomial, radial basis function, and neural (tanh).
- Applet to play with:
\square http://lcn.epfl.ch/tutorial/english/svm/html/index.html
\square http://cs.stanford.edu/people/karpathy/svmjs/demo/

SVM Applet...

Developed for :

EE-583 Pattern

Recognition

Developed by:

Hakan Serçe, 2005
\qquad

This applet demonstrates SVM (Support Vector
$\left[\begin{array}{ll}\text { Detailed SVM Options } \\ \text { Stopping Criteria (Epsilon): } & 0.001 \\ \text { Coefficient of the Error Term (C): } & 1 \\ \text { Use Shrinking: } & \square \\ \text { Cache In Mega Bytes : } & 2 \\ & \\ \hline\end{array}\right.$

Add 10 Random Points
Perform 5 Iterations
Perform 10 Iterations
Reset
Close

SVM Applet...

Developed for: EE-583 Pattern Recognition

Developed by :
Hakan Serçe, 2005
--

This applet demonstrates SVM (Support Vector

