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� Previous slides (PAC learning) put a bound on the true 

error for finite hypothesis spaces.

� What if the hypothesis space H is infinite dimensional? 

� In that case the bound is trivially true (even bigger 
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� In that case the bound is trivially true (even bigger 

than 1).

� Can we still find a bound for the true error?



True Error of A Hypothesis

� Two Notions of Error

� Training error of hypothesis h with respect to target concept c : 

How often h(x) ≠ c(x) over training instances

� True error of hypothesis h with respect to target concept c : 

How often h(x) ≠ c(x) over random instances drawn from distribution D
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� Definition

� The true error (denoted errorD(h)) of hypothesis h with respect to target concept c

and distribution D is the probability that h will misclassify an instance drawn at 

random according to D. Instance Space X
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Mitchell Book notation
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� Empirical Risk Minimization (ERM)

� A formal term for a simple concept: find the function f(x) that 

minimizes the average risk on the training set

� Minimizing the empirical risk is not a bad thing to do, provided 

that sufficient training data is available, since the law of large 

numbers ensures that the empirical risk will asymptotically 

converge to the expected risk for n→∞
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converge to the expected risk for n→∞

� However, for small samples, one cannot guarantee that ERM will 

also minimize the expected risk. This is the all too familiar issue 

of generalization.

� How do we avoid overfitting?

� By controlling model complexity. 

� Intuitively, we should prefer the simplest model that explains the 

data (Occam’s razor)



Triple Trade-Off

� There is a trade-off between three factors (Dietterich, 2003):

1. Complexity of H, c (H),

2. Training set size, N, 

3. Generalization error, E, on new data
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� As N↑, E↓
� As c (H)↑, first E↓ and then E↑



Complexity

� “Complexity” is a measure of a set of classifiers, not any

specific (fixed) classifier

� • Many possible measures

� degrees of freedom

� description length
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� description length

� Vapnik-Chervonenkis (VC) dimension

� etc.



SHATTERING
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VC DIMENSION EXAMPLES
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Examples
f x

α

yest

denotes +1

denotes -1

f(x,w) = sign(x.w)
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Shattering

� Question: Can the following f shatter the following points?

f(x,w) = sign(x.w)
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f(x,w) = sign(x.w)

� Answer: Yes. There are four possible training set types to consider:

w=(0,1) w=(0,-1)w=(2,-3)w=(-2,3)



Examples
f x

α

yest

f(x,w,b) = sign(x.w+b)
denotes +1

denotes -1
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VC dim of linear classifiers in d-dimensions

If input space is d-dimensional and if f is sign(w.x-b), what is the VC-dimension?

� h=d+1

� Lines in 2D can shatter 3 points

� Planes in 3D space can shatter 4 points
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� Planes in 3D space can shatter 4 points

� Hyperplanes in D-dimensional can shatter d+1 points



Examples
f x

α

yest

f(x,b) = sign(x.x – b)
denotes +1

denotes -1
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Shattering

� Question: Can the following f shatter the following points?

f(x,b) = sign(x.x-b)
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f(x,b) = sign(x.x-b)



Shattering

� Question: Can the following f shatter the following points?

f(x,b) = sign(x.x-b)
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f(x,b) = sign(x.x-b)

� Answer: No.

X
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� Note that if we pick 2points at the same distance to the origin, they 

cannot be shattered. But we are interested to know 

“if all possible labellings of some n-points can be shattered”.

� Can you find 3 points such that all possible labellings can be 

shattered?
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Using a more 

specific terminology
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What is the VC dimension of axis-aligned 

rectangles?

� H shatters N if there 

exists N points and h ∈H such that 

h is consistent for any labelings 

of those N points.
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of those N points.

� VC(axis aligned rectangles) = 4

� What does this say about using rectangles as our hypothesis class?



VC (Vapnik-Chervonenkis) Dimension

� VC dimension is pessimistic: in general we do not need to worry 
about all possible labelings

� It is important to remember that one can choose the arrangement of 
points in the space, but then the hypothesis must be consistent with 
all possible labelings of those fixed points.
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all possible labelings of those fixed points.



VC (Vapnik-Chervonenkis) Dimension

� The Vapnik-Chervonenkis dimension is a measure of the 

complexity (or capacity) of a class of functions f(α)

� The VC dimension measures the largest number of examples

that can be explained by the family f(α).

� The basic argument is that high capacity and generalization 
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properties are at odds

� If the family f(α) has enough capacity to explain every possible 

dataset, we should not expect these functions to generalize very 

well.

� On the other hand, if functions f(α) have small capacity but they 

are able to explain our particular dataset, we have stronger 

reasons to believe that they will also work well on unseen data.



VC Dimension (3)

� Consider a binary classification problem in R2, and let f(α) be the

family of oriented hyperplanes (e.g., perceptrons)

� For N=3, one can perform a linear separation of all points for 

every possible class assignment (see examples below)

� For N=4, a hyperplane cannot separate all possible class 

assignments (e.g., consider the XOR problem)
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� Regardless of how you select the 4 points…

� Therefore, the VC dimension of the set of oriented lines in R2 is 3

� It can be shown that the VC dimension of the family of oriented 

separating hyperplanes in RD is at least D+1



Structural Risk 

Minimization
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Minimization
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n is the size of the training set; dVC is the VC dimension
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Structural Risk Minimization (1)
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Alternatives to VC-dim-based model selection

Cross Validation

� To estimate generalization error, we need data unseen during 

training. We can use 

� Separate validation data when data is aboundant

� Training set (50%)

� Validation set (25%)

Test (publication) set (25%)
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� Test (publication) set (25%)

� k-fold cross validation or leave-one-out cross validation when 

data is small

� Resampling methods when there is few data
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Using VC-dimensionality

People have worked hard to find VC-dimension for..

� Decision Trees

� Perceptrons

� Neural Nets

� Decision Lists

� Support Vector Machines

� And many many more
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� And many many more

All with the goals of:

1. Understanding which learning machines are more or less powerful 
under which circumstances

2. Using Structural Risk Minimization to choose the best learning 
machine



The VC dimension in practice

� Unfortunately, computing an upper bound on the expected risk 

is not practical in various situations

� The VC dimension cannot be accurately estimated for non-linear 

models such as neural networks

� Implementation of Structural Risk Minimization may lead to a 

non-linear optimization problem
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� The VC dimension may be infinite (e.g., k=1 nearest neighbor), 

requiring infinite amount of data

� The upper bound may sometimes be trivial (e.g., larger than one)

� Fortunately, Statistical Learning Theory can be rigorously 

applied in the realm of linear models



What you should know

� The definition of a learning machine: f(x,αααα) 
� The definition of Shattering

� Be able to work through simple examples of shattering

� The definition of VC-dimension

� Be able to work through simple examples of VC-dimension

� Structural Risk Minimization for model selection
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� Structural Risk Minimization for model selection

� Awareness of other model selection methods



ALTERNATIVES
SKIP AFTER CROSS-VALIDATION
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