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Introduction

� Computational learning theory:

� Provides a theoretical analysis of learning 

� Shows when a learning algorithm can be 
expected to succeed

� Shows when learning may be impossible

� …� …



Introduction

� Some fundamental problems addressed by 
Computational Learning Theory:

� Sample Complexity: How many examples we 
need to find a good hypothesis?

� Computational Complexity: How much 
computational power we need to find a good 
hypothesis?hypothesis?

� Mistake Bound: How many mistakes we will 
make before finding a good hypothesis?
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The PAC Learning Framework

� Let’s start with a simple problem: Assume a two 
dimensional space with positive and negative 
examples. Our goal is to find a rectangle that 
includes the positive examples but not the 
negatives (input space is R2):

++
+
+

++
-
--

--

-

-

-

-

true concept



Definitions

� Class of Concepts C. Let C be a class of 
concepts that we wish to learn. In our 
example C is the family of all rectangles in 
R2.

� Distribution D. Assume instances are � Distribution D. Assume instances are 
generated at random from a distribution D.

� Class of Hypotheses H. The hypotheses our 
algorithm considers while learning the 
target concept.

� True error of a hypothesis h

� errorD(h) = PrD[c(x) ≠ h(x)]



True Error of  A Hypothesis
� Two Notions of Error

� Training error of hypothesis h with respect to target concept c : 

How often h(x) ≠ c(x) over training instances

� True error of hypothesis h with respect to target concept c : 

How often h(x) ≠ c(x) over random instances drawn from distribution D

� Definition� Definition

� The true error (denoted errorD(h)) of hypothesis h with respect to target 

concept c and distribution D is the probability that h will misclassify an instance 

drawn at random according to D.
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True Error

true concept c

Region A : false negatives

Region B : false positives

True error: probability in regions A and B.
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Considerations

� We don’t need a hypothesis with zero error. 
There might be some  error as long as it is small
(bounded by a constant  ε).

� We don’t need to always produce such a good 
enough hypothesis. The probability of failure enough hypothesis. The probability of failure 
should be bounded by a constant δ. 

� Goal: With probability 1-δ, output a hypothesis h 
which satisfies errorD(h) < ε.

Probability[errorD(h) > ε] < δ



� A learner finds a hypothesis h that is consistent
with the training data 

� ErrorTrain(h) = 0

� The probability that h has more than ε true error 

� Error true(h) ≥ ε� Error true(h) ≥ ε



� Hypothesis h that is consistent with training data means it 
got m i.i.d points right

� h is consistent but “bad”: it gets all training data right but 
has high true error

� Prob. h with Errortrue(h) ≥ ε gets one data point right:
� P(h gets one point right)  ≤  1- ε

P(h gets m iid points right) ≤ (1- ε)m� P(h gets m iid points right) ≤ (1- ε)m

� We want this to be less than δ . So lets set:

(1- ε) m <= δ 

� Since (1-x) <= e–x we have that

e –εm <= δ or equivalently (taking ln of each side)

m >= (1/ ε) ln (1/ δ)

� The result grows linearly in 1/ ε and logarithmically 1/ δ











REST IS ADVANCED 
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Sample Complexity for Finite Hypothesis Spaces

� Definition: A consistent learner outputs the 
hypothesis h in H that perfectly fits the training 
examples (if possible).

� How many examples do we need to be 
approximately correct in finding a hypothesis 
output by a consistent learner that has low error? output by a consistent learner that has low error? 



Version Space ε-exhausted

� This is the same as asking how many examples we 
need to make the Version Space contain no 
hypothesis with error greater than ε.

� When a Version Space VS is such that no 
hypothesis has error greater than ε, we say the 
version space is ε-exhausted.version space is ε-exhausted.

� How many examples do we need to make a 
version space VS be ε-exhausted?



Probability of Version Space being ε-exhausted

• The probability that the version space is not ε-exhausted 

after seeing m examples is the same as asking the 

probability than no hypothesis in VS has error greater than ε. 

• Since the size of the VS is less than the size of the whole 

hypothesis space H, then that probability is clearly less than

|H|e –εm

• If we make this less than δ , then we have that

m >= 1/ ε (ln |H| + ln (1/ δ ))



Haussler, 1988

� Theorem: Hypothesis space H is finite, dataset D 
with m i.i.d samples, 0 < e < 1: for any learned 
hypothesis h that is consistent on the training 
data:

P(errortrue(h) > ε) ≤ |H|e-mεP(errortrue(h) > ε) ≤ |H|e

� Limitations of Haussler ’88:

� Consistent classifier

� Size of hypothesis space



Agnostic Learning

� What happens if our hypothesis space H does not

contain the target concept c?; 

� Then clearly we can never find a hypothesis h with 

zero error.

� Here we want an algorithm that simply outputs 

the hypothesis with minimum training error.



Using PAC bound

� Pick ε and δ, gives you m

� Pick m and δ, gives you ε
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Examples of PAC-Learnable Concepts

� Can we say that concepts described by 
conjunctions of Boolean literals are PAC learnable?

� First, how large is the hypothesis space when we 
have n Boolean attributes?

� Answer:  |H| = 3n
� Answer:  |H| = 3n



Examples of PAC-Learnable Concepts

� If we substitute this in our analysis of sample 
complexity for finite hypothesis spaces we have 
that: 

m >= 1/ ε (n ln 3 + ln (1/ δ) )

� Thus the set of conjunctions of Boolean literals is 

� PAC learnable.



K-Term DNF not PAC Learnable

� Consider now the class of functions of k-term DNF
expressions. These are expressions of the form 

T1 V T2 V … V Tk

� where V stands for disjunction each of the k terms and� where V stands for disjunction each of the k terms and

� and Ti is a conjunction of Boolean attributes.

� E.g. A 3-term DNF:

(x1 ∧ ¬x2) ∨ (x6 ∧ x7) ∨ (x9) 



K-Term DNF not PAC Learnable

� The size of |H| is k3n

� Using the equation for the sample complexity of 
finite hypothesis spaces:

m >= 1/ ε (n ln 3  + ln (1/ δ) + ln k) m >= 1/ ε (n ln 3  + ln (1/ δ) + ln k) 

� Although the sample complexity is polynomial in 
the main parameters, this problem is known to be 
NP-complete.



K-Term CNF is PAC Learnable

� But it is interesting to see that a larger family of 

functions, the class of k-CNF expressions is

PAC learnable.
� k-CNF: Conjunction of disjunctiones where each disjunct has ≤ 

k literals

� This is interesting because the class of k-CNF � This is interesting because the class of k-CNF 

expressions is strictly larger than the class of k-term 

DNF expressions.   
� Can convert k-term DNF into k-CNF by distributivity laws.






