Computational Learning Theory
I e

Introduction
The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

B. Yanikoglu
Dec 2012

Introduction

o Computational learning theory:
= Provides a theoretical analysis of learning

= Shows when a learning algorithm can be
expected to succeed

= Shows when learning may be impossible

Introduction

o Some fundamental problems addressed by
Computational Learning Theory:

Sample Complexity: How many examples we
need to find a good hypothesis?

Computational Complexity: How much
computational power we need to find a good
hypothesis?

Mistake Bound: How many mistakes we will
make before finding a good hypothesis?

Computational Learning Theory
I e

Introduction
The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

The PAC Learning Framework

O Let’s start with a simple problem: Assume a two
dimensional space with positive and negative
examples. Our goal is to find a rectangle that
includes the positive examples but not the
negatives (input space is R?):

true concept

Definitions

o Class of Concepts C. Let C be a class of
concepts that we wish to learn. In our
example C is the family of all rectangles in
R2,

o Distribution D. Assume instances are
generated at random from a distribution D.

O Class of Hypotheses H. The hypotheses our
algorithm considers while learning the
target concept.

O True error of a hypothesis h
m errorp(h) = Prp[c(x) # h(x)]

True Error ot A Hypothesis

o Two Notions of Error
m Training error of hypothesis h with respect to target concept c :

How often h(x) # c(x) over training instances

m True error of hypothesis h with respect to target concept c :

How often h(x) # c(x) over random instances drawn from distribution D

o Definition

m The true error (denoted errory(h)) of hypothesis A with respect to target
concept ¢ and distribution D is the probability that A will misclassify an instance
drawn at random according to D.

Instance Space X

error,(h)=Pr|c(x)=h(x)]

xeD

Where ¢
and h disagree

Two Notions of Error

Training error of hypothesis h with respect to
target concept c

e How often h(x) # ¢(z) over training instances D

errorp(h) = Prc(z) # h(z)]

xeD < Set of training
examples

True error of hypothesis h with respect to ¢

e How often h(z) # ¢(x) over future instances
drawn at random from D

errorplh) = E%[C(‘T) # Mz)) Probability

distribution
P(x)

True Error

Region A : false negatives
Region B : false positives
True error: probability in regions A and B.

Region A - / true concept ¢
i o+ |
R
T '« hypothesis h
Region B/']

Probably Approximately Correct learning
[Valiant84]

typically {0, 1}" or R™

. Concept class ¢ of Boolean functions over domain X

. Unknown target concept f ¢ C to be learned from examples

. Unknown and arbitrary distribution D over X

Learner has access toi.i.d. draws from D, labeled according to f :

(z1, f(z1))
(22, f(z?)) each 2! 22, ... belongs to X,
(23, f(z3)) i.i.d. drawn from D

PAC learning concept class C

Learner’'s goal:
Efficientlycome up with hypothesis that will have high accuracy on future examples.

(For any target function f € C, \

. for any distribution D over X,

- with probability 1 — 4§, learner outputs hypothesis h : X — {0,1}
thatis e-accurate w.rt. D :

Proplh(z) # f(z)] < e

.

Algorithm must be computationally efficient: should run in time

J

poly(n, %, %, size(f)).

Considerations

o We don't need a hypothesis with zero error.
There might be some error as long as it is small
(bounded by a constant g€).

o We don't need to always produce such a good
enough hypothesis. The probability of failure
should be bounded by a constant 0.

o Goal: With probability 1-8, output a hypothesis h
which satisfies errorp(h) < «.

Probability[errorg(h) > €] < &

O A learner finds a hypothesis h that is consistent
with the training data

o Errory,in(h) = 0

o The probability that h has more than ¢ true error
o Error . o(h) > ¢

o Hypothesis h that is consistent with training data means it
got m i.i.d points right

o h is consistent but "bad”: it gets all training data right but
has high true error

o Prob. h with Error, (h) > € gets one data point right:
= P(h gets one point right) < 1-¢

= P(h gets miid points right) < (1-¢)™
= We want this to be less than 0 . So lets set:

(1-e) M <=9

= Since (1-xX) <= e™* we have that

m —>=—(—1/—€)—m—(—l/—é—)——i

= The result grows linearly in 1/ € and logarithmically 1/ &

Valiant’'s "PAC” model [Val84]

“PAC” = Probably Approximately Correct:

« learning problem is identified with a “concept class” C,
which is a set of functions (“concepts”) f: {0,1}" — {0,1}

« nature/adversary chooses one particular
f e C and a probability distribution on inputs D

» the learning algorithm now takes as inputs ¢ and &, and
also gets random examples (x, f(x)), x drawn from D

« goal: with probabillity 1-6, output a hypothesis h which
satisfies Pr,. [h(x) #Zf(x)] <e

« efficiency: running time of algorithm, counting time 1 for
each example; hopefully poly(n, 1/, 1/5)

Example — learning conjunctions

As an example, we present an algorithm ([Val84]) for
learning the concept class of conjunctions —
.e., Cis the set of all AND functions.

« start with the hypothesis h = x; A x5 A - - - A X,

« draw O((n/) log(1/5)) examples:

— whenever you see a positive example; e.g.,
(11010110, 1),
you know that the zero coordinates (in this case,
X3, X5, Xg) can’'t be in the target AND,;
delete them from the hypothesis

It takes a little reasoning to show this works,
but it does.

Learning DNF formulas

Probably the most important concept class we would like to
learn is DNF formulas: e.g., the set of all functions like

f=(X{ AXyAXg) V(XgAX3) Vv (X4 A Xs A X7 A Xg).

(We actually mean poly-sized DNF: the number of ferms
should be n® where n is the number of variables.)

Why so important?
 natural form of knowledge representation for people

 historical reasons: considered by Valiant, who called the
problem “tantalizing” and “apparently [simple]”

« yet has proved a great challenge over the last 20 years

~cFhe original PAC model

@% trouble with this model is that, despite Valiant's initial
optimism, PAC-learning DNF formulas appears to be
very hard.

The fastest known algorithm is due to Klivans and Servedio
[KS01], and runs in time exp(n'? log?n).

Technique: They show that for any DNF formula, there is a
polynomial in x,, ..., x,, of degree at most n'® log n which
IS positive whenever the DNF is true and negative
whenever the DNF Is false. Linear programming can be
used to find a hypothesis consistent with every example
in time exp(n'? log?n).

Note: Consider the model, more difficult than PAC, in which
the learner is forced to output a hypothesis which itself is
a DNF. In this case, the problem is NP-hard.

REST IS ADVANCED

Computational Learning Theory
I e

Introduction
The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

Sample Complexity for Finite Hypothesis Spaces

o Definition: A consistent learner outputs the
hypothesis h in H that perfectly fits the training
examples (if possible).

o How many examples do we need to be
approximately correct in finding a hypothesis
output by a consistent learner that has low error?

Version Space g-exhausted

o This is the same as asking how many examples we
need to make the Version Space contain no
hypothesis with error greater than €.

o When a Version Space VS is such that no
hypothesis has error greater than g, we say the
version space is g-exhausted.

o How many examples do we need to make a
version space VS be g-exhausted?

Probability of Version Space being e-exhausted

* The probability that the version space is not g-exhausted
after seeing m examples is the same as asking the
probability than no hypothesis in VS has error greater than «.

* Since the size of the VS is less than the size of the whole
hypothesis space H, then that probability is clearly less than

|H|€ —&m

* [f we make this less than é , then we have that

Haussler, 1988

o Theorem: Hypothesis space H is finite, dataset D
with m i.i.d samples, 0 < e < 1: for any learned
hypothesis h that is consistent on the training
data:

P(error,(h) > ¢) < |H|e™ms

o Limitations of Haussler '88:
m Consistent classifier
= Size of hypothesis space

Agnostic Learning

o What happens if our hypothesis space H does not
contain the target concept c?;

o Then clearly we can never find a hypothesis h with
Zero error.

0 Here we want an algorithm that simply outputs
the hypothesis with minimum training error.

Using PAC bound

o Pick € and §, gives you m
o Pick m and §, gives you ¢

Computational Learning Theory
I e

Introduction
The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

Examples of PAC-Learnable Concepts

o Can we say that concepts described by
conjunctions of Boolean literals are PAC learnable?

o First, how large is the hypothesis space when we
have n Boolean attributes?

= Answer: |H| = 3"

Examples of PAC-Learnable Concepts

o If we substitute this in our analysis of sample
complexity for finite hypothesis spaces we have

that:
m>=1/e(nin3 +1In(1/0))

0 Thus the set of conjunctions of Boolean literals is
o PAC learnable.

K-Term DNF not PAC Learnable

o Consider now the class of functions of k-term DNF
expressions. These are expressions of the form

T,VT,V..VT,

= where V stands for disjunction each of the k terms and
= and T, is a conjunction of Boolean attributes.

= E.g. A 3-term DNF:
(X1 A =X3) v (X A X7) Vv (Xg)

K-Term DNF not PAC Learnable

0 The size of |H| is k3"

o Using the equation for the sample complexity of
finite hypothesis spaces:

m>=1/e(nin3 +1In(1/0) + In k)

o Although the sample complexity is polynomial in

the main parameters, this problem is known to be
NP-complete.

K-Term CNF 1s PAC Learnable

o But it is interesting to see that a larger family of
functions, the class of k-CNF expressions is
PAC learnable.

= k-CNF: Conjunction of disjunctiones where each disjunct has <
k literals

o This is interesting because the class of k-CNF
expressions is strictly larger than the class of k-term

DNF expressions.
= Can convert k-term DNF into k-CNF by distributivity laws.

k-CNF Expressions

Definition: expressions 77 A --- AT; of arbitrary
length j with each term7; a disjunction of at most#
boolean attributes.

Algorithm: reduce problem to that of learning
conjunctions of boolean literals. New variables:

GJ?J(Xl) VeV GJ%’(X’H-) — KL,;,(Xl)....,ai(Xn)-

® the transformation is a bijection;

k-Term DNF Terms and
k-CNF Expressions

® Observation: any k-term DNF formula can be
written as a k-CNF expression. By associativity,

n

k
VoadX) A na(X) = N ar(Xi,) Ve Va(X,).
1=1

itein=1
o Example: (ug AN ug Auz) V (vg Avg Avg) = /\ij:l(m Vov,).

® But, the number of new variables is exponential
ink:O(n").

