Computational Learning Theory

Introduction

The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

Introduction

- Computational learning theory:
 - Provides a theoretical analysis of learning
 - Shows when a learning algorithm can be expected to succeed
 - Shows when learning may be impossible
 - **...**

Introduction

- Some fundamental problems addressed by Computational Learning Theory:
 - Sample Complexity: How many examples we need to find a good hypothesis?
 - Computational Complexity: How much computational power we need to find a good hypothesis?
 - Mistake Bound: How many mistakes we will make before finding a good hypothesis?

Computational Learning Theory

Introduction

The PAC Learning Framework

Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

The PAC Learning Framework

Let's start with a simple problem: Assume a two dimensional space with positive and negative examples. Our goal is to find a rectangle that includes the positive examples but not the negatives (input space is R²):

Definitions

- □ Class of Concepts C. Let C be a class of concepts that we wish to learn. In our example C is the family of all rectangles in R².
- Distribution D. Assume instances are generated at random from a distribution D.
- Class of Hypotheses H. The hypotheses our algorithm considers while learning the target concept.
- □ True error of a hypothesis h
 - $= error_D(h) = Pr_D[c(x) \neq h(x)]$

True Error of A Hypothesis

Two Notions of Error

- <u>Training error</u> of hypothesis h with respect to target concept c: How often $h(x) \neq c(x)$ over training instances
- <u>True error</u> of hypothesis h with respect to target concept c: How often $h(x) \neq c(x)$ over random instances drawn from distribution D

Definition

■ The <u>true error</u> (denoted $error_D(h)$) of hypothesis h with respect to target concept c and distribution D is the probability that h will misclassify an instance drawn at random according to D.

$$error_D(h) \equiv \Pr_{\mathbf{x} \in D}[\mathbf{c}(\mathbf{x}) \neq h(\mathbf{x})]$$

Instance Space X

Two Notions of Error

Training error of hypothesis h with respect to target concept c

• How often $h(x) \neq c(x)$ over training instances D

$$error_{\mathbf{D}}(h) \equiv \Pr_{x \in \mathbf{D}} [c(x) \neq h(x)]$$

True error of hypothesis h with respect to c

• How often $h(x) \neq c(x)$ over future instances drawn at random from \mathcal{D}

$$error_{\mathcal{D}}(h) \equiv \Pr_{x \in \mathcal{D}}[c(x) \neq h(x)]$$

Set of training examples

Probability distribution P(x)

True Error

Region A: false negatives

Region B: false positives

True error: probability in regions A and B.

Probably Approximately Correct learning [Valiant84]

- Concept class $\mathcal C$ of Boolean functions over domain X
- Unknown target concept $f \in C$ to be learned from examples
- Unknown and arbitrary distribution D over X

Learner has access to i.i.d. draws from \mathcal{D} , labeled according to f:

$$(x^1, f(x^1))$$

 $(x^2, f(x^2))$ each x^1, x^2, \ldots belongs to X,
 $(x^3, f(x^3))$ i.i.d. drawn from \mathcal{D}

PAC learning concept class $\mathcal C$

Learner's goal:

Efficiently come up with hypothesis that will have high accuracy on future examples.

- For any target function $f \in \mathcal{C}$,
- for any distribution D over X,
- with probability $1-\delta$, learner outputs hypothesis $h:X\to\{0,1\}$ that is ϵ -accurate w.r.t. $\mathcal D$:

$$\Pr_{x \sim \mathcal{D}}[h(x) \neq f(x)] \leq \epsilon.$$

Algorithm must be computationally efficient: should run in time

$$\operatorname{poly}(n, \frac{1}{\epsilon}, \frac{1}{\delta}, \operatorname{size}(f)).$$

Considerations

- We don't need a hypothesis with zero error. There might be some error as long as it is small (bounded by a constant ε).
- we don't need to always produce such a good enough hypothesis. The probability of failure should be bounded by a constant δ.
- **Goal:** With probability 1-δ, output a hypothesis h which satisfies error_D(h) < ε .

Probability[error_D(h) > ε] < δ

A learner finds a hypothesis h that is consistent with the training data

$$\Box$$
 Error_{Train}(h) = 0

The probability that h has more than ε true error

□ Error
$$_{true}(h) ≥ ε$$

- Hypothesis h that is consistent with training data means it got m i.i.d points right
- h is consistent but "bad": it gets all training data right but has high true error
- □ Prob. **h** with Error_{true}(**h**) $\geq \epsilon$ gets one data point right:
 - P(h gets one point right) \leq 1- ε
 - P(h gets m iid points right) $\leq (1-\epsilon)^m$
 - We want this to be less than δ . So lets set:

$$(1-\epsilon)^m <= \delta$$

■ Since $(1-x) <= e^{-x}$ we have that

 $e^{-\epsilon m} <= \delta$ or equivalently (taking In of each side)

The result grows linearly in 1/ε and logarithmically 1/δ

Valiant's "PAC" model [Val84]

- "PAC" = Probably Approximately Correct:
- learning problem is identified with a "concept class" C, which is a set of functions ("concepts") f: {0,1}ⁿ → {0,1}
- nature/adversary chooses one particular
 f ∈ C and a probability distribution on inputs D
- the *learning algorithm* now takes as inputs ε and δ, and also gets random examples (x, f(x)), x drawn from D
- goal: with probability 1-δ, output a hypothesis h which satisfies Pr_{x←D} [h(x) ≠ f(x)] < ε
- efficiency: running time of algorithm, counting time 1 for each example; hopefully $poly(n, 1/\epsilon, 1/\delta)$

Example – learning conjunctions

As an example, we present an algorithm ([Val84]) for learning the concept class of conjunctions – i.e., *C* is the set of all AND functions.

- start with the hypothesis h = x₁ \(\times x₂ \(\cdot \cdot \cdot \cdot \times x_n \)
- draw $O((n / \epsilon) \log(1/\delta))$ examples:
 - whenever you see a positive example; e.g., (11010110, 1), you know that the zero coordinates (in this case, x₃, x₅, x₈) can't be in the target AND; delete them from the hypothesis

It takes a little reasoning to show this works, but it does.

Learning DNF formulas

Probably the most important concept class we would like to learn is **DNF formulas**: e.g., the set of all functions like

$$f = (x_1 \wedge \overline{x_2} \wedge \overline{x_6}) \vee (\overline{x_1} \wedge x_3) \vee (x_4 \wedge x_5 \wedge \overline{x_7} \wedge x_8).$$

(We actually mean poly-sized DNF: the number of *terms* should be n^{O(1)}, where n is the number of variables.)

Why so important?

- natural form of knowledge representation for people
- historical reasons: considered by Valiant, who called the problem "tantalizing" and "apparently [simple]"
- yet has proved a great challenge over the last 20 years

The trouble with this model is that, despite Valiant's initial

The trouble with this model is that, despite Valiant's initial optimism, PAC-learning DNF formulas appears to be very hard.

The fastest known algorithm is due to Klivans and Servedio [KS01], and runs in time exp(n^{1/3} log²n).

Technique: They show that for any DNF formula, there is a polynomial in $x_1, ..., x_n$ of degree at most $n^{1/3} \log n$ which is *positive* whenever the DNF is true and *negative* whenever the DNF is false. *Linear programming* can be used to find a hypothesis consistent with every example in time $\exp(n^{1/3} \log^2 n)$.

Note: Consider the model, more difficult than PAC, in which the learner is forced to output a hypothesis which itself is a DNF. In this case, the problem is NP-hard.

REST IS ADVANCED

Computational Learning Theory

Introduction
The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

Sample Complexity for Finite Hypothesis Spaces

- Definition: A consistent learner outputs the hypothesis h in H that perfectly fits the training examples (if possible).
- How many examples do we need to be approximately correct in finding a hypothesis output by a consistent learner that has low error?

Version Space ε-exhausted

- □ This is the same as asking how many examples we need to make the Version Space contain no hypothesis with error greater than E.
- When a Version Space VS is such that no hypothesis has error greater than ε, we say the version space is ε-exhausted.
- How many examples do we need to make a version space VS be ε-exhausted?

Probability of Version Space being ε-exhausted

- The probability that the version space is not ε-exhausted after seeing **m** examples is the same as asking the probability than no hypothesis in **VS** has error greater than ε.
- Since the size of the **VS** is less than the size of the whole hypothesis space **H**, then that probability is clearly less than

$$|H|e^{-\epsilon m}$$

• If we make this less than δ , then we have that

$$m \ge 1/\epsilon \left(\ln |H| + \ln \left(1/\delta \right) \right)$$

Haussler, 1988

■ Theorem: Hypothesis space H is finite, dataset D with m i.i.d samples, 0 < e < 1: for any learned hypothesis h that is consistent on the training data:</p>

$$P(error_{true}(h) > \varepsilon) \le |H|e^{-m\varepsilon}$$

- Limitations of Haussler '88:
 - Consistent classifier
 - Size of hypothesis space

Agnostic Learning

- What happens if our hypothesis space **H** does not contain the target concept **c**?;
- Then clearly we can never find a hypothesis h with zero error.
- Here we want an algorithm that simply outputs the hypothesis with minimum training error.

Using PAC bound

- \square Pick ε and δ, gives you m
- lue Pick m and δ , gives you ϵ

Computational Learning Theory

Introduction
The PAC Learning Framework
Finite Hypothesis Spaces
Examples of PAC Learnable Concepts

Examples of PAC-Learnable Concepts

- Can we say that concepts described by conjunctions of Boolean literals are PAC learnable?
- □ First, how large is the hypothesis space when we have **n** Boolean attributes?
 - Answer: $|H| = 3^n$

Examples of PAC-Learnable Concepts

If we substitute this in our analysis of sample complexity for finite hypothesis spaces we have that:

$$m >= 1/\epsilon (n \ln 3 + \ln (1/\delta))$$

- Thus the set of conjunctions of Boolean literals is
- PAC learnable.

K-Term DNF not PAC Learnable

Consider now the class of functions of k-term DNF expressions. These are expressions of the form

$$T_1 V T_2 V \dots V T_k$$

- where V stands for disjunction each of the k terms and
- and T_i is a conjunction of Boolean attributes.
- E.g. A 3-term DNF:

$$(x_1 \wedge \neg x_2) \vee (x_6 \wedge x_7) \vee (x_9)$$

K-Term DNF not PAC Learnable

- □ The size of |H| is k3ⁿ
- Using the equation for the sample complexity of finite hypothesis spaces:

$$m >= 1/\epsilon (n \ln 3 + \ln (1/\delta) + \ln k)$$

Although the sample complexity is polynomial in the main parameters, this problem is known to be NP-complete.

K-Term CNF is PAC Learnable

- But it is interesting to see that a larger family of functions, the class of k-CNF expressions is PAC learnable.
 - k-CNF: Conjunction of disjunctiones where each disjunct has ≤ k literals
- This is interesting because the class of k-CNF expressions is strictly larger than the class of k-term DNF expressions.
 - Can convert k-term DNF into k-CNF by distributivity laws.

k-CNF Expressions

Definition: expressions $T_1 \wedge \cdots \wedge T_j$ of arbitrary length j with each term T_i a disjunction of at most k boolean attributes.

Algorithm: reduce problem to that of learning conjunctions of boolean literals. New variables:

$$a_i(X_1) \vee \cdots \vee a_i(X_n) \rightarrow Y_{a_i(X_1),\dots,a_i(X_n)}$$
.

the transformation is a bijection;

k-Term DNF Terms and k-CNF Expressions

Observation: any k-term DNF formula can be written as a k-CNF expression. By associativity,

$$\bigvee_{i=1}^{k} a_i(X_1) \wedge \dots \wedge a_i(X_n) = \bigwedge_{i_1, \dots, i_k = 1}^{n} a_1(X_{i_1}) \vee \dots \vee a_k(X_{i_k}).$$

- **Example:** $(u_1 \wedge u_2 \wedge u_3) \vee (v_1 \wedge v_2 \wedge v_3) = \bigwedge_{i,j=1}^3 (u_i \vee v_j).$
- But, the number of new variables is exponential in $k: O(n^k)$.