Tree Uses Nodes, and Leaves

![Diagram showing a decision tree and a scatter plot. The tree nodes and leaves are labeled with conditions such as $x_1 > w_{10}$ and $x_2 > w_{20}$. The scatter plot on the left shows two classes C_1 and C_2. The tree on the right is split based on the conditions to classify the data points.]
Divide and Conquer

- Internal decision nodes
 - Univariate: Uses a single attribute, x_i
 - Numeric x_i: Binary split: $x_i > w_m$
 - Discrete x_i: n-way split for n possible values
 - Multivariate: Uses all attributes, \mathbf{x}

- Leaves
 - Classification: Class labels, or proportions
 - Regression: Numeric; r average, or local fit

- Learning is greedy; find the best split recursively (Breiman et al, 1984; Quinlan, 1986, 1993)
Classification Trees (ID3, CART, C4.5)

- For node m, N_m instances reach m, N^i_m belong to C_i
 $$\hat{P}(C_i | x, m) \equiv p^i_m = \frac{N^i_m}{N_m}$$

- Node m is pure if p^i_m is 0 or 1
- Measure of impurity is entropy
 $$I_m = -\sum_{i=1}^{K} p^i_m \log_2 p^i_m$$
Best Split

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively.
- Impurity after split: N_{mj} of N_m take branch j. N'_{mj} belong to C_i

$$\hat{P}(C_i \mid x, m, j) \equiv p^i_{mj} = \frac{N'_{mj}}{N_{mj}}$$

$$I'_m = -\sum_{j=1}^{n} \frac{N_{mj}}{N_m} \sum_{i=1}^{K} p^i_{mj} \log_2 p^i_{mj}$$

- Find the variable and split that min impurity (among all variables -- and split positions for numeric variables)
GenerateTree(\mathcal{X}')

If $\text{NodeEntropy} (\mathcal{X}') < \theta_I$ /* eq. 9.3
Create leaf labelled by majority class in \mathcal{X}'
Return

$i \leftarrow \text{SplitAttribute}(\mathcal{X}')$
For each branch of \mathbf{x}_i
 Find \mathcal{X}_i falling in branch
 GenerateTree(\mathcal{X}_i)

SplitAttribute(\mathcal{X}')

$\text{MinEnt} \leftarrow \text{MAX}$
For all attributes $i = 1, \ldots, d$
 If \mathbf{x}_i is discrete with n values
 Split \mathcal{X} into $\mathcal{X}_1, \ldots, \mathcal{X}_n$ by \mathbf{x}_i
 $e \leftarrow \text{SplitEntropy}(\mathcal{X}_1, \ldots, \mathcal{X}_n)$ /* eq. 9.8 */
 If $e < \text{MinEnt}$ $\text{MinEnt} \leftarrow e$; $\text{bestf} \leftarrow i$
 Else /* \mathbf{x}_i is numeric */
 For all possible splits
 Split \mathcal{X} into $\mathcal{X}_1, \mathcal{X}_2$ on \mathbf{x}_i
 $e \leftarrow \text{SplitEntropy}(\mathcal{X}_1, \mathcal{X}_2)$
 If $e < \text{MinEnt}$ $\text{MinEnt} \leftarrow e$; $\text{bestf} \leftarrow i$

Return bestf
Regression Trees

- Error at node m:

$$b_m(x) = \begin{cases} 1 & \text{if } x \in \mathcal{X}_m : x \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases}$$

$$E_m = \frac{1}{N_m} \sum_t (r^t - g_m)^2 b_m(x^t) \quad g_m = \frac{\sum_t b_m(x^t)r^t}{\sum_t b_m(x^t)}$$

- After splitting:

$$b_{mj}(x) = \begin{cases} 1 & \text{if } x \in \mathcal{X}_{mj} : x \text{ reaches node } m \text{ and branch } j \\ 0 & \text{otherwise} \end{cases}$$

$$E'_m = \frac{1}{N_m} \sum_j \sum_t (r^t - g_{mj})^2 b_{mj}(x^t) \quad g_{mj} = \frac{\sum_t b_{mj}(x^t)r^t}{\sum_t b_{mj}(x^t)}$$
Model Selection in Trees

\[\theta_r = 0.5 \]

\[\theta_r = 0.2 \]

\[\theta_r = 0.05 \]
Pruning Trees

- Remove subtrees for better generalization (decrease variance)
 - Prepruning: Early stopping
 - Postpruning: Grow the whole tree then prune subtrees which overfit on the pruning set
- Prepruning is faster, postpruning is more accurate (requires a separate pruning set)
Rule Extraction from Trees

C4.5 Rules
(Quinlan, 1993)

```
R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
R2: IF (age>38.5) AND (years-in-job≤2.5) THEN y = 0.6
R3: IF (age≤38.5) AND (job-type='A') THEN y = 0.4
R4: IF (age≤38.5) AND (job-type='B') THEN y = 0.3
R5: IF (age≤38.5) AND (job-type='C') THEN y = 0.2
```
Learning Rules

- Rule induction is similar to tree induction but
 - tree induction is breadth-first,
 - rule induction is depth-first; one rule at a time
- Rule set contains rules; rules are conjunctions of terms
- Rule **covers** an example if all terms of the rule evaluate to true for the example
- **Sequential covering**: Generate rules one at a time until all positive examples are covered
- IREP (Fürnkranz and Widmer, 1994), Ripper (Cohen, 1995)
Ripper(Pos, Neg, k)
 RuleSet ← LearnRuleSet(Pos, Neg)
 For k times
 RuleSet ← OptimizeRuleSet(RuleSet, Pos, Neg)
 LearnRuleSet(Pos, Neg)
 RuleSet ← Ø
 DL ← DescLen(RuleSet, Pos, Neg)
 Repeat
 Rule ← LearnRule(Pos, Neg)
 Add Rule to RuleSet
 DL’ ← DescLen(RuleSet, Pos, Neg)
 If DL’ > DL + 64
 PruneRuleSet(RuleSet, Pos, Neg)
 Return RuleSet
 If DL’ < DL DL ← DL’
 Delete instances covered from Pos and Neg
 Until Pos = Ø
 Return RuleSet
PruneRuleSet(RuleSet, Pos, Neg)
 For each Rule ∈ RuleSet in reverse order
 DL ← DescLen(RuleSet, Pos, Neg)
 DL’ ← DescLen(RuleSet-Rule, Pos, Neg)
 IF DL’<DL Delete Rule from RuleSet
 Return RuleSet

OptimizeRuleSet(RuleSet, Pos, Neg)
 For each Rule ∈ RuleSet
 DL0 ← DescLen(RuleSet, Pos, Neg)
 DL1 ← DescLen(RuleSet-Rule+)
 \[\text{ReplaceRule(RuleSet, Pos, Neg), Pos, Neg}\]
 DL2 ← DescLen(RuleSet-Rule+)
 \[\text{ReviseRule(RuleSet, Rule, Pos, Neg), Pos, Neg}\]
 If DL1=min(DL0,DL1,DL2)
 Delete Rule from RuleSet and
 add ReplaceRule(RuleSet, Pos, Neg)
 Else If DL2=min(DL0,DL1,DL2)
 Delete Rule from RuleSet and
 add ReviseRule(RuleSet, Rule, Pos, Neg)
 Return RuleSet
Multivariate Trees

\[w_{11}x_1 + w_{12}x_2 + w_{10} = 0 \]