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PerceptronPerceptron

• A single artificial neuron that computes its weighted input and

uses a threshold activation function.

• It effectively separates the input space into two categories by

the hyperplane:

wTx + bi = 0
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• All points on the decision boundary have the same inner 

product (= -b) with the weight vector

• Therefore they have the same projection onto the weight 

vector; so they must lie on a line orthogonal to the weight 

vector
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DecisionDecision BoundaryBoundary

The weight vector is orthogonal to the decision boundary

The weight vector should point in the direction of the vector 

which should produce an output of 1
• so that the vectors with the positive output are on the right side of 

the decision boundary
– if w pointed in the opposite direction, the dot products of all input

vectors would have the opposite sign

– would result in same classification but with opposite labels

The bias determines the position of the boundary
• solve for wp+b = 0 using one point on the decision boundary to

find b.
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Given the above input-output pairs (p,t), can you find (manually) 

the weights of a perceptron to do the job?



BooleanBoolean OR SolutionOR Solution

1w

OR

w1
0.5

0.5
=

w
T

1 p b+ 0.5 0.5
0

0.5
b+ 0.25 b+ 0= = = b 0.25–=⇒

2) Weight vector should be orthogonal to the decision boundary.

3) Pick a point on the decision boundary to find the bias.

1) Pick an 

admissable decision

boundary
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MultipleMultiple--Neuron Neuron PerceptronPerceptron

Each neuron will have its own decision boundary.

w
T
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A single neuron can classify input vectors into 

two categories.

An S-neuron perceptron can potentially

classify input vectors into 2S categories.



PerceptronPerceptron LimitationsLimitations



PerceptronPerceptron LimitationsLimitations

• A single layer perceptron can only learn linearly separable

problems.

– Boolean AND function is linearly separable, 

whereas Boolean XOR function is not.

Boolean AND Boolean XOR
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PerceptronPerceptron LimitationsLimitations

For a linearly not-separable problem:

– Would it help if we use more layers of neurons?

– What could be the learning rule for each neuron?

– Yes!

Solution: Multilayer networks

and the backpropagation

learning algorithm



• Perceptrons ( in this context of limitations, the word refers to

single layer perceptron) can learn many Boolean functions:

• AND, OR, NAND, NOR, but not XOR

• Multi-layer perceptron can solve the XOR problem

AND: AND: 
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• More than one layer of perceptrons (with a hardlimiting

activation function) can learn any Boolean function.

• However, a learning algorithm for multi-layer perceptrons has 

not been developed until much later

– backpropagation algorithm

– replacing the hardlimiter in the perceptron with a sigmoid

activation function



OutlineOutline

• So far we have seen how a single neuron with a threshold

activation function separates the input space into two.

• We also talked about how more than one nodes may indicate

convex (open or closed) regions

• The next slides explain how the weights of a perceptron can 

be automatically learned, using supervised learning. 

– Perceptron learning can be implemented automatically via

backpropagation algorithm which we will cover in the next

lecture slides



Perceptron Learning Rule
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• Supervised Learning

Network is provided with a set of examples

of proper network behavior (inputs/targets)

• Reinforcement Learning

Network is only provided with a grade, or score,

which indicates network performance

• Unsupervised Learning

Only network inputs are available to the learning

algorithm. Network learns to categorize (cluster)

the inputs.
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To update the ith row of the weight matrix:
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You should not need it, but if you were to write your own NN toolbox, you need to use matrices

in order to greatly improve speed compared to a dummy algorithm working with individual neurons.



PerceptronPerceptron Learning Rule (Learning Rule (SummarySummary))

How do we find the weights using a learning procedure?

1 - Choose initial weights randomly

2 - Present a randomly chosen pattern x

3 - Update weights using Delta rule:

wij (t+1) = wij (t) + erri * xj

where erri = (targeti - outputi)

4 - Repeat steps 2 and 3 until the stopping criterion 
(convergence, max number of iterations) is reached



PerceptronPerceptron ConvergenceConvergence ThmThm..

Theorem: The perceptron rule will always converge to 

weights which accomplish the desired classification, 

assuming that such weights exist.
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History of Artificial Neural Networks History of Artificial Neural Networks ((DetailsDetails))

• McCulloch and Pitts (1943): first neural network model

• Hebb (1949): proposed a mechanism for learning, as increasing the 
synaptic weight between two neurons, by repeated activation of one 
neuron by the other across that synapse (lacked the inhibitory connection)

• Rosenblatt (1958): Perceptron network and the associated learning rule

• Widrow & Hoff (1960): a new learning algorithm for linear neural 
networks (ADALINE)

• Minsky and Papert (1969): widely influential book about the limitations of 
single-layer perceptrons, causing the research on NNs mostly to come to 
an end.

• Some that still went on:

– Anderson, Kohonen (1972): Use of ANNs as associative memory 

– Grossberg (1980): Adaptive Resonance Theory

– Hopfield (1982): Hopfield Network

– Kohonen (1982): Self-organizing maps

• Rumelhart and McClelland (1982): Backpropagation algorithm for 
training multilayer feed-forward networks. Started a resurgence on NN 
research again.


