
Artificial Neural Networks
Part 2/3 – Perceptron

Slides modified from Neural Network Design

by Hagan, Demuth and Beale

Berrin Yanikoglu

PerceptronPerceptron

• A single artificial neuron that computes its weighted input and

uses a threshold activation function.

• It effectively separates the input space into two categories by

the hyperplane:

wTx + bi = 0

TwoTwo--Input CaseInput Case

p1

an

Inputs

b
p2 w1,2

w1,1

1

AA
AA

Σ

a = hardlims (Wp + b)

Two-Input Neuron

AAA
AAA W2

2-2

n > 0

n < 0

p1

p2

a hardlims n() hardlims 1 2 p 2–()+()= =

w1 1, 1= w1 2, 2=

Wp b+ 0= 1 2 p 2–()+ 0=

Decision Boundary

++

--

Decision BoundaryDecision Boundary

1w 1w

w
T

1 p b+ 0= w
T

1 p b–=

• All points on the decision boundary have the same inner

product (= -b) with the weight vector

• Therefore they have the same projection onto the weight

vector; so they must lie on a line orthogonal to the weight

vector

1wTp + b = 0

1w

wT.p = ||w||||p||Cosθ

proj. of p onto w

= ||p||Cosθ
= wT.p/||w||

θ

p
w

proj. of p onto w

DecisionDecision BoundaryBoundary

The weight vector is orthogonal to the decision boundary

The weight vector should point in the direction of the vector

which should produce an output of 1
• so that the vectors with the positive output are on the right side of

the decision boundary
– if w pointed in the opposite direction, the dot products of all input

vectors would have the opposite sign

– would result in same classification but with opposite labels

The bias determines the position of the boundary
• solve for wp+b = 0 using one point on the decision boundary to

find b.

An

Illustrative

Example

BooleanBoolean OROR

p1
0

0
= t1 0=,

p2
0

1
= t2 1=,

p3
1

0
= t3 1=,

p4
1

1
= t4 1=,

Given the above input-output pairs (p,t), can you find (manually)

the weights of a perceptron to do the job?

BooleanBoolean OR SolutionOR Solution

1w

OR

w1
0.5

0.5
=

w
T

1 p b+ 0.5 0.5
0

0.5
b+ 0.25 b+ 0= = = b 0.25–=⇒

2) Weight vector should be orthogonal to the decision boundary.

3) Pick a point on the decision boundary to find the bias.

1) Pick an

admissable decision

boundary

MultipleMultiple--Neuron Neuron PerceptronPerceptron

W

w
T

1

w
T

2

w
T

S

=

ai har dlim n i() hardlim w
T

i p b i+()= =

W

w1 1, w1 2, … w1 R,

w2 1, w2 2, … w2 R,

wS 1, wS 2, … wS R,

=

wi

wi 1,

wi 2,

wi R,

=

i

2x1

3x2

MultipleMultiple--Neuron Neuron PerceptronPerceptron

Each neuron will have its own decision boundary.

w
T

i p bi+ 0=

A single neuron can classify input vectors into

two categories.

An S-neuron perceptron can potentially

classify input vectors into 2S categories.

PerceptronPerceptron LimitationsLimitations

PerceptronPerceptron LimitationsLimitations

• A single layer perceptron can only learn linearly separable

problems.

– Boolean AND function is linearly separable,

whereas Boolean XOR function is not.

Boolean AND Boolean XOR

PerceptronPerceptron LimitationsLimitations

w
T

1 p b+ 0=

Linear Decision Boundary

Linearly Inseparable Problems

PerceptronPerceptron LimitationsLimitations

For a linearly not-separable problem:

– Would it help if we use more layers of neurons?

– What could be the learning rule for each neuron?

– Yes!

Solution: Multilayer networks

and the backpropagation

learning algorithm

• Perceptrons (in this context of limitations, the word refers to

single layer perceptron) can learn many Boolean functions:

• AND, OR, NAND, NOR, but not XOR

• Multi-layer perceptron can solve the XOR problem

AND: AND:

x1x1

x2x2

XX00=1=1

WW00 = = --0.80.8

WW11=0.5=0.5

WW22=0.5=0.5
ΣΣ

• More than one layer of perceptrons (with a hardlimiting

activation function) can learn any Boolean function.

• However, a learning algorithm for multi-layer perceptrons has

not been developed until much later

– backpropagation algorithm

– replacing the hardlimiter in the perceptron with a sigmoid

activation function

OutlineOutline

• So far we have seen how a single neuron with a threshold

activation function separates the input space into two.

• We also talked about how more than one nodes may indicate

convex (open or closed) regions

• The next slides explain how the weights of a perceptron can

be automatically learned, using supervised learning.

– Perceptron learning can be implemented automatically via

backpropagation algorithm which we will cover in the next

lecture slides

Perceptron Learning Rule

TypesTypes of of LearninLearningg

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

• Supervised Learning

Network is provided with a set of examples

of proper network behavior (inputs/targets)

• Reinforcement Learning

Network is only provided with a grade, or score,

which indicates network performance

• Unsupervised Learning

Only network inputs are available to the learning

algorithm. Network learns to categorize (cluster)

the inputs.

Learning Rule Test ProblemLearning Rule Test Problem

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

p1
1

2
= t1 1=,

p2
1–

2
= t2 0=,

p3
0

1–
= t3 0=,

p1

an

Inputs

p2 w1,2

w1,1

AA
AA

Σ AAA
AAA

a = hardlim(Wp)

No-Bias Neuron

Input-output:

Starting PointStarting Point

1w

1

3

2

w1
1.0

0.8–
=

Present p1 to the network:

a hardlim w
T

1 p1() hardlim 1.0 0.8–
1

2

= =

a hardlim 0.6–() 0= =

Random initial weight:

Incorrect Classification.

Tentative Learning RuleTentative Learning Rule

1w

1

3

2

If t 1 and a 0, then w1
new

w1
old

p+== =

w1
new

w1
ol d

p1+ 1.0

0.8–

1

2
+ 2.0

1.2
= = =

Tentative Rule:

Second Input VectorSecond Input Vector

1w

1

3

2

If t 0 and a 1, then w1
new

w1
old

p–== =

a hardlim w
T

1 p2() hardlim 2.0 1.2
1–

2

= =

a ha rdlim 0.4() 1= = (Incorrect Classification)

Modification to Rule:

w1
new

w1
ol d

p2–
2.0

1.2

1–

2
–

3.0

0.8–
= = =

Third Input VectorThird Input Vector

1w

1

3

2

Patterns are now correctly classified.

a hardlim w
T

1 p3() hardlim 3.0 0.8–
0

1–

= =

a ha rdlim 0.8() 1= = (Incorrect Classification)

w1
new

w1
ol d

p3– 3.0

0.8–

0

1–
– 3.0

0.2
= = =

If t a, then w1
new

w1
o ld

.==

Unified Learning RuleUnified Learning Rule

If t 1 and a 0, then w1
new

w1
old

p+== =

If t 0 and a 1, then w1
n ew

w1
old

p–== =

If t a, then w1
new

w1
ol d

==

Unified Learning RuleUnified Learning Rule

If t 1 and a 0, then w1
new

w1
old

p+== =

If t 0 and a 1, then w1
n ew

w1
old

p–== =

If t a, then w1
new

w1
ol d

==

e t a–=

If e 1, then w1
new

w1
old

p+= =

If e 1,– then w1
new

w1
old

p–==

If e 0, then w1
new

w1
old

==

w1
new

w1
ol d

ep+ w1
ol d

t a–()p+= =

b
new

b
ol d

e+=

A bias is a weight

with an input of 1.

Define:

=>

MultipleMultiple--Neuron Neuron PerceptronsPerceptrons

w
i
new w

i
old

ei p
+=

b i
new

b i
ol d

ei+=

W
new

W
ol d

ep
T

+=

b
new

b
ol d

e+=

To update the ith row of the weight matrix:

Matrix form:

=

= ei
x

i

2x1

3x2

You should not need it, but if you were to write your own NN toolbox, you need to use matrices

in order to greatly improve speed compared to a dummy algorithm working with individual neurons.

PerceptronPerceptron Learning Rule (Learning Rule (SummarySummary))

How do we find the weights using a learning procedure?

1 - Choose initial weights randomly

2 - Present a randomly chosen pattern x

3 - Update weights using Delta rule:

wij (t+1) = wij (t) + erri * xj

where erri = (targeti - outputi)

4 - Repeat steps 2 and 3 until the stopping criterion
(convergence, max number of iterations) is reached

PerceptronPerceptron ConvergenceConvergence ThmThm..

Theorem: The perceptron rule will always converge to

weights which accomplish the desired classification,

assuming that such weights exist.

Apple/Banana ExampleApple/Banana Example -- Self Self StudyStudy

W 0.5 1– 0.5–= b 0.5=

a hardlim Wp1 b+() hardlim 0.5 1– 0.5–

1–

1

1–

0.5+

= =

Training Set

Random Initial Weights

First Iteration

p1

1–

1

1–

t1, 1= =

p2

1

1

1–

t2, 0= =

a hardlim 0.5–() 0= =

W
new

W
ol d

ep
T

+ 0.5 1– 0.5– 1() 1– 1 1–+ 0.5– 0 1.5–= = =

b
new

b
ol d

e+ 0.5 1()+ 1.5= = =

e t1 a– 1 0– 1= = =

Second IterationSecond Iteration

a hardlim Wp2 b+() hardlim 0.5– 0 1.5–

1

1

1–

1.5()+()= =

a hardlim 2.5() 1= =

e t2 a– 0 1– 1–= = =

W
new

W
old

ep
T

+ 0.5– 0 1.5– 1–() 1 1 1–+ 1.5– 1– 0.5–= = =

b
new

b
ol d

e+ 1.5 1–()+ 0.5= = =

CheckCheck

a hardl im Wp1 b+() hardlim 1.5– 1– 0.5–

1–

1

1–

0.5+()= =

a hardlim 1.5() 1 t1= = =

a hardl im Wp2 b+() hardlim 1.5– 1– 0.5–

1

1

1–

0.5+()= =

a hardlim 1.5–() 0 t2= = =

History of Artificial Neural Networks History of Artificial Neural Networks ((DetailsDetails))

• McCulloch and Pitts (1943): first neural network model

• Hebb (1949): proposed a mechanism for learning, as increasing the
synaptic weight between two neurons, by repeated activation of one
neuron by the other across that synapse (lacked the inhibitory connection)

• Rosenblatt (1958): Perceptron network and the associated learning rule

• Widrow & Hoff (1960): a new learning algorithm for linear neural
networks (ADALINE)

• Minsky and Papert (1969): widely influential book about the limitations of
single-layer perceptrons, causing the research on NNs mostly to come to
an end.

• Some that still went on:

– Anderson, Kohonen (1972): Use of ANNs as associative memory

– Grossberg (1980): Adaptive Resonance Theory

– Hopfield (1982): Hopfield Network

– Kohonen (1982): Self-organizing maps

• Rumelhart and McClelland (1982): Backpropagation algorithm for
training multilayer feed-forward networks. Started a resurgence on NN
research again.

