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m Previous slides (PAC learning) put a bound on the true
error for finite hypothesis spaces.

m \What if the hypothesis space H is infinite dimensional?

In that case the bound is trivially true (even bigger
than 1).

m Can we still find a bound for the true error?



=
True Error of A Hypothesis

m [wo Notions of Error

O Training error of hypothesis h with respect to target concept c :

How often h(x) # c(x) over training instances

O True error of hypothesis h with respect to target concept ¢ :

How often h(x) = ¢(x) over random instances drawn from distribution D

m Definition

O The true error (denoted errory(h)) of hypothesis h with respect to target concept ¢
and distribution D is the probability that h will misclassify an instance drawn at

random according to D. Instance Space X
error, (h)= Prle(x) < (x) c b
Where ¢
and h disagree >




Two Notions of Error Mitchell Book notation

Training error of hypothesis h with respect to
target concept c

e How often h(x) # ¢(z) over training instances D

errorp(h) = Prc(z) # h(z)]

xeD < Set of training
examples

True error of hypothesis h with respect to ¢

e How often h(z) # ¢(x) over future instances
drawn at random from D

errorplh) = E%[C(m) # Mz)) Probability

distribution
P(x)




m Empirical Risk Minimization (ERM)
A formal term for a simple concept: find the function f(x) that
minimizes the average risk on the training set

Minimizing the empirical risk is not a bad thing to do, provided
that sufficient training data is available, since the law of large
numbers ensures that the empirical risk will asymptotically
converge to the expected risk for n—

However, for small samples, one cannot guarantee that ERM will
also minimize the expected risk. This is the all too familiar issue
of generalization.

m How do we avoid overfitting?
By controlling model complexity.

Intuitively, we should prefer the simplest model that explains the
data (Occam’s razor)



" JEE
Triple Trade-Off

o There is a trade-off between three factors (Dietterich, 2003):
1. Complexity of H, ¢ (H),
2. Training set size, N,
3. Generalization error, E, on new data

o AsNT, El
O  Asc (H)T, first E and then ET



" JEE
Complexity

m “Complexity” is a measure of a set of classifiers, not any
specific (fixed) classifier

m * Many possible measures
O degrees of freedom
O description length
1 Vapnik-Chervonenkis (VC) dimension
O etc.



SHATTERING



Shattering a Set of Instances

Definition: a dichotomy of a set S is a
partition of .S into two disjoint subsets.

Definition: a set of instances S is shattered
by hypothesis space H if and only if for every
dichotomy of 5 there exists some hypothesis
in A consistent with this dichotomy.
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+ (luestion: Can the following f shatter the following points?

f(x w) = sign{x.w)
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"

« Cuestion: Can the following f shatter the following points?

f(x,w) = sign{x.w)

+ Answer: No problem. There are four training sets to consider

+ 4+
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The Vapnik-Chervonenkis Dimen-
sion

Definition: The Vapnik-Chervonenkis
dimension, VC(H), of hypothesis space H
defined over instance space X is the size of
the largest finite subset of X shattered by H.
If arbitrarily large finite sets of X can he
shattered by H, then VC(H) = 0.
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VC DIMENSION EXAMPLES



Examples

X

* denotes +1

° denotes -1

f(x,w) = sign(x.w)

> yest
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" JEE
Shattering

m  Question: Can the following f shatter the following points?

f(x,w) = sign(x.w)

m  Answer: Yes. There are four possible training set types to consider:

w=(0,1) w=(-2,3) w=(2,-3) w=(0,-1)
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Examples

0o O

f(x,w,b) = sign(x.w+b)

X
* denotes +1
° denotes -1 .
g °
° ¢ o °
]
[ J ¢ ° [}
o . . © o oo
[ J ° o o]
° ° o
° ° o

> yest
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VC dim of linear classifiers in d-dimensions

If input space is d-dimensional and if f is sign(w.x-b), what is the VC-dimension?
m h=d+1

m Lines in 2D can shatter 3 points
m Planes in 3D space can shatter 4 points
m Hyperplanes in D-dimensional can shatter d+1 points
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Examples (T

X - f > yest

f(x,b) = sign(x.x — b)

* denotes +1

° denotes -1
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" JEE
Shattering

m  Question: Can the following f shatter the following points?

-
N

<
/

f(x,b) = sign(x.x-b)
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"
Shattering

m  Question: Can the following f shatter the following points?

-
N

<
/

m  Answer: No.

4R

NP

f(x,b) = sign(x.x-b)

4R
N%
(1

-
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Reformulated circle

Given machine f, the VC-dimension A is

arranged so that f shatter them.

sign{gx.xb)

Copyright € 2001, Andrew W. Moore

The maximum number of points that can be

Example: For 2-d inputs, what's VC dimension of f(x,q.b) =

VC-dimension: Slide 18
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"

Reformulated circle

Given machine f, the VC-dimension h is

The maximum number of points that can be
arranged so that f shatter them.

Example: What's VC dimension of f(x,q.b) = sign(gx.x-b)

+ Answer =2

X9 L9 &9 ¢

Copyright € 2001, Andrew W. Moore WC-dimension: Slide 19
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m Note that if we pick 2points at the same distance to the origin, they
cannot be shattered. But we are interested to know

“if all possible labellings of some n-points can be shattered”.

m Can you find 3 points such that all possible labellings can be
shattered?
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" J
VC dimension: examples

Consider X = %2, want to learn ¢:X=>{0,1} Using a more
specific terminology

What is VC dimension of
o H1={(wxtb)>0 2 y=1)|weR:be R}
— VC(HI)=3
— For linear separating hyperplanes in n dimensions, VC(H)=n+1
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" J
VC dimension: examples

Consider X = R, want to learn ¢:.X-{0,1}
What is VC dimension of © ©

+ H1={(x>a=2y=1)|ac R}
_ VCHI)=

v H2={(x>a2dy=)|acR +{(x<a=> y=1)|a e R)
_ VC(H2)=2
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"
What is the VC dimension of axis-aligned
rectangles?

m H shatters N if there
exists N points and h e H such that |
h is consistent for any labelings
of those N points.

m VC(axis aligned rectangles) = 4 5 ©

-

m \What does this say about using rectangles as our hypothesis class?
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VC (Vapnik-Chervonenkis) Dimension

m VC dimension is pessimistic: in general we do not need to worry
about all possible labelings

m Itis important to remember that one can choose the arrangement of

points in the space, but then the hypothesis must be consistent with
all possible labelings of those fixed points.
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"
VC (Vapnik-Chervonenkis) Dimension

m The Vapnik-Chervonenkis dimension is a measure of the
complexity (or capacity) of a class of functions f(a)

The VC dimension measures the largest number of examples
that can be explained by the family f(a).

m The basic argument is that high capacity and generalization
properties are at odds

If the family f(a) has enough capacity to explain every possible
dataset, we should not expect these functions to generalize very
well.

On the other hand, if functions f(a) have small capacity but they
are able to explain our particular dataset, we have stronger
reasons to believe that they will also work well on unseen data.
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VC Dimension (3)

m Consider a binary classification problem in R?, and let f(a) be the
family of oriented hyperplanes (e.g., perceptrons)

For N=3, one can perform a linear separation of all points for
every possible class assignment (see examples below)

For N=4, a hyperplane cannot separate all possible class
assignments (e.g., consider the XOR problem)
m Regardless of how you select the 4 points...

m Therefore, the VC dimension of the set of oriented lines in R2is 3

It can be shown that the VC dimension of the family of oriented
separating hyperplanes in RP is at least D+1

S

o O ®
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Structural Risk

Minimization

37



Learning and VC-dimension

Let dy be the VC-dimension of our set of classifiers F'.

Theorem: With probability at least 1 — & over the choice of
the training set, for all h € F

Eh) < &, (h) +€e(n,dve,d)

where

e(n,dye,0) = \/(h clog(2n/dve) +1) + log(1/(49))

n

n is the size of the training set; d is the VC dimension
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Structural risk minimization

e In structural risk minimization we define the models in terms

\/
\/

\

0d
0d

0d

€
S
€

of VC-dimension (or refinements)

1 dyc=dy
2 dyo=ds
3 dye=dj

where di < do < da < ...

e The selection criterion: lowest upper bound on the expected

l0ss

Expected loss < Empirical loss + Complexity penalty
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Structural risk minimization cont’d

e Competition of terms...
1. Empirical loss decreases with increasing dy ¢
2. Complexity penalty increases with increasing dy ¢

"

nar

0ar

07y

nar

05r

O.4r Model score
0.3f _
Complexity penalty
0.2t

01F mpincal fit

|:| | | | |
] 10 20 a0 40 a0

o We find the minimum of the model score (bound).



Structural risk minimization cont’d

e We choose the model class F; that minimizes the upper
bound on the expected error:

E(h;) < E,(hi) + \/df(lmg(?n/df) 1) 4 log(1/(49))

n

where fz.f-_ Is the best classifier from F; selected on the basis
of the training set.

1

09r
0ar
0.7

0.6F

0.5k
0.4F

0.3F

ool Complexity penalty

0af

raining error

ES 10 20 30 40 50
WV dimension



Structural Risk Minimization (3)

]‘ Underfitting Overfitting
M

Expected risk

VC confidence Empirical Risk

VC dimension

—




Structural risk minimization: example

2

s = 05 o0 05 1 15

-0.5F o o U

s o o0s 0 05 1 15

A" order polynomial

2

2" order polynomial

B E— 0 05 1 15 2

8t order polynomial a4



Structural risk minimization: example cont'd

e Number of training examples 1 = 50, confidence parameter

0 = 0.05.

Model dyc  Empirical fit  Complexity penalty €(n.d,dy¢)

1% order 3 0.06
2" order 6 0.06
4% order 15 0.04
8t order 45  0.02

0.5501
0.6999
0.9494
1.2849

o Structural risk minimization would select the simplest (linear)

model in this case.
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Structural Risk Minimization (1)

s Why is the VC dimension relevant?

» Because the VC dimension provides bounds on the expected risk as a function
of the empirical risk and the number of available examples

o It can be shown that, with probability 1-n, the following bound holds

R{f)iRemp(m\lll"h(ln(Zth];ﬂ—In(n/4) Eq. (1)

VC r:cr;ﬁden e

m where his the VC dimension of f(ce), N 15 the number of training examples, and N>h

o As the ratio N/h gets larger, the VC confidence becomes smaller and the actual
risk becomes closer to the empirical risk

m Therefore, this expression is consistent with the intuition that ERM is only suitable
when sufficient data is available

o This and other results are part of the field known as Statistical Learning
Theory or Vapnik-Chervonenkis Theory, from which Support Vector Machines

originated a6



" SR o \/C-dim-ba -
sed model selection

Cross Validation

m To estimate generalization error, we need data unseen during
training. We can use
Separate validation data when data is aboundant
m Training set (50%)
m Validation set (25%)
m Test (publication) set (25%)

k-fold cross validation or leave-one-out cross validation when
data is small

m Resampling methods when there is few data
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1. Cross-validation

f, |TRAINER

10-FOLD-CV-ERR

Choice

- 1

@ | [ Wk = |
T

Copyright € 2001, Andrew W. Moore

Alternatives to VC-dim-based model selection
+ What could we do instead of the scheme below?

VC-dimension: Slide 35
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"
Using VC-dimensionality

People have worked hard to find VC-dimension for..
Decision Trees
Perceptrons
Neural Nets
Decision Lists
Support Vector Machines
And many many more

All with the goals of:

Understanding which learning machines are more or less powerful
under which circumstances

Using Structural Risk Minimization to choose the best learning
machine
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"
The VC dimension in practice

m Unfortunately, computing an upper bound on the expected risk
is not practical in various situations

The VC dimension cannot be accurately estimated for non-linear
models such as neural networks

Implementation of Structural Risk Minimization may lead to a
non-linear optimization problem

The VC dimension may be infinite (e.g., k=1 nearest neighbor),
requiring infinite amount of data

The upper bound may sometimes be trivial (e.g., larger than one)

m Fortunately, Statistical Learning Theory can be rigorously
applied in the realm of linear models

51



What you should know

The definition of a learning machine: f(x, )

The definition of Shattering

Be able to work through simple examples of shattering
The definition of VC-dimension

Be able to work through simple examples of VC-dimension
Structural Risk Minimization for model selection
Awareness of other model selection methods
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ALTERNATIVES

SKIP AFTER CROSS-VALIDATION
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1. Cross-validation

f, |TRAINER

10-FOLD-CV-ERR

Choice

- 1

@ | [ Wk = |
T

Copyright € 2001, Andrew W. Moore

Alternatives to VC-dim-based model selection
+ What could we do instead of the scheme below?

VC-dimension: Slide 35
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1. Cross-validati

on

+ What could we do instead of the scheme

2. AlIC (Akaike Information Criterion)

AICSCORE = LL(Data | MLE params)— (¥ parameters)

Alternatives to VC-dim-based model selection

Hlﬁhnlﬂ

As the amount of data
goes to infinity, AIC
promises”® to select the
model that'll have the

best likelihood for future
data

*Subject to about a million

cairmate
oot

Copyright & 2001, Andrew W. Moore

[ |f. LOGLIKE(TRAINERR) [Enarameters AlC Choice
1 If? .

215, u

3 s, m

41r, —

515 S

614y L

VE-dimension: Slide 38
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Alternatives to VC-dim-based model selection
« What could we do instead of the scheme below?

, i As the amount of data
1. Cross-validation goes to infinity, BIC

2. AIC (Akaike Information Criterion) / promises® to select the

. : : . model that the data was
3. BIC (Bayesian Information Criterion generated from. More

conservative than AIC.

BICSCORE = LLI:DHTH | MLE PEI'EJI]S}— # paraims ].Dg R *Another million caveats
i |f, |LOGLIKE(TRAINERR) |#parameters |BIC Choice
1 |f; []

2 | []

3 |15 ]

4 |1, ]

5 |fs T B

6 |1, [

Copyright € 2001, Andresw W. Moore VC-dimension: Slide 37
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Copyright € 2001, Andrew W, Moore

Which model selection method is best?

1.

2.
3.
4

(CV) Cross-validation
AIC (Akaike Information Criterion)

BIC (Bayesian Information Criterion)

(SRMVC) Structural Risk Minimize with VC-
dimension

AlIC. BIC and SRMVC have the advantage that you only need the
training error.

CV error might have more variance

SRMVC is wildly conservative

Asymptotically AIC and Leave-one-out CV should be the same
Asymptotically BIC and a carefully chosen k-fold should be the same

BIC is what you want if you want the best structure instead of the best
predictor (e.qg. for clustering or Bayes Net structure finding)

Many alternatives to the above including proper Bayesian approaches.
It's an emotional issue.

WVC-dimension: Slide 38
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Extra Comments

« Beware: that second “VC-confidence” term is
usually very very conservative (at least hundreds

of times larger than the empirical overfitting effect).

« An excellent tutorial on VC-dimension and Support
Vector Machines

C.J.C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge

Discovery, 2(2):955-974, 1998.
http://citeseer.nj.nec.com/burges98tutorial.html

Copyright € 2001, Andrew W. Moore VC-dimension: Slide 28 58




