Artificial Neural Networks Part 2/3 - Perceptron

Slides modified from Neural Network Design
by Hagan, Demuth and Beale

Berrin Yanikoglu

Perceptron

- A single artificial neuron that computes its weighted input and uses a threshold activation function.
- It effectively separates the input space into two categories by the hyperplane:

$$
\mathbf{w}^{\boldsymbol{\top}} \mathbf{x}+b_{i}=0
$$

Two-Input Case

$$
a=\operatorname{hardlims}(n)=\operatorname{hardlims}\left(\left[\begin{array}{ll}
1 & 2
\end{array}\right] \mathbf{p}+(-2)\right)
$$

Decision Boundary

$$
\mathbf{W} \mathbf{p}+b=0 \quad\left[\begin{array}{ll}
1 & 2
\end{array}\right] \mathbf{p}+(-2)=0
$$

Decision Boundary

$$
\begin{aligned}
& w^{T} \cdot p=\|\mathrm{w}\|\|\mathrm{p}\| \operatorname{Cos} \theta \\
& \text { proj. of } \mathrm{p} \text { onto } \mathrm{w} \\
& =\|\mathrm{p}\| \operatorname{Cos} \theta \\
& \quad=\mathrm{w}^{\mathrm{T}} \cdot \mathrm{p} /\|\mathrm{w}\|
\end{aligned}
$$

- All points on the decision boundary have the same inner product (=-b) with the weight vector
- Therefore they have the same projection onto the weight vector; so they must lie on a line orthogonal to the weight vector

$$
{ }_{1} \mathbf{w}^{\mathrm{T}} \mathbf{p}+b=0 \quad{ }_{1} \mathbf{w}^{\mathrm{T}} \mathbf{p}=-b
$$

Decision Boundary

The weight vector is orthogonal to the decision boundary
The weight vector should point in the direction of the vector which should produce an output of 1

- so that the vectors with the positive output are on the right side of the decision boundary
- if w pointed in the opposite direction, the dot products of all input vectors would have the opposite sign
- would result in same classification but with opposite labels

The bias determines the position of the boundary

- solve for wp+b $=0$ using one point on the decision boundary to find b.

An
Illustrative Example

Boolean OR

$$
\left\{\mathbf{p}_{1}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], t_{1}=0\right\} \quad\left\{\mathbf{p}_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], t_{2}=1\right\} \quad\left\{\mathbf{p}_{3}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], t_{3}=1\right\} \quad\left\{\mathbf{p}_{4}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], t_{4}=1\right\}
$$

Given the above input-output pairs (p, t), can you find (manually) the weights of a perceptron to do the job?

Boolean OR Solution

2) Weight vector should be orthogonal to the decision boundary.

$$
{ }_{1} \mathbf{w}=\left[\begin{array}{l}
0.5 \\
0.5
\end{array}\right]
$$

3) Pick a point on the decision boundary to find the bias.

$$
{ }_{1} \mathbf{w}^{\mathrm{T}} \mathbf{p}+b=\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right]\left[\begin{array}{c}
0 \\
0.5
\end{array}\right]+b=0.25+\mathbf{b}=0 \quad \Rightarrow \quad b=-0.25
$$

Multiple-Neuron Perceptron

$$
\mathbf{W}=\left[\begin{array}{cccc}
w_{1,1} & w_{1,2} & \ldots & w_{1, R} \\
w_{2,1} & w_{2,2} & \ldots & w_{2, R} \\
\vdots & \vdots & & \vdots \\
w_{S, 1} & w_{S, 2} & \ldots & w_{S, R}
\end{array}\right]
$$

$$
\mathbf{W}=\left[\begin{array}{c}
{ }_{1} \mathbf{w}^{\mathrm{T}} \\
{ }_{2} \mathbf{w}^{\mathrm{T}} \\
\vdots \\
{ }_{S} \mathbf{w}^{\mathrm{T}}
\end{array}\right]
$$

$$
a_{i}=\operatorname{hardlim}\left(n_{i}\right)=\operatorname{hardlim}\left({ }_{i} \mathbf{w}^{\mathrm{T}} \mathbf{p}+b_{i}\right)
$$

Multiple-Neuron Perceptron

Each neuron will have its own decision boundary.

$$
{ }_{i}{ }^{T} \mathbf{p}+b_{i}=0
$$

A single neuron can classify input vectors into two categories.

An S-neuron perceptron can potentially classify input vectors into 2^{s} categories.

Perceptron Limitations

Perceptron Limitations

- A single layer perceptron can only learn linearly separable problems.
- Boolean AND function is linearly separable, whereas Boolean XOR function is not.

Boolean AND
l

Boolean XOR

Perceptron Limitations

Linear Decision Boundary

$$
{ }_{1} \mathbf{w}^{T} \mathbf{p}+b=0
$$

Linearly Inseparable Problems

Perceptron Limitations

For a linearly not-separable problem:

- Would it help if we use more layers of neurons?
- What could be the learning rule for each neuron?
- Yes!

Solution: Multilayer networks and the backpropagation learning algorithm

- Perceptrons (in this context of limitations, the word refers to single layer perceptron) can learn many Boolean functions:
- AND, OR, NAND, NOR, but not XOR
- Multi-layer perceptron can solve the XOR problem

- More than one layer of perceptrons (with a hardlimiting activation function) can learn any Boolean function.
- However, a learning algorithm for multi-layer perceptrons has not been developed until much later
- backpropagation algorithm
- replacing the hardlimiter in the perceptron with a sigmoid activation function

Outline

- So far we have seen how a single neuron with a threshold activation function separates the input space into two.
- We also talked about how more than one nodes may indicate convex (open or closed) regions
- The next slides explain how the weights of a perceptron can be automatically learned, using supervised learning.
- Perceptron learning can be implemented automatically via backpropagation algorithm which we will cover in the next lecture slides

Perceptron Learning Rule

Types of Learning

- Supervised Learning

Network is provided with a set of examples of proper network behavior (inputs/targets)

$$
\left\{\mathbf{p}_{1}, \mathbf{t}_{\}}\right\},\left\{\mathbf{p}_{2}, \mathbf{t}_{2}\right\}, \ldots,\left\{\mathbf{p}_{Q}, \mathbf{t}_{Q}\right\}
$$

- Reinforcement Learning

Network is only provided with a grade, or score, which indicates network performance

- Unsupervised Learning

Only network inputs are available to the learning algorithm. Network learns to categorize (cluster) the inputs.

Learning Rule Test Problem

Input-output: $\left\{\mathbf{p}_{1}, \mathbf{t}_{1}\right\},\left\{\mathbf{p}_{2}, \mathbf{t}_{2}\right\}, \ldots,\left\{\mathbf{p}_{Q}, \mathbf{t}_{Q}\right\}$

$$
\left\{\mathbf{p}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], t_{1}=1\right\} \quad\left\{\mathbf{p}_{2}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right], t_{2}=0\right\} \quad\left\{\mathbf{p}_{3}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right], t_{3}=0\right\}
$$

Starting Point

Random initial weight:

$$
{ }_{1} \mathbf{w}=\left[\begin{array}{c}
1.0 \\
-0.8
\end{array}\right]
$$

Present \mathbf{p}_{1} to the network:

$$
\left.\left.\begin{array}{c}
a=\operatorname{hardlim}\left({ }_{1} \mathbf{w}^{T} \mathbf{p}_{1}\right)=\operatorname{hardlim}([1.0-0.8
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)
$$

Incorrect Classification.

Tentative Learning Rule

Tentative Rule: If $t=1$ and $a=0$, then ${ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}+\mathbf{p}$

Second Input Vector

$$
\begin{aligned}
& a=\operatorname{hardlim}\left({ }_{1} \mathbf{w}^{\mathrm{T}} \mathbf{p}_{2}\right)=\operatorname{hardlim}\left(\left[\begin{array}{ll}
2.0 & 1.2
\end{array}\right]\left[\begin{array}{c}
-1 \\
2
\end{array}\right]\right) \\
& a=\operatorname{hardlim}(0.4)=1 \quad(\text { Incorrect Classification })
\end{aligned}
$$

Modification to Rule: If $t=0$ and $a=1$, then ${ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}-\mathbf{p}$

$$
{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}-\mathbf{p}_{2}=\left[\begin{array}{l}
2.0 \\
1.2
\end{array}\right]-\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
3.0 \\
-0.8
\end{array}\right]
$$

Third Input Vector

$$
\begin{gathered}
a=\operatorname{hardlim}\left({ }_{1} \mathbf{w}^{T} \mathbf{p}_{3}\right)=\operatorname{hardlim}\left(\left[\begin{array}{ll}
3.0 & -0.8
\end{array}\right]\left[\begin{array}{c}
0 \\
-1
\end{array}\right]\right) \\
\mathrm{a}=\operatorname{hardlim}(0.8)=1 \quad(\text { Incorrect Classification }) \\
{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}-\mathbf{p}_{3}=\left[\begin{array}{c}
3.0 \\
-0.8
\end{array}\right]-\left[\begin{array}{c}
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
3.0 \\
0.2
\end{array}\right]
\end{gathered}
$$

Patterns are now correctly classified.

$$
\text { If } t=a \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{o l d} .
$$

Unified Learning Rule

$$
\begin{aligned}
& \text { If } t=1 \text { and } a=0 \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}+\mathbf{p} \\
& \text { If } t=0 \text { and } a=1, \text { then }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}-\mathbf{p} \\
& \text { If } t=a \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}
\end{aligned}
$$

Unified Learning Rule

$$
\begin{aligned}
& \text { If } t=1 \text { and } a=0 \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}+\mathbf{p} \\
& \text { If } t=0 \text { and } a=1 \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}-\mathbf{p} \\
& \text { If } t=a \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}
\end{aligned}
$$

Define: $\quad e=t-a$

$$
\begin{aligned}
& \text { If } e=1 \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}+\mathbf{p} \\
& \text { If } e=-1 \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}-\mathbf{p} \\
& \quad \text { If } e=0 \text {, then }{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}
\end{aligned}
$$

$$
=>\begin{gathered}
{ }_{1} \mathbf{w}^{\text {new }}={ }_{1} \mathbf{w}^{\text {old }}+e \mathbf{p}={ }_{1} \mathbf{w}^{\text {old }}+(t-a) \mathbf{p} \\
b^{\text {new }}=b^{\text {old }}+e
\end{gathered}
$$

A bias is a weight with an input of 1 .

Multiple-Neuron Perceptrons

To update the ith row of the weight matrix:
Matrix form:
$\mathbf{W}^{\text {new }}=\mathbf{W}^{\text {old }}+\mathbf{e p}{ }^{T}$
$\square=\mathrm{e}_{\mathrm{i}} \times \square$

$$
\begin{gathered}
{ }_{i} \mathbf{w}^{\text {new }}={ }_{i} \mathbf{w}^{\text {old }}+e_{i} \mathbf{p} \\
b_{i}^{\text {new }}=b_{i}^{\text {old }}+e_{i}
\end{gathered}
$$

$$
\mathbf{b}^{\text {new }}=\mathbf{b}^{\text {old }}+\mathbf{e}
$$

You should not need it, but if you were to write your own NN toolbox, you need to use matrices in order to greatly improve speed compared to a dummy algorithm working with individual neurons.

Perceptron Learning Rule (Summary)

How do we find the weights using a learning procedure?
1 - Choose initial weights randomly

2 - Present a randomly chosen pattern \mathbf{x}

3 - Update weights using Delta rule:

$$
\mathrm{w}_{\mathrm{ij}}(\mathrm{t}+1)=\mathrm{w}_{\mathrm{ij}}(\mathrm{t})+\mathrm{err}_{\mathrm{i}}^{*} \mathrm{x}_{\mathrm{j}}
$$

where $^{\text {err }}{ }_{\mathrm{i}}=\left(\right.$ target $_{\mathrm{i}}-$ output $\left._{\mathrm{i}}\right)$

4 - Repeat steps 2 and 3 until the stopping criterion (convergence, max number of iterations) is reached

Perceptron Convergence Thm.

Theorem: The perceptron rule will always converge to weights which accomplish the desired classification, assuming that such weights exist.

Apple/Banana Example - Self Study

Training Set

$$
\left\{\mathbf{p}_{1}=\left[\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right], t_{1}=[1]\right\} \quad\left\{\mathbf{p}_{2}=\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right], t_{2}=[0]\right\}
$$

Random Initial Weights

$$
\mathbf{W}=\left[\begin{array}{lll}
0.5 & -1 & -0.5
\end{array}\right] \quad b=0.5
$$

First Iteration

$$
\begin{aligned}
& a=\operatorname{hardlim}\left(\mathbf{W} \mathbf{p}_{1}+b\right)=\operatorname{hardlim}\left(\left[\begin{array}{lrr}
0.5 & -1 & -0.5
\end{array}\right]\left[\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right]+0.5\right) \\
& a=\operatorname{hardlim}(-0.5)=0 \quad e=t_{1}-a=1-0=1 \\
& \mathbf{W}^{\text {new }}=\mathbf{W}^{\text {old }}+e \mathbf{p}^{T}=\left[\begin{array}{lll}
0.5 & -1 & -0.5
\end{array}\right]+\left(\begin{array}{lll}
1
\end{array}\right)\left[\begin{array}{ll}
-1 & 1 \\
-1
\end{array}\right]=\left[\begin{array}{lll}
-0.5 & 0 & -1.5
\end{array}\right] \\
& b^{\text {new }}=b^{\text {old }}+e=0.5+(1)=1.5
\end{aligned}
$$

Second Iteration

$$
\begin{aligned}
& a=\operatorname{hardlim}\left(\mathbf{W} \mathbf{p}_{2}+b\right)=\operatorname{hardlim}\left(\left[\begin{array}{lll}
-0.5 & 0 & -1.5
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]+(1.5)\right) \\
& a=\operatorname{hardlim}(2.5)=1 \\
& e=t_{2}-a=0-1=-1 \\
& \mathbf{W}^{\text {new }}=\mathbf{W}^{\text {old }}+e \mathbf{p}^{T}=\left[\begin{array}{lll}
-0.5 & 0 & -1.5
\end{array}\right]+(-1)\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
-1.5 & -1 & -0.5
\end{array}\right] \\
& b^{\text {new }}=b^{o l d}+e=1.5+(-1)=0.5
\end{aligned}
$$

Check

$$
\begin{gathered}
a=\operatorname{hardlim}\left(\mathbf{W} \mathbf{p}_{1}+b\right)=\operatorname{hardlim}\left(\left[\begin{array}{llr}
-1.5 & -1 & -0.5
\end{array}\right]\left[\begin{array}{r}
-1 \\
1 \\
-1
\end{array}\right]+0.5\right) \\
a=\operatorname{hardlim}(1.5)=1=t_{1}
\end{gathered}
$$

$$
a=\operatorname{hardlim}\left(\mathbf{W} \mathbf{p}_{2}+b\right)=\operatorname{hardlim}\left(\left[\begin{array}{lll}
-1.5 & -1 & -0.5
\end{array}\right]\left[\begin{array}{r}
1 \\
1 \\
-1
\end{array}\right]+0.5\right)
$$

$$
a=\operatorname{hardlim}(-1.5)=0=t_{2}
$$

History of Artificial Neural Networks (Details)

- McCulloch and Pitts (1943): first neural network model
- Hebb (1949): proposed a mechanism for learning, as increasing the synaptic weight between two neurons, by repeated activation of one neuron by the other across that synapse (lacked the inhibitory connection)
- Rosenblatt (1958): Perceptron network and the associated learning rule
- Widrow \& Hoff (1960): a new learning algorithm for linear neural networks (ADALINE)
- Minsky and Papert (1969): widely influential book about the limitations of single-layer perceptrons, causing the research on NNs mostly to come to an end.
- Some that still went on:
- Anderson, Kohonen (1972): Use of ANNs as associative memory
- Grossberg (1980): Adaptive Resonance Theory
- Hopfield (1982): Hopfield Network
- Kohonen (1982): Self-organizing maps
- Rumelhart and McClelland (1982): Backpropagation algorithm for training multilayer feed-forward networks. Started a resurgence on NN research again.

