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Overview   

n  We learned how to use the Bayesian approach for classification if 
we had the probability distribution of the underlying classes (p(x|Ci)). 

n  Now going to look into how to estimate those densities from given 
samples.  
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Expectations 

Approximate	  Expecta.on	  
(discrete	  and	  con.nuous)	  

The average value of a function f(x) under a probability distribution p(x) is 
called the expectation of f(x).  
           Average is weighted by the relative probabilities of different values of x. 

Now we are going to look at concepts: variance and co-variance , of 1 or more random variables, 
using the concept of expectation. 
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Variance and Covariance 

The variance of f(x) provides a measure for how much f(x) varies 
around its mean E[f(x)]. 
 
 
 
 
 
 
Given a set of N points {xi} in the1D-space, the variance of the 
corresponding random variable x is var[x] = E[(x-µ)2] where µ=E[x]. 
 
You can estimate the expected value as 
 

      var(x) = E[(x-µ)2] ≈ 1/N Σ (xi-µ)2 
                                                                           x

i 
 
Remember the definition of expectation: 
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Variance and Covariance 

The variance of x provides a measure for how much x varies 
around its mean µ=E[x]. 
 
           var(x) = E[(x-µ)2]  
 
 
 
 
 Co-variance of two random variables x and y measures  
the extent to which they vary together.  
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Variance and Covariance 

 
 

Co-variance of two random variables x and y measures  
the extent to which they vary together.  

: two random variables x, y 
 
 
 
: two vector random 
variables x, y – covariance is 
a matrix 



Multivariate  Normal  
Distribution	
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The Gaussian Distribution 
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Expectations 

For normally distributed x: 
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n  Assume we have a d-dimensional input (e.g. 2D), x.  

n  We will see how can we  characterize p(x), assuming x is normally 
distributed. 

¨  For 1-dimension it was the mean (µ) and variance (σ2) 

n  Mean=E[x] 

n  Variance=E[(x - µ)2] 

¨  For d-dimensions, we need  
n  the d-dimensional mean vector 
n  dxd dimensional covariance matrix 

¨  If x ~ Nd(µ,Σ) then each dimension of x is univariate normal 
n  Converse is not true 
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Normal Distribution & 
Multivariate Normal Distribution  

n  For a single variable, the normal density function is: 

n  For variables in higher dimensions, this generalizes to:  

n  where the mean µ is now a d-dimensional vector,  
     Σ is a d x d covariance matrix  

    |Σ| is the determinant of Σ: 
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Multivariate Parameters: Mean, Covariance 
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Matlab code 

n  close all; 

n  rand('twister', 1987)       % seed 

%Define the parameters of two  2d-Normal distribution 

n  mu1 = [5 -5]; 

n  mu2 = [0 0]; 

n  sigma1 = [2 0; 0 2]; 

n  sigma2 = [5 5; 5 5]; 

 

n  N=500; %Number of samples we want to generate from this distribution 

n  samp1 = mvnrnd(mu1,sigma1, N); 

n  samp2 = mvnrnd(mu2, sigma2, N); 

n    

n  figure; clf; 

n  plot(samp1(:,1), samp1(:,2),'.', 'MarkerEdgeColor', 'b'); 

n  hold on; 

n  plot(samp2(:,1), samp2(:,2),'*', 'MarkerEdgeColor', 'r'); 

n  axis([-20 20 -20 20]); legend('d1', 'd2'); 
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mu1  =  [5  -‐‑5];	
mu2  =  [0    0];	
	
sigma1  =  [2  0;  0  2];	
sigma2  =  [5  5;  5  5];	
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mu1  =  [5  -‐‑5];	
mu2  =  [0    0];	
	
sigma1  =  [2  0;  0  2];	
sigma2  =  [5  2;  2  5];	
	



Matlab sample cont. 

n  % Lets compute the mean and covariance as if we are given this data 
 

n  sampmu1 = sum(samp1)/N; 

n  sampmu2 = sum(samp2)/N; 
 

n  sampcov1 = zeros(2,2); 

n  sampcov2 = zeros(2,2); 
 

n  for i =1:N 

n      sampcov1 = sampcov1 + (samp1(i,:)-sampmu1)' * (samp1(i,:)-sampmu1); 

n      sampcov2 = sampcov2 + (samp2(i,:)-sampmu2)' * (samp2(i,:)-sampmu2); 

n  End 

n  sampcov1 = sampcov1 /N; 

n  sampcov2 = sampcov2 /N; 

n  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
n  % Lets compute the mean and covariance as if we are given this data USING MATRIX OPERATIONS 
n  % Notice that in samp1, samples are given in ROWS – but for this multiplication, columns * rows is req. 
n  sampcov1 = (samp1'*samp1)/N - sampmu1'*sampmu1; 
n  %Or simply 

n  mu=mean(samp1); 

n  cov=cov(samp1); 16	
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n  Variance: How much X varies 
around the expected value 

n  Covariance is the measure the 
strength of the linear relationship 
between two random variables 
¨  covariance becomes more positive 

for each pair of values which differ 
from their mean in the same 
direction 

¨  covariance becomes more negative 
with each pair of values which differ 
from their mean in opposite 
directions.  

¨  if two variables are independent, 
then their covariance/correlation 
is zero (converse is not true).  
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n  Correlation is a dimensionless 
measure of linear dependence.  
¨  range between –1 and +1 
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How  to  characterize  differences  between  these  distributions	
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Covariance Matrices 
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Contours of constant probability density for a 2D Gaussian distributions with  
a) general covariance matrix  
b) diagonal covariance matrix (covariance of x1,x2 is 0) 
c) Σ proportional to the identity matrix (covariances are 0, variances of each 
dimension are the same) 
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Shape and orientation of 
the hyper-ellipsoid 
centered at µ is defined 
by Σ
 

v1	v2	
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Properties of Σ

n  A small value of |Σ| (determinant of the covariance matrix) indicates 
that samples are close to µ

n  Small |Σ| may also indicate that there is a high correlation 
between variables 

n  If some of the variables are linearly dependent, or  

 if the variance of one variable is 0, then Σ is singular and |Σ| is 0. 
 

n  Dimensionality should be reduced to get a positive definite matrix 
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From the equation for the normal density, it is apparent that points  
which have the same density must have the same constant term: 
 
 
 
 
Mahalanobis distance measures the distance from x to μ in terms of ∑ 
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Points that are the same distance from µ

n  The  

• The ellipse consists of points that are equi-distant 
to the center w.r.t. Mahalanobis distance.  
• The circle consists of points that are equi-distant to 
the center w.r.t. The Euclidian distance.  
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Why Mahalanobis Distance 

It takes into account the covariance of the data.  
 
•   Point P is at closer (Euclidean) to the mean for the orange class,  
   but using the Mahalanobis distance, it is found to be closer to 'apple‘ class. 
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Positive Semi-Definite-Advanced 

n  The covariance matrix Σ is symmetric and positive semi-definite 

n  An n × n real symmetric matrix M is positive definite  
  if zTMz > 0 for all non-zero vectors z with real entries. 

 
n  An n × n real symmetric matrix M is positive semi-definite  

  if zTMz >= 0 for all non-zero vectors z with real entries. 
 
n  Comes from the requirement that the variance of each dimension  is >= 0 

and that the matrix is symmetric. 

n  When you randomly generate a covariance matrix, it may violate this rule 
¨  Test to see if all the eigenvalues are >= 0 
¨  Higham 2002 – how to find nearest valid covariance matrix 
¨  Set negative eigenvalues to small positive values  

 
 



Parameter  Estimation	

Covered  only  ML  estimator	



n  You have some samples coming from an unknown distribution and 
you want to characterize that distribution; i.e. find the necessary 
parameters. 

n  For instance, assuming you are given the samples in Slides 14 or 
15, and that you assume that they are normally distributed, you will 
try to find the parameters µ and Σ of the corresponding normal 
distribution.  

n  We have referred to the sample mean (mean of the samples, m) and 
sample variance S before, but why use those instead of µ and Σ?  
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n  Given an i.i.d data set X, sampled from a normal distribution with 
parameters µ and Σ, we would like to determine these parameters, 
given the samples. 

n  Once we have those, we can estimate p(x) for any given x (little x), 
given the known distribution. 

n  Two approaches in parameter estimation: 
¨  Maximum Likelihood approach 
¨  Bayesian approach 
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Gaussian Parameter Estimation 

Likelihood	  func.on	  

Assuming iid data 
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Reminder 

n  In order to maximize or 
minimize a function f(x) w.r.to 
x, we compute the derivative 
df(x)/dx and set to 0, since a 
necessary condition for 
extrema is that the derivative is 
0. 

n  Commonly used derivative 
rules are given on the right.  
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Derivation – general case-ADVANCED 
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Maximum (Log) Likelihood for Multivarate Case 

µ =
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Maximum (Log) Likelihood for a 1D-Gaussian 

In other words, maximum likelihood estimates of mean and variance 
are the same as sample mean and variance. 
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Sample Mean and Variance for Multivariate Case 
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Where N is the number of data points  xt:	



ML  estimates  for  the  mean  and  
variance  in  Bernouilli/
Multinomial  distributions	

Not  covered  in  class  –  but  you  should  be  able  
to  do  as  a  take  home  etc.  Same  idea  as  before,  
starting  from  the  likelihood,  you  find  the  value  
that  maximizes  the  likelihood.  	
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Examples: Bernoulli/Multinomial 

n  Bernouilli: Binary random variable x may take one of the two 
values: 
¨  success/failure, 0/1 with probabilities:                   
¨  P(x=1)= po   

¨  P(x=0)=1-po  
¨  Unifying the above, we get: P (x) = po

x (1 – po ) (1 – x) 

     
n  Given a sample set X={x1,x2,…}, we can estimate p using the ML 

estimate by maximizing the log-likelihood of the sample set: 
 

Log likelihood: log P(X|po) = log ∏
t
 po

xt (1 – po ) (1 – xt)  
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Examples: Bernoulli 

 L=P(X|po) = log ∏
t
 po

xt (1 – po ) (1 – xt)      xt in {0,1}  

 

Solving for the necessary condition for extrema, (we must 
have dL/dp = 0) 

   … 

 

  
MLE: po = ∑

t
 xt / N    

 

 ratio of the number of occurences of the event to the number of 
experiments 
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Examples: Multinomial 

n  Multinomial: K>2 states, xi in {0,1} 

n  Instead of two states, we now have K mutually exclusive and 
exhaustive events, with probability of occurence of  

 pi where Σpi = 1. 
 

n  Ex. A dice with 6 outcomes. 

P (x1,x2,...,xK) = ∏
i
 pi

xi      where xi is 1 if the outcome is state i                                           
                        0 otherwise 

     
L(p1,p2,...,pK|X) = log ∏

t 
∏

i
 pi

xi
t  

 
MLE: pi = ∑

t
 xi

t / N 
 
Ratio of experiments with outcome of state i 
(e.g. 60 dice throws, 15 of them were 6            p6 = 15/60 
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Discrete Features 

n  Binary features: 

   
If xj are independent (Naive Bayes’ assumption) 
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Discrete Features 

n  Multinomial (1-of-nj) features: xj ∈ {v1, v2,..., vnj
} 

 
 

  

if xj are independent 
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Parametric  Classification	

We will use the Bayesian decision criteria applied to 
normally distributed classes, whose parameters are 
either known or estimated from the sample. 
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Parametric Classification 

n  If p (x | Ci ) ~ N ( μi , 
∑i ) 

n  Discriminant functions are: 
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Estimation of Parameters 
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If we estimate the unknown parameters from the sample, 
the discriminant function becomes: 
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Case 1) Different Si  (each class has a separate variance) 
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if we group the terms, 
we see that there are  
second order terms, 
which means the 
discriminant is 
quadratic.  
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likelihoods 

posterior for C1 

discriminant:  
P (C1|x ) = 0.5 
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Two bi-variate normals, with completely different covariance matrix,  
showing a hyper-quadratic decision boundary.  
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Hyperbola: A hyperbola is an open curve with two branches, the intersection of 
a plane with both halves of a double cone. The plane may or may not be parallel to the 

axis of the cone. Definition from Wikipedia. 
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Typical single-variable normal distributions showing a disconnected  
decision region R2  
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Notation: Ethem book 

( )

( )( )
∑

∑
∑
∑

∑

−−
=

=

=

t

t
i

T

i
t

t i
tt

i
i

t

t
i

t

tt
i

i

t

t
i

i

r

r

r

r
N

r
CP̂

mxmx

x
m

S

t
ir

Using the notation in Ethem book, the sample mean and sample 
covariance… can be estimated as follows: 

where              is 1 if the tth sample belongs to class i  	
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n  If d (dimension) is large with respect to N (number of samples), we 
may have a problem with this approach: 
¨  | Σ | may be zero, thus Σ will be singular (inverse does not exist) 
¨  | Σ | may be non-zero, but very small, instability would result 

n  Small changes in Σ would cause large changes in Σ-1 

n  Solutions: 
¨  Reduce the dimensionality  

n  Feature selection 
n  Feature extraction: PCA 

¨  Pool the data and estimate a common covariance matrix for all classes 

          Σ = Σi P(Ci) * Σi 
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Case 2) Common Covariance Matrix S=Si 

n  Shared common sample covariance S 
¨  An arbitrary covariance matrix – but shared between the classes 

n  We had this full discriminant function: 

 which now reduces to: 

 

 

which is a linear discriminant 
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n  Linear discriminant: 
¨  Decision boundaries are hyper-planes 
¨  Convex decision regions: 

n  All points between two arbitrary points chosen from one decision 
region belongs to the same decision region 

n  If we also assume equal class priors, the classifier becomes a 
minimum Mahalanobis classifier 
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Case 2) Common Covariance Matrix S 

Linear  discriminant	
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Unequal priors shift the decision boundary towards the 
less likely class, as before. 
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Case 3) Common Covariance Matrix S which is Diagonal 

n  In the previous case, we had a common, general covariance 
matrix, resulting in these discriminant functions: 

n  When xj  (j = 1,..d) are independent, ∑ is diagonal 

n  Classification is done based on weighted Euclidean distance 
(in sj units) to the nearest mean. 

Naive Bayes classifier where p(xj|Ci) are univariate Gaussian 

       p (x|Ci) = ∏
j
 p (xj |Ci)  (Naive Bayes’ assumption) 
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Case 3) Common Covariance Matrix S which is Diagonal 

variances may be 
different 
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Case 4) Common Covariance Matrix S which is 
Diagonal + equal variances 

n  We had this before (S which is diagonal): 

n  If the priors are also equal, we have the Nearest Mean classifier: 
 Classify based on Euclidean distance to the nearest mean! 

 

n  Each mean can be considered a prototype or template and this is template 
matching 
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Case 4) Common Covariance Matrix S which is 
Diagonal + equal variances 

*	? 
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Case  4)  Common  Covariance  Matrix  S  
which  is  Diagonal  +  equal  variances	
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A second example where the priors have been changed: 
The decision boundary has shifted away from the more likely class,  
although it is still orthogonal to the line joining the 2 means.  
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Case 5: Si=σi
2I 
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Model Selection 

n  As we increase complexity (less restricted S), bias decreases and 
variance increases 

n  Assume simple models (allow some bias) to control variance 
(regularization) 

Assumption Covariance matrix No of parameters 

Shared, Hyperspheric Si=S=s2I 1 

Shared, Axis-aligned Si=S, with sij=0 d 

Shared, Hyperellipsoidal Si=S d(d+1)/2 

Different, Hyperellipsoidal Si K d(d+1)/2 
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Estimation of Missing Values 

n  What to do if certain instances have missing attributes? 
1.  Ignore those instances: not a good idea if the sample is small 
2.  Use ‘missing’ as an attribute: may give information 
3.  Imputation: Fill in the missing value 

n  Mean imputation: Use the most likely value (e.g., mean) 
n  Imputation by regression: Predict based on other attributes 

n  Another important problem is sensitivity due to outliers 
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Tuning Complexity 

n  When we use Euclidian distance to measure similarity, we are 
assuming that all variables have the same variance and that they 
are independent 
¨  E.g. Two variables age and yearly income 

n  When these assumptions don’t hold,  
¨  Normalization may be used (use PCA, whitening, make each dimension 

zero mean and unit variance…) to use Euclidian distance 
¨  We may still want to use simpler models in order to estimate the related 

parameters more accurately 
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Conclusions 

n  The Bayes classifier for normally distributed classes is a quadratic 
classifier 

n  The Bayes classifier for normally distributed classes with equal 
covariance matrices is a linear classifier 

n  The minimum Mahalanobis distance is Bayes-optimal for 
¨  Normally distributed classes, having 
¨  Equal covariance matrices and 
¨  Equal priors 

n  The minimum Euclidian distance is Bayes-optimal for 
¨  Normally distributed classes -and- 
¨  Equal covariance matrices proportional to the identity matrix–and- 
¨  Equal priors 

n  Both Euclidian and Mahalanobis distance classifiers are linear 
classifiers 
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PRTOOLS 
n  load nutsbolts;    //an existing Prtools dataset with 4 classes 
n  w1=ldc(z);   //linear       Bayes Normal classifier 
n  w2=qdc(z);   //quadratic Bayes Normal classifier 
n  figure(1); scatterd(z); hold on; plotc(w1); 
n  figure(2); scatterd(z); hold on; plotc(w2); 
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n  >> A = gendath([50 50]);           //Generate data with 2 classes x 50 samples each 
n  >> [C,D] = gendat(A,[20 20]);  //Split 20 as C=train; rest becomes D=test 
n  >> W1 = ldc(C);   //linear 
n  >> W2 = qdc(C);   //quadratic 
n  >> figure(5); scatterd(C); hold on; plotm(W2); 
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n  scatterd(A);                //scatter plot 
n  plotc({W1,W2}); 
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error  on  test:  9.5%	
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error on test: 11.5% 
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with  N=20  points	
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Eigenvalue  Decomposition  
of  the  Covariance  Matrix	

Skip  Until  Dimensionality  Reduction  Topic	
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Eigenvector and Eigenvalue 

¨  Given a linear transformation A, a non-zero vector x is defined to be 
an eigenvector of the transformation if it satisfies the eigenvalue 
equation 
              Ax = λ x       for some scalar λ.  

n  In this situation, the scalar λ is called an eigenvalue of A 
corresponding to the eigenvector x. 

n  (A- λI)x=0 => det(A- λI) must be 0. 
¨  Gives the characteristic polynomial whore roots are the eigenvalues of A 
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The covariance matrix is symmetrical and it can always be  
diagonalized as: 

TΦΛΦ=Σ

where   
                             is  the column matrix consisting of the eigenvectors  of Σ,    
   ΦT=Φ-‐‑1 and  
   Λ is the diagonal matrix whose elements are the eigenvalues of Σ.  

],...,,[ 21 lυυυ=Φ

Eigenvalues of the covariance matrix 
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Contours of equal Mahalanobis distance: 
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Define x’= ΦTx. The coordinates of x’ are equal to νk
Tx, k=1,2,…,l  

that is, the projections of x onto the eigenvectors. 
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2
2

1

2
11 )(...)( cxx

l

illi =
ʹ′−ʹ′

++
ʹ′−ʹ′

λ
µ

λ
µ

Thus all points having the same Mahalabonis distance from a 
specific point are located on an ellipse with center of mass at µi,  
and the principle axes are aligned with the corresponding 
eigenvectors and have lengths  ckλ2
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n  Eigenvalue decomposition of the covariance matrix is very useful: 
¨  PCA 
¨  Decorrelate data (Whitening transform) 
¨  … 
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Matrix Transpose 

n  Given the matrix A, the 
transpose of A is the , denoted 
AT, whose columns are formed 
from the corresponding rows of 
A. 

n  Some properties of transpose 
1.  (AT)T = A 

2.  (A + B)T = AT + BT 

3.  (rA)T = rAT      where r is any scalar. 

4.  (AB)T = BTAT 

5.  ATB=BTA         where A and B are 
vectors 

6.  … 
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Matrix Derivation 

n  If y = xTAx   where A is a square matrix 
¨  ∂y/∂x = Ax + AT x  

 

n  If y = xTAx  and A is symmetric 
¨  ∂y/∂x = 2Ax. 

n  If y = xTx 
¨  ∂y/∂x = 2x.   
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n  If x ~ Nd(µ,Σ) then each dimension of x is univariate normal 
¨  Converse is not true – counterexample? 

n  The projection of a d-dimensional normal distribution onto the vector 
w is univariate normal 

            wTx  ~ N (wTµ, wTΣw)  

n  More generally, when W is a dxk matrix with k < d,  
 then the k-dimensional Wx is k-variate normal with: 

 

             WTx  ~ Nk(WTµ, WTΣW)  
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Univariate normal – transformed x 

n  E[wTx] = wT E[x] = wT µ

n  Var[wTx] = E[ (wTx - wT µ) (wTx - wT µ)Τ]

                       = E[ (wTx - wT µ)2]                     since (wTx - wT µ) is a scalar 
        = E[ (wTx - wT µ) (wTx - wT µ) ]

        = Ε[  wT(x-µ) (x-µ)Τ w ]            based on slide 27.rule 5 
        = wTΣ w                                move out and use defin. of Σ
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Whitening Transform 

n  We can decorrelate variables and obtain Σ=I by using a whitening 
transform Aw=Λ-1/2ΦT where 
¨  Λ is the diagonal matrix of the eigenvalues of the original distribution 

and  
¨  Φ is the matrix composed of eigenvectors as its columns 


