Multivariate Methods

Slides from Machine Learning by Ethem Alpaydin
Expanded by some slides from Gutierrez-Osuna
Overview

- We learned how to use the Bayesian approach for classification if we had the probability distribution of the underlying classes \(p(x|C_i)\).

- Now going to look into how to estimate those densities from given samples.
Expectations

The average value of a function $f(x)$ under a probability distribution $p(x)$ is called the **expectation** of $f(x)$.

Average is weighted by the relative probabilities of different values of x.

\[
\mathbb{E}[f] = \sum_x p(x) f(x) \quad \mathbb{E}[f] = \int p(x) f(x) \, dx
\]

\[
\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)
\]

Approximate Expectation
(discrete and continuous)

Now we are going to look at concepts: variance and co-variance, of 1 or more random variables, using the concept of expectation.
The variance of f(x) provides a measure for how much f(x) varies around its mean E[f(x)].

\[
\text{var}[f] = \mathbb{E} \left[(f(x) - \mathbb{E}[f(x)])^2 \right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2
\]

Given a set of N points \{x_i\} in the 1D-space, the variance of the corresponding random variable x is \(\text{var}[x] = \mathbb{E}[(x-\mu)^2]\) where \(\mu = \mathbb{E}[x]\).

You can estimate the expected value as

\[
\text{var}(x) = \mathbb{E}[(x-\mu)^2] \approx \frac{1}{N} \sum_{x_i} (x_i-\mu)^2
\]

Remember the definition of expectation:
\[
\mathbb{E}[f] \approx \frac{1}{N} \sum_{n=1}^{N} f(x_n)
\]
The variance of x provides a measure for how much x varies around its mean $\mu = \mathbb{E}[x]$.

$$\text{var}(x) = \mathbb{E}[(x-\mu)^2]$$

$$\text{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2$$

Co-variance of two random variables x and y measures the extent to which they vary together.

$$\text{cov}[x, y] = \mathbb{E}_{x,y} \{x - \mathbb{E}[x]\} \{y - \mathbb{E}[y]\}$$

$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$
Variance and Covariance

Co-variance of two random variables x and y measures the extent to which they vary together.

\[
\text{cov}[x, y] = \mathbb{E}_{x,y} \{ x - \mathbb{E}[x] \} \{ y - \mathbb{E}[y] \}
\]

: two random variables x, y

\[
= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]
\]

: two vector random variables x, y – covariance is a matrix
Multivariate Normal Distribution
The Gaussian Distribution

\[N(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp\left\{ -\frac{1}{2\sigma^2}(x - \mu)^2 \right\} \]

\[N(x|\mu, \sigma^2) > 0 \]

\[\int_{-\infty}^{\infty} N(x|\mu, \sigma^2) \, dx = 1 \]
Expectations

\[
\mathbb{E}[f] = \sum_x p(x) f(x) \quad \mathbb{E}[f] = \int p(x) f(x) \, dx \quad \mathbb{E}[f] \simeq \frac{1}{N} \sum_{n=1}^{N} f(x_n)
\]

\[
\text{var}[f] = \mathbb{E} \left[(f(x) - \mathbb{E}[f(x)])^2 \right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2
\]

For normally distributed \(x \):

\[
\mathbb{E}[x] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, x \, dx = \mu
\]

\[
\mathbb{E}[x^2] = \int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) \, x^2 \, dx = \mu^2 + \sigma^2
\]

\[
\text{var}[x] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 = \sigma^2
\]
Assume we have a d-dimensional input (e.g. 2D), x.

We will see how can we characterize $p(x)$, assuming x is normally distributed.

- For 1-dimension it was the mean (μ) and variance (σ^2)
 - Mean=$E[x]$
 - Variance=$E[(x - \mu)^2]$

- For d-dimensions, we need
 - the d-dimensional mean vector
 - dxd dimensional covariance matrix

- If $x \sim N_d(\mu, \Sigma)$ then each dimension of x is univariate normal
 - Converse is not true
Normal Distribution &
Multivariate Normal Distribution

- For a single variable, the normal density function is:

\[p(x) = \frac{1}{(2\pi \sigma^2)^{1/2}} \exp \left\{ -\frac{(x - \mu)^2}{2\sigma^2} \right\} \]

- For variables in higher dimensions, this generalizes to:

\[p(x) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \exp \left\{ -\frac{1}{2}(x - \mu)^T \Sigma^{-1}(x - \mu) \right\} \]

where the mean \(\mu \) is now a \(d \)-dimensional vector,
\(\Sigma \) is a \(d \times d \) covariance matrix
\(|\Sigma|\) is the determinant of \(\Sigma \):

\[\mu = \mathbb{E}[x] \]
\[\Sigma = \mathbb{E}[(x - \mu)(x - \mu)^T]. \]
Multivariate Parameters: Mean, Covariance

Mean: \(E[x] = \mu = [\mu_1, \ldots, \mu_d]^T \)

\[\Sigma \equiv \text{Cov}(x) = \begin{bmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{bmatrix} = E[(x - \mu)(x - \mu)^T] = E[xx^T] - \mu\mu^T \]

\(\sigma_{ij} \equiv \text{Cov}(x_i, x_j) \equiv E[(x_i - \mu_i)(x_j - \mu_j)] \)
Matlab code

- close all;
- rand('twister', 1987) % seed

%Define the parameters of two 2d-Normal distribution
- mu1 = [5 -5];
- mu2 = [0 0];
- sigma1 = [2 0; 0 2];
- sigma2 = [5 5; 5 5];

- N=500; %Number of samples we want to generate from this distribution

- samp1 = mvnrnd(mu1, sigma1, N);
- samp2 = mvnrnd(mu2, sigma2, N);

- figure; clf;
- plot(samp1(:,1), samp1(:,2),', ', 'MarkerEdgeColor', 'b');
- hold on;
- plot(samp2(:,1), samp2(:,2),'*', 'MarkerEdgeColor', 'r');
- axis([-20 20 -20 20]); legend('d1', 'd2');
mu1 = [5, -5];
mu2 = [0, 0];
sigma1 = [2, 0; 0, 2];
sigma2 = [5, 5; 5, 5];
\[
\begin{align*}
\text{mu1} & = [5 \ -5]; \\
\text{mu2} & = [0 \ 0]; \\
\text{sigma1} & = [2 \ 0; \ 0 \ 2]; \\
\text{sigma2} & = [5 \ 2; \ 2 \ 5];
\end{align*}
\]
% Lets compute the mean and covariance as if we are given this data

`sampmu1 = sum(samp1)/N;`
`sampmu2 = sum(samp2)/N;`
`sampcov1 = zeros(2,2);`
`sampcov2 = zeros(2,2);`

```matlab
for i =1:N
    sampcov1 = sampcov1 + (samp1(i,:) - sampmu1)' * (samp1(i,:) - sampmu1);
    sampcov2 = sampcov2 + (samp2(i,:) - sampmu2)' * (samp2(i,:) - sampmu2);
end
```
`sampcov1 = sampcov1 /N;`
`sampcov2 = sampcov2 /N;`

% Lets compute the mean and covariance as if we are given this data USING MATRIX OPERATIONS
% Notice that in samp1, samples are given in ROWS - but for this multiplication, columns * rows is req.

`sampcov1 = (samp1'*samp1)/N - sampmu1'*sampmu1;`
%Or simply
`mu=mean(samp1);`
`cov=cov(samp1);`
- **Variance**: How much X varies around the expected value
- **Covariance** is the measure the strength of the **linear relationship** between two random variables
 - covariance becomes more positive for each pair of values which differ from their mean in the same direction
 - covariance becomes more negative with each pair of values which differ from their mean in opposite directions.
 - if **two variables** are independent, then their covariance/correlation is zero (converse is not true).

- **Correlation** is a **dimensionless** measure of linear dependence.
 - range between -1 and $+1$

Covariance: $\sigma_{ij} \equiv \text{Cov}(x_i, x_j) \equiv E[(x_i - \mu_i)(x_j - \mu_j)]$

Correlation: $\text{Corr}(x_i, x_j) \equiv \rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \sigma_j}$
How to characterize differences between these distributions
Covariance Matrices

\[\text{Cov}(x_1, x_2) = 0, \ \text{Var}(x_1) = \text{Var}(x_2) \]

\[\text{Cov}(x_1, x_2) = 0, \ \text{Var}(x_1) > \text{Var}(x_2) \]

\[\text{Cov}(x_1, x_2) > 0 \]

\[\text{Cov}(x_1, x_2) < 0 \]
Contours of constant probability density for a 2D Gaussian distributions with
a) general covariance matrix
b) diagonal covariance matrix (covariance of x_1, x_2 is 0)
c) Σ proportional to the identity matrix (covariances are 0, variances of each dimension are the same)
Shape and orientation of the hyper-ellipsoid centered at μ is defined by Σ.

FIGURE 2.9. Samples drawn from a two-dimensional Gaussian lie in a cloud centered on the mean μ. The ellipses show lines of equal probability density of the Gaussian.
Properties of Σ

- A small value of $|\Sigma|$ (determinant of the covariance matrix) indicates that samples are close to μ.

- Small $|\Sigma|$ may also indicate that there is a high correlation between variables.

- If some of the variables are linearly dependent, or if the variance of one variable is 0, then Σ is singular and $|\Sigma|$ is 0.
 - Dimensionality should be reduced to get a positive definite matrix.
From the equation for the normal density, it is apparent that points which have the same density must have the same constant term:

\[
(x - \mu)^t \Sigma^{-1} (x - \mu)
\]

Mahalanobis distance measures the distance from \(x \) to \(\mu \) in terms of \(\Sigma \).
The quadratic term is called the **Mahalanobis distance**, a very important distance in Statistical PR.

\[\| x - y \|_{\Sigma^{-1}}^2 = (x - y)^T \Sigma^{-1} (x - y) \]

- The Mahalanobis distance is a vector distance that uses a Σ^{-1} norm
 - Σ^{-1} can be thought of as a stretching factor on the space
 - Note that for an identity covariance matrix ($\Sigma=I$), the Mahalanobis distance becomes the familiar Euclidean distance.

- The ellipse consists of points that are equi-distant to the center w.r.t. Mahalanobis distance.
- The circle consists of points that are equi-distant to the center w.r.t. The Euclidean distance.
Why Mahalanobis Distance

It takes into account the covariance of the data.

- Point P is at closer (Euclidean) to the mean for the orange class, but using the Mahalanobis distance, it is found to be closer to 'apple' class.
The covariance matrix Σ is \textit{symmetric} and \textit{positive semi-definite}

An $n \times n$ real symmetric matrix M is \textit{positive definite}
if $z^T M z > 0$ for all non-zero vectors z with real entries.

An $n \times n$ real symmetric matrix M is \textit{positive semi-definite}
if $z^T M z \geq 0$ for all non-zero vectors z with real entries.

Comes from the requirement that the variance of each dimension is ≥ 0
and that the matrix is symmetric.

When you randomly generate a covariance matrix, it may violate this rule
- Test to see if all the eigenvalues are ≥ 0
- Higham 2002 – how to find nearest valid covariance matrix
- Set negative eigenvalues to small positive values
Parameter Estimation

Covered only ML estimator
You have some samples coming from an unknown distribution and you want to characterize that distribution; i.e. find the necessary parameters.

For instance, assuming you are given the samples in Slides 14 or 15, and that you assume that they are normally distributed, you will try to find the parameters \(\mu \) and \(\Sigma \) of the corresponding normal distribution.

We have referred to the sample mean (mean of the samples, \(m \)) and sample variance \(S \) before, but why use those instead of \(\mu \) and \(\Sigma \)?
Given an i.i.d data set X, sampled from a normal distribution with parameters μ and Σ, we would like to determine these parameters, given the samples.

Once we have those, we can estimate $p(x)$ for any given x (little x), given the known distribution.

Two approaches in parameter estimation:
- Maximum Likelihood approach
- Bayesian approach
Maximum Likelihood vs. Bayesian Parameter Estimation

- **Maximum Likelihood**
 - The parameters are assumed to be FIXED but unknown
 - The ML solution seeks the solution that “best” explains the dataset X

\[
\hat{\theta} = \arg\max [p(X | \theta)]
\]
Maximum Likelihood vs. Bayesian Parameter Estimation

- Maximum Likelihood
 - The parameters are assumed to be FIXED but unknown.
 - The ML solution seeks the solution that “best” explains the dataset \(X \).

\[
\hat{\theta} = \text{argmax}\{p(X | \theta)\}
\]

- Bayesian Estimation
 - The parameters are assumed to be random variables with some (assumed) known a priori distribution.
 - Bayesian methods seek to estimate the posterior density \(p(\theta | X) \).
 - The final density \(p(x | X) \) is obtained by integrating out the parameters:

\[
p(x | X) = \int p(x | \theta)p(\theta | X)\,d\theta
\]
Maximum Likelihood (1)

- Suppose we consider estimating a density function \(p(x) \) which depends on a number of parameters \(\theta = [\theta_1, \theta_2, \ldots, \theta_M]^T \)
 - For a Gaussian pdf \(\theta_1 = \mu, \theta_2 = \sigma \) and \(p(x) = N(\mu, \sigma) \)
 - To make the dependence on the parameters \(\theta \) explicit we write \(p(x|\theta) \)

- Assume that we have a number of examples \(X = \{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\} \) drawn independently from the distribution \(p(x|\theta) \) (an i.i.d. set)
 - Then we can write
 \[
p(X|\theta) = \prod_{k=1}^{N} p(x^{(k)}|\theta)
 \]
 - The ML estimate of \(\theta \) is the value that maximizes the likelihood \(p(X|\theta) \)
 \[
 \hat{\theta} = \arg\max[p(X|\theta)]
 \]
 - This corresponds to the intuitively pleasing idea of choosing the value of \(\theta \) that is most likely to give rise to the data!
Gaussian Parameter Estimation

Likelihood function

\[p(x) \]

\[\mathcal{N}(x_n | \mu, \sigma^2) \]

\[
p(x | \mu, \sigma^2) = \prod_{n=1}^{N} \mathcal{N}(x_n | \mu, \sigma^2)
\]

Assuming iid data
Maximum Likelihood (2)

- For analytical purposes it is convenient to work with the log of the likelihood
 - Since the log is a monotonic function
 \[\hat{\theta} = \arg\max[p(X | \theta)] = \arg\max[\log p(X | \theta)] \]

- Then the Maximum Likelihood estimate of the parameter \(\theta \) can be written as
 \[\hat{\theta} = \arg\max \left[\log \prod_{k=1}^{N} p(x^{(k)} | \theta) \right] = \arg\max \left[\sum_{k=1}^{N} \log p(x^{(k)} | \theta) \right] \]
 - Maximizing a sum of terms is always an easier task than maximizing a product
 - To convince yourself, think of computing the derivative of a long product of terms!
 - An added advantage of taking logs will become very clear when the distribution is Gaussian
Example: Gaussian case, μ unknown

- Assume a dataset $X = \{x^{(1)}, x^{(2)}, \ldots, x^{(N)}\}$ and a density of the form $p(x) = N(\mu, \sigma)$ where the standard deviation σ is known.

- What is the Maximum Likelihood estimate of the mean?

\[
\theta = \mu \Rightarrow \hat{\theta} = \text{argmax} \sum_{k=1}^{N} \log p(x^{(k)} | \theta) \\
= \text{argmax} \sum_{k=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma}} \exp \left(-\frac{1}{2\sigma^2} (x^{(k)} - \mu)^2 \right) \right) \\
= \text{argmax} \sum_{k=1}^{N} \left\{ \log \left(\frac{1}{\sqrt{2\pi\sigma}} \right) - \frac{1}{2\sigma^2} (x^{(k)} - \mu)^2 \right\}
\]

- The maxima (or minima) of a function are defined by the zeros of its derivative:

\[
\frac{\partial}{\partial \theta} \sum_{k=1}^{N} \log p(x^{(k)} | \theta) = \frac{\partial}{\partial \mu} \sum_{k=1}^{N} \{\} = 0 \Rightarrow \mu = \frac{1}{n} \sum_{k=1}^{N} x^{(k)}
\]

- So the ML estimate of the mean is the average value of the training data, a very intuitive result!
In order to maximize or minimize a function $f(x)$ w.r.to x, we compute the derivative $df(x)/dx$ and set to 0, since a necessary condition for extrema is that the derivative is 0.

Commonly used derivative rules are given on the right.

\[
\frac{d}{dx}(x^n) = nx^{n-1}
\]

\[
\frac{d}{dx}(a^x) = \ln a \cdot a^x
\]

\[
\frac{d}{dx}(f(x) \cdot g(x)) = f(x) \cdot g'(x) + g(x) \cdot f'(x)
\]

\[
\frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{g(x) \cdot f'(x) - f(x) \cdot g'(x)}{(g(x))^2}
\]

\[
\frac{d}{dx}(f(g(x))) = f'(g(x)) \cdot g'(x)
\]

\[
\frac{d}{dx}(\ln x) = \frac{1}{x}
\]
This is a more general case when neither the mean nor the standard deviation are known

- Fortunately, the problem can be solved in the same fashion
- In this case, the derivative becomes a gradient since we have two variables

\[
\hat{\theta} = \begin{bmatrix} \hat{\theta}_1 = \mu \\ \hat{\theta}_2 = \sigma^2 \end{bmatrix} \Rightarrow \nabla_{\theta} = \left[\frac{\partial}{\partial \theta_1} \sum_{k=1}^{N} \log p(x^{(k)} | \theta) \right] = \sum_{k=1}^{N} \left[\frac{1}{\theta_2} \frac{(x^{(k)} - \hat{\theta}_1)^2}{2 \theta_2} \right] = 0
\]

- Solving for \(\theta_1 \) and \(\theta_2 \) yields

\[
\hat{\theta}_1 = \frac{1}{N} \sum_{k=1}^{N} x^{(k)}; \quad \hat{\theta}_2 = \frac{1}{N} \sum_{k=1}^{N} \left(x^{(k)} - \hat{\theta}_1 \right)^2
\]

- Therefore, the ML of the variance is the sample variance of the dataset, again a very pleasing result
Similarly, it can be shown that the Maximum Likelihood parameter estimates for the multivariate Gaussian are also the sample mean vector and sample covariance matrix

\[\hat{\mu} = \frac{1}{N} \sum_{k=1}^{N} x^{(k)}; \quad \hat{\Sigma} = \frac{1}{N} \sum_{k=1}^{N} (x^{(k)} - \hat{\mu})(x^{(k)} - \hat{\mu})^T \]
Maximum (Log) Likelihood for a 1D-Gaussian

\[N(x|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} \exp \left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\} \]

\[\ln p(x|\mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{n=1}^{N}(x_n - \mu)^2 - \frac{N}{2} \ln \sigma^2 - \frac{N}{2} \ln(2\pi) \]

\[\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n \quad \sigma_{ML}^2 = \frac{1}{N} \sum_{n=1}^{N}(x_n - \mu_{ML})^2 \]

In other words, maximum likelihood estimates of mean and variance are the same as sample mean and variance.
Sample Mean and Variance for Multivariate Case

Where N is the number of data points x^t:

Sample mean $\mathbf{m} : m_i = \frac{1}{N} \sum_{t=1}^{N} x_i^t$, $i = 1, \ldots, d$

Covariance matrix $\mathbf{S} : s_{ij} = \frac{1}{N} \sum_{t=1}^{N} (x_i^t - m_i)(x_j^t - m_j)$

Correlation matrix $\mathbf{R} : r_{ij} = \frac{s_{ij}}{s_i s_j}$
ML estimates for the mean and variance in Bernoulli/Multinomial distributions

Not covered in class – but you should be able to do as a take home etc. Same idea as before, starting from the likelihood, you find the value that maximizes the likelihood.
Examples: Bernoulli/Multinomial

- **Bernoulli:** Binary random variable x may take one of the two values:
 - success/failure, 0/1 with probabilities:
 - $P(x=1) = p_o$
 - $P(x=0) = 1 - p_o$
 - *Unifying the above, we get:* $P(x) = p_o^x (1 - p_o)^{1-x}$

- Given a sample set $X = \{x^1, x^2, \ldots\}$, we can estimate p using the ML estimate by maximizing the log-likelihood of the sample set:

 Log likelihood: $\log P(X|p_o) = \log \prod_t p_o^{x^t} (1 - p_o)^{(1 - x^t)}$
Examples: Bernoulli

\[\mathcal{L} = \mathcal{P}(X|p_o) = \log \prod_t p_o^{x_t} (1 - p_o)^{1 - x_t} \quad x_t \text{ in } \{0,1\} \]

Solving for the necessary condition for extrema, (we must have \(d\mathcal{L}/dp = 0 \))

\[
\text{MLE: } p_o = \frac{\sum_t x_t}{N}
\]

ratio of the number of occurrences of the event to the number of experiments
Examples: Multinomial

- **Multinomial**: $K > 2$ states, x_i in \{0,1\}

- Instead of two states, we now have K mutually exclusive and exhaustive events, with probability of occurrence of p_i where $\sum p_i = 1$.

- Ex. A dice with 6 outcomes.

\[
P(x_1, x_2, \ldots, x_K) = \prod_i p_i^{x_i} \quad \text{where } x_i \text{ is 1 if the outcome is state } i \text{, 0 otherwise}
\]

\[
\mathcal{L}(p_1, p_2, \ldots, p_K | X) = \log \prod_t \prod_i p_i^{x_{it}}
\]

MLE: $p_i = \frac{\sum_t x_{it}}{N}$

Ratio of experiments with outcome of state i (e.g. 60 dice throws, 15 of them were 6 \rightarrow $p_6 = 15/60$)
Discrete Features

- **Binary features:** \(p_{ij} \equiv p(x_j = 1 \mid C_i) \)

If \(x_j \) are **independent** (Naive Bayes’ assumption)

\[
p(x \mid C_i) = \prod_{j=1}^{d} p_{ij}^{x_j} (1 - p_{ij})^{(1-x_j)}
\]

\[
g_i(x) = \log p(x \mid C_i) + \log P(C_i)
\]

\[
= \sum_j \left[x_j \log p_{ij} + (1 - x_j) \log (1 - p_{ij}) \right] + \log P(C_i)
\]

Estimated parameters

\[
\hat{p}_{ij} = \frac{\sum_t x^t_j r^t_i}{\sum_t r^t_i}
\]
Discrete Features

- Multinomial (1-of-\(n_j\)) features: \(x_j \in \{v_1, v_2, ..., v_{n_j}\}\)

\[
p_{ijk} \equiv p(z_{jk} = 1 \mid C_i) = p(x_j = v_k \mid C_i)
\]

if \(x_j\) are independent

\[
p(x \mid C_i) = \prod_{j=1}^{d} \prod_{k=1}^{n_j} p^{z_{jk}}_{ijk}
\]

\[
g_i(x) = \sum_j \sum_k z_{jk} \log p_{ijk} + \log P(C_i)
\]

\[
\hat{p}_{ijk} = \frac{\sum_t z^t_{jk} r^t_i}{\sum_t r^t_i}
\]
Parametric Classification

We will use the Bayesian decision criteria applied to normally distributed classes, whose parameters are either known or estimated from the sample.
If \(p(x \mid C_i) \sim \mathcal{N}(\mu_i, \Sigma_i) \)

\[
p(x \mid C_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp \left[-\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) \right]
\]

Discriminant functions are:

\[
g_i(x) = \log P(C_i \mid x) = \log p(x \mid C_i) + \log P(C_i) = -\frac{d}{2} \log 2\pi - \frac{1}{2} \log |\Sigma_i| - \frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) + \log P(C_i)
\]
Estimation of Parameters

If we estimate the unknown parameters from the sample, the discriminant function becomes:

\[g_i(x) = -\frac{1}{2} \log |S_i| - \frac{1}{2} (x - m_i)^T S_i^{-1} (x - m_i) + \log \hat{P}(C_i) \]
Case 1) Different S_i (each class has a separate variance)

$$g_i(x) = -\frac{1}{2} \log |S_i| - \frac{1}{2} \left(x^T S_i^{-1} x - 2x^T S_i^{-1} m_i + m_i^T S_i^{-1} m_i \right) + \log \hat{P}(C_i)$$

$$= x^T W_i x + w_i^T x + w_{i0}$$

where

$$W_i = -\frac{1}{2} S_i^{-1}$$

$$w_i = S_i^{-1} m_i$$

$$w_{i0} = -\frac{1}{2} m_i^T S_i^{-1} m_i - \frac{1}{2} \log |S_i| + \log \hat{P}(C_i)$$

if we group the terms, we see that there are second order terms, which means the discriminant is quadratic.
likelihoods

discriminant: $P(C_1|x) = 0.5$

posterior for C_1
Two bi-variate normals, with completely different covariance matrix, showing a hyper-quadratic decision boundary.
Hyperbola: A hyperbola is an open curve with two branches, the intersection of a plane with both halves of a double cone. The plane may or may not be parallel to the axis of the cone. Definition from Wikipedia.
To illustrate the previous result, we will compute the decision boundaries for a 3-class, 2-dimensional problem with the following class mean vectors and covariance matrices and equal priors

\[\mu_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \quad \mu_3 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad \Sigma_1 = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}, \quad \Sigma_2 = \begin{bmatrix} 1 & -1 \\ -1 & 7 \end{bmatrix}, \quad \Sigma_3 = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 3 \end{bmatrix} \]
Typical single-variable normal distributions showing a disconnected decision region R_2
Using the notation in Ethem book, the sample mean and sample covariance can be estimated as follows:

\[
\hat{P}(C_i) = \frac{\sum_t r_i^t}{N}
\]

\[
m_i = \frac{\sum_t r_i^t x^t}{\sum_t r_i^t}
\]

\[
S_i = \frac{\sum_t r_i^t (x^t - m_i)(x^t - m_i)^T}{\sum_t r_i^t}
\]

where \(r_i^t \) is 1 if the \(t_{th} \) sample belongs to class \(i \)
If \(d \) (dimension) is large with respect to \(N \) (number of samples), we may have a problem with this approach:

- \(|\Sigma| \) may be zero, thus \(\Sigma \) will be singular (inverse does not exist)
- \(|\Sigma| \) may be non-zero, but very small, instability would result
 - Small changes in \(\Sigma \) would cause large changes in \(\Sigma^{-1} \)

Solutions:

- Reduce the dimensionality
 - Feature selection
 - Feature extraction: PCA

- Pool the data and estimate a common covariance matrix for all classes

\[
\Sigma = \Sigma_i \ P(C_i) \times \Sigma_i
\]
Case 2) Common Covariance Matrix $S=S_i$

- **Shared common sample covariance S**
 - An arbitrary covariance matrix – but shared between the classes

- **We had this full discriminant function:**

\[
g_i(x) = -\frac{1}{2} \log |S_i| - \frac{1}{2} (x - m_i)^T S_i^{-1} (x - m_i) + \log \hat{P}(C_i)
\]

which now reduces to:

\[
g_i(x) = -\frac{1}{2} (x - m_i)^T S^{-1} (x - m_i) + \log \hat{P}(C_i)
\]

which is a **linear discriminant**

\[
g_i(x) = w_i^T x + w_{i0}
\]

where

\[
w_i = S^{-1} m_i \quad w_{i0} = -\frac{1}{2} m_i^T S^{-1} m_i + \log \hat{P}(C_i)
\]
Linear discriminant:
- Decision boundaries are **hyper-planes**
- Convex decision regions:
 - All points between two arbitrary points chosen from one decision region belongs to the same decision region

If we also assume equal class priors, the classifier becomes a minimum Mahalanobis classifier
Case 2) Common Covariance Matrix S

Linear discriminant
FIGURE 2.9. Decision boundary for a minimum-Mahalanobis-distance classifier.
P(w1)=0.5

W1

W2

 Decision boundary

R1

R2

Note the elliptical contour lines.

mean 1

mean 2

Decision boundary

Equal priors

X₀
Unequal priors shift the decision boundary towards the less likely class, as before.
To illustrate the previous result, we will compute the decision boundaries for a 3-class, 2-dimensional problem with the following class mean vectors and covariance matrices and equal priors:

\[
\begin{align*}
\mu_1 &= \begin{bmatrix} 3 \\ 2 \end{bmatrix}^T \\
\Sigma_1 &= \begin{bmatrix} 1 & 0.7 \\ 0.7 & 2 \end{bmatrix} \\
\mu_2 &= \begin{bmatrix} 5 \\ 4 \end{bmatrix}^T \\
\Sigma_2 &= \begin{bmatrix} 1 & 0.7 \\ 0.7 & 2 \end{bmatrix} \\
\mu_3 &= \begin{bmatrix} 2 \\ 5 \end{bmatrix}^T \\
\Sigma_3 &= \begin{bmatrix} 1 & 0.7 \\ 0.7 & 2 \end{bmatrix}
\end{align*}
\]
Case 3) Common Covariance Matrix S which is Diagonal

- In the previous case, we had a common, general covariance matrix, resulting in these discriminant functions:

$$ g_i(x) = -\frac{1}{2} (x - m_i)^T S^{-1} (x - m_i) + \log \hat{P}(C_i) $$

- When x_j ($j = 1, \ldots, d$) are independent, Σ is diagonal.
- Classification is done based on weighted Euclidean distance (in s_j units) to the nearest mean.

$$ g_i(x) = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j^T - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i) $$

Naive Bayes classifier where $p(x_j|C_i)$ are univariate Gaussian

$$ p(x|C_i) = \prod_j p(x_j|C_i) \quad \text{(Naive Bayes’ assumption)} $$
Case 3) Common Covariance Matrix S which is Diagonal

variances may be different
To illustrate the previous result, we will compute the decision boundaries for a 3-class, 2-dimensional problem with the following class mean vectors and covariance matrices and equal priors:

$$\mu_1 = \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \quad \mu_2 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \quad \mu_3 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

$$\Sigma_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad \Sigma_2 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad \Sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$$
Case 4) Common Covariance Matrix S which is Diagonal + equal variances

- We had this before (S which is diagonal):

$$g_i(x) = -\frac{1}{2} \sum_{j=1}^{d} \left(\frac{x_j^t - m_{ij}}{s_j} \right)^2 + \log \hat{P}(C_i)$$

- If the priors are also equal, we have the Nearest Mean classifier:
 Classify based on Euclidean distance to the nearest mean!

$$g_i(x) = -\frac{\|x - m_i\|^2}{2s^2} + \log \hat{P}(C_i)$$

$$= -\frac{1}{2s^2} \sum_{j=1}^{d} \left(x_j^t - m_{ij}\right)^2 + \log \hat{P}(C_i)$$

- Each mean can be considered a prototype or template and this is template matching
Case 4) Common Covariance Matrix S which is Diagonal + equal variances
Case 4) Common Covariance Matrix S which is Diagonal + equal variances

FIGURE 2.8. Decision boundaries for a minimum-distance classifier.
A second example where the priors have been changed:
The decision boundary has shifted away from the more likely class, although it is still orthogonal to the line joining the 2 means.
To illustrate the previous result, we will compute the decision boundaries for a 3-class, 2-dimensional problem with the following class mean vectors and covariance matrices and equal priors:

\[
\begin{align*}
\mu_1 &= \begin{bmatrix} 3 \\ 2 \end{bmatrix}, & \mu_2 &= \begin{bmatrix} 7 \\ 4 \end{bmatrix}, & \mu_3 &= \begin{bmatrix} 2 \\ 5 \end{bmatrix} \\
\Sigma_1 &= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, & \Sigma_2 &= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, & \Sigma_3 &= \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
\end{align*}
\]
Case 5: $S_i=\sigma_i^2 I$

- In this case, each class has a different covariance matrix, which is proportional to the identity matrix.
 - The quadratic discriminant becomes

$$
g_i(x) = -\frac{1}{2} (x - \mu_i)^T \Sigma_i^{-1} (x - \mu_i) - \frac{1}{2} \log(|\Sigma_i|) + \log(P(\omega_i)) =$$

$$= -\frac{1}{2} (x - \mu_i)^T \sigma_i^{-2} (x - \mu_i) - \frac{1}{2} N \log(\sigma_i^2) + \log(P(\omega_i))$$

- This expression cannot be reduced further so
 - The decision boundaries are quadratic: hyper-ellipses
 - The loci of constant probability are hyper-spheres aligned with the feature axis
Model Selection

As we increase complexity (less restricted S), bias decreases and variance increases.

- Assume simple models (allow some bias) to control variance (regularization)

<table>
<thead>
<tr>
<th>Assumption</th>
<th>Covariance matrix</th>
<th>No of parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shared, Hyperspheric</td>
<td>$S_i = S = s^2 I$</td>
<td>1</td>
</tr>
<tr>
<td>Shared, Axis-aligned</td>
<td>$S_i = S$, with $s_{ij} = 0$</td>
<td>d</td>
</tr>
<tr>
<td>Shared, Hyperellipsoidal</td>
<td>$S_i = S$</td>
<td>$d(d+1)/2$</td>
</tr>
<tr>
<td>Different, Hyperellipsoidal</td>
<td>S_i</td>
<td>$K d(d+1)/2$</td>
</tr>
</tbody>
</table>
Estimation of Missing Values

What to do if certain instances have missing attributes?
1. Ignore those instances: not a good idea if the sample is small
2. Use ‘missing’ as an attribute: may give information
3. Imputation: Fill in the missing value
 - Mean imputation: Use the most likely value (e.g., mean)
 - Imputation by regression: Predict based on other attributes

Another important problem is sensitivity due to outliers
When we use Euclidian distance to measure similarity, we are assuming that all variables have the same variance and that they are independent

- E.g. Two variables age and yearly income

When these assumptions don’t hold,

- Normalization may be used (use PCA, whitening, make each dimension zero mean and unit variance…) to use Euclidian distance
- We may still want to use simpler models in order to estimate the related parameters more accurately
Conclusions

- The Bayes classifier for normally distributed classes is a **quadratic** classifier.

- The Bayes classifier for normally distributed classes with equal covariance matrices is a **linear** classifier.

- The minimum Mahalanobis distance is Bayes-optimal for
 - Normally distributed classes, having
 - Equal covariance matrices and
 - Equal priors.

- The minimum Euclidian distance is Bayes-optimal for
 - Normally distributed classes -and-
 - Equal covariance matrices proportional to the identity matrix–and-
 - Equal priors.

- Both Euclidian and Mahalanobis distance classifiers are **linear** classifiers.
load nutsbolts; //an existing Prtools dataset with 4 classes
w1=ldc(z); //linear Bayes Normal classifier
w2=qdc(z); //quadratic Bayes Normal classifier
figure(1); scatterd(z); hold on; plotc(w1);
figure(2); scatterd(z); hold on; plotc(w2);
\begin{itemize}
 \item >> A = gendath([50 50]); //Generate data with 2 classes x 50 samples each
 \item >> [C,D] = gendat(A,[20 20]); //Split 20 as C=train; rest becomes D=test
 \item >> W1 = ldc(C); //linear
 \item >> W2 = qdc(C); //quadratic
 \item >> figure(5); scatterd(C); hold on; plotm(W2);
\end{itemize}
scatterd(A); //scatter plot
plotc({W1,W2});
error on test: 9.5%
error on test: 11.5%
with \(N=20 \) points
Given a linear transformation A, a non-zero vector x is defined to be an eigenvector of the transformation if it satisfies the eigenvalue equation

$$Ax = \lambda x$$

for some scalar λ.

In this situation, the scalar λ is called an eigenvalue of A corresponding to the eigenvector x.

$$(A - \lambda I)x = 0 \implies \det(A - \lambda I) \text{ must be } 0.$$

This gives the characteristic polynomial whose roots are the eigenvalues of A.

The covariance matrix is symmetrical and it can always be diagonalized as:

\[\Sigma = \Phi \Lambda \Phi^T \]

where

- \(\Phi = [\upsilon_1, \upsilon_2, \ldots, \upsilon_l] \) is the column matrix consisting of the eigenvalues of \(\Sigma \),
- \(\Phi^T = \Phi^{-1} \) and
- \(\Lambda \) is the diagonal matrix whose elements are the eigenvalues of \(\Sigma \).
Contours of equal Mahalanobis distance:

\[d_m = \left((x - \mu_i)^T \Sigma^{-1} (x - \mu_i) \right)^{1/2} = c \]

\[(x - \mu_i)^T \Phi \Lambda^{-1} \Phi^T (x - \mu_i) = c^2 \]

Define \(\mathbf{x}' = \Phi^T \mathbf{x} \). The coordinates of \(\mathbf{x}' \) are equal to \(\nu_k^T \mathbf{x}, k=1,2,...,l \)

that is, the projections of \(\mathbf{x} \) onto the eigenvectors.

\[\frac{(x'_1 - \mu'_{i1})^2}{\lambda_1} + \cdots + \frac{(x'_l - \mu'_{il})^2}{\lambda_l} = c^2 \]

Thus all points having the same Mahalanobis distance from a specific point are located on an ellipse with center of mass at \(\mu_i \), and the principle axes are aligned with the corresponding eigenvectors and have lengths \(2\sqrt{\lambda_k} c \)
- Eigenvalue decomposition of the covariance matrix is very useful:
 - PCA
 - Decorrelate data (Whitening transform)
 - ...
Matrix Transpose

- Given the matrix \(A \), the \textbf{transpose} of \(A \) is the \(A^T \), denoted \(A^T \), whose columns are formed from the corresponding rows of \(A \).

\[
A = \begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
\quad B = \begin{bmatrix}
3 & 5 \\
2 & 7 \\
6 & 9 \\
1 & 0 \\
5 & 2 \\
\end{bmatrix}
\]

\[
A^T = \begin{bmatrix}
a & c \\
b & d \\
\end{bmatrix}
\quad B^T = \begin{bmatrix}
3 & 2 & 6 & 1 & 5 \\
5 & 7 & 9 & 0 & 2 \\
\end{bmatrix}
\]

- Some properties of transpose
 1. \((A^T)^T = A\)
 2. \((A + B)^T = A^T + B^T\)
 3. \((rA)^T = rA^T\) \text{ where } r \text{ is any scalar.}
 4. \((AB)^T = B^TA^T\)
 5. \(A^TB = B^TA\) \text{ where } A \text{ and } B \text{ are vectors}
 6. ...
Matrix Derivation

- If $y = x^T A x$ where A is a square matrix
 - $\frac{\partial y}{\partial x} = A x + A^T x$

- If $y = x^T A x$ and A is symmetric
 - $\frac{\partial y}{\partial x} = 2 A x$

- If $y = x^T x$
 - $\frac{\partial y}{\partial x} = 2 x$.
If \(\mathbf{x} \sim N_d(\mu, \Sigma) \) then each dimension of \(\mathbf{x} \) is univariate normal

- Converse is not true – counterexample?

The projection of a d-dimensional normal distribution onto the vector \(\mathbf{w} \) is univariate normal

\[
\mathbf{w}^T \mathbf{x} \sim N(\mathbf{w}^T \mu, \mathbf{w}^T \Sigma \mathbf{w})
\]

More generally, when \(\mathbf{W} \) is a dxk matrix with \(k < d \), then the k-dimensional \(\mathbf{Wx} \) is k-variate normal with:

\[
\mathbf{W}^T \mathbf{x} \sim N_k(\mathbf{W}^T \mu, \mathbf{W}^T \Sigma \mathbf{W})
\]
Univariate normal – transformed x

- $E[w^T x] = w^T E[x] = w^T \mu$

- $\text{Var}[w^T x] = E[(w^T x - w^T \mu) (w^T x - w^T \mu)^T]$

 $= E[(w^T x - w^T \mu)^2]$ since $(w^T x - w^T \mu)$ is a scalar

 $= E[(w^T x - w^T \mu) (w^T x - w^T \mu)]$

 $= E[w^T (x - \mu) (x - \mu)^T w]$ based on slide 27. rule 5

 $= w^T \Sigma w$ move out and use def. of Σ
FIGURE 2.8. The action of a linear transformation on the feature space will convert an arbitrary normal distribution into another normal distribution. One transformation, A, takes the source distribution into distribution $N(A\mu, A\Sigma A)$. Another linear transformation—a projection P onto a line defined by vector a—leads to $N(\mu, \sigma^2)$ measured along that line. While the transforms yield distributions in a different space, we show them superimposed on the original $x_1 x_2$-space. A whitening transform, A_w, leads to a circularly symmetric Gaussian, here shown displaced.
Whitening Transform

- We can **decorrelate** variables and obtain $\Sigma=I$ by using a **whitening transform** $A_w=\Lambda^{-1/2}\Phi^T$ where
 - Λ is the diagonal matrix of the eigenvalues of the original distribution
 - Φ is the matrix composed of eigenvectors as its columns