CS 412/512 Machine Learning Midterm 1

100pt

Nov. 2, 2017

- Allocated space should be enough for your answer. Give brief \& clear explanations for full credits. Points will be taken off for irrelevant/rambling information given within an anser.
- Please write legibly and circle your final answer.
- You may make additional assumptions if you think it is necessary, but if you do so, clearly state them. Your grade will depend on whether the assumption was necessary.
- Show your work for full credit!
- No Internet, no cell phones, no calculators!

Question		Score	Max Score
1	Basic Concepts		20
2	Decision Trees		24
3	Probability		16
5	Pdfs		12
6	Bayesian Classifiers		25
7	MLE estimate		3
TOTAL			100

1) 20 pt - Basic Concepts

a) 4 pts - In a regression problem, you have trained a system to approximate a mapping from x to y . What is the mean square error of the estimate $\left(f^{\prime}(x)\right)$, over the given test set? Show your work.

Labelled Test (x, y)	Estima $f^{\prime}(x)$
$x=2, y=10$	8
$x=5, y=15$	16
$x=5, y=14$	16
$x=6, y=16$	19

MSE = \qquad
b) 10 pts - You have a training set, a test set and a learning algorithm (for instance a decision tree).

Answer as true/False (Note: statements without a qualifier (generally, often etc) claims to hold in general; so choose T if it does indeed.). $2 p t$ each answer. -1 each wrong guess.

- T/F A zero training set error indicates good generalization performance.
- T / F A system that has higher test set error compared to its training set error has overfit to the training set.
- T/F As the number of features increases, the risk of overfitting generally increases.
- T/F As the number of training samples increases, the risk of overfitting generally decreases.
- T / F More complex models with larger number of parameters may fit the training data well, but they are more likely to overfit compared to smaller models.
c) 6 pts - Consider a classification problem with two possible output labels (classes C 1 and C 2) such that one class (C1) has a 0.9 prior probability.
- 3pts - What is the base error rate for this problem, indicate as a percentage? Hint: ZeroR from Weka.
- 3pts - What would be the expected error rate if you pick a label randomly (you select C1 and C2 each with a probability of 0.5) for a given x ; indicate as a percentage?

2) $\mathbf{2 4 p t}$ - Entropy, Decision Tree Learning

Given:

\mathbf{x}	$\log _{2} \mathbf{x}$
0.25	-2
0.33	-1.6
0.5	-1
0.66	-0.6
0.75	-0.4
1	0

a) 3 pt - What is the entropy of a random variable dice that represents the output of a 4 -sided (possible outputs are 1,2,3,4) fair dice? Show your work.
b) $3 \mathbf{p t}$ - How would the entropy in a) change if the dice was biased (for example, the probability of having a $\mathbf{1}$ is higher than 2,3, 4)? It would;

- decrease
- increase
- remain unchanged

Circle the appropriate answer. No explanation necessary. -1 pt for wrong answer.
c) 4 pts - Fill-in-the-blanks or answer as true/False, as appropriate. 2 pt each. -1 pts off each false guess.

- T/F The greedy decision tree learning algorithm ID3 that we saw in class is optimal in the sense that it always generates the smallest tree (least number of nodes).
- State one of the most important advantages of using a decision tree classifier.
\qquad
d) $\mathbf{1 0 p t}$ - What is the remaining entropy of class labels after the tree is split according to the feature "Color". The + s represent one class, and $-s$ represent another class. There are a total of 20 samples ($10+, 10-$) at the root of the tree.

NOTE: if the answer is very simple (e.g. entropy is 0 or 1), you can just write that down without writing the whole formula.

$2 p t$ - Entropy at left leaf: . \qquad
2pt - Entropy at middle leaf: \qquad
3pt - Entropy at right leaf: \qquad
3pt - Remaining Entropy $=$ \qquad
e) 4 pts - Your boss gave you a regression problem and asked you to use decision trees with the ID3 algorithm, but the training set size is small.

- 2 pts - How woud you evaluate different trees, using a validation set or cross-validation? Give a one-line explanation for your reason.
- 2pts - After you are done with training different models and measuring error on validation data, what would you then give to your boss as the finished system? Give a one-line answer.

3) $\mathbf{1 6 p t}$ - Probability Theory

a) $\mathbf{4 p t}$ - A pedestrian can be hit by a car with a low probability ($p=0.05$) when crossing the road when the light is green light for pedestrians. The probability of being hit by a car while the light is red to pedestrians is expectedly high ($p=0.6$). There is no yellow light in this problem.

What is the total probability of being hit? You should assume that most persons will be reasonable and only get tempted to cross the road at red light with a low probability ($\mathrm{p}=0.1$). If you must make an assumption, clearly state it.
b) 4pts - Answer the following based on the joint probability table involving two random variables X and Y, given below. Show your work (do not just give a single number).

	$\mathrm{Y}=$ Red	$\mathrm{Y}=$ Green
$\mathrm{X}=1$	0.1	0.0
$\mathrm{X}=2$	0.1	0.4
$\mathrm{X}=3$	0.3	0.1

i) $P(X=2)=$ \qquad 2pt
ii) $\mathrm{P}(\mathrm{Y}=\operatorname{Red} \mid \mathrm{X}=2)=$ \qquad 2pt
c) 4 pts -Assume that two random variables A and B are independent. Simplify the following probabilities (probability terms should be simpler probabilities, involving fewer terms).

- $\mathrm{P}(\mathrm{A}, \mathrm{B})=$ \qquad
- $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$ \qquad
d) 4pts -Assume that two random variables X, Y are conditionally independent given \mathbf{C}. Simplify the following probabilities using the conditional independence information. Hint: Above question ©
- $\mathrm{P}(\mathrm{X}, \mathrm{Y} \mid \mathrm{C})=$ \qquad
- $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{C})=$ \qquad

5) $12 \mathrm{pt}-\mathrm{PDFs}$

Assume $p(x, y)$ is distributed uniformly in the rectangular area between x in [1-4] and y in [2-4] and 0 elsewhere.
a) 4 pts - Draw the pdf $p(x, y)$ making sure to label axes (similar to what we did in our homework)

b) 4 pts - What is the value of the density $(p(x, y))$ for (x, y) inside the rectangular region?
c) 4pts - What is the marginal probability of $P(2<=x<=3)$?
6) 25 pt - Bayesian Decision Theory

Consider a classification problem with input \mathbf{x} and k possible classes C_{i}, for the questions \mathbf{a})- d).
a) 3pt - State the Bayes formula that relates prior, posterior and conditional probabilities of a class C_{i}, given some input \mathbf{x}. One line formula.
b) 3 pt - What is the Bayesian decision criterion that minimizes misclassification error (i.e. to which class do you assign a given \mathbf{x})? One line formula, but do not skip details in the formula.
c) $3 p t$ - Assume we are given $x=[a 1 a 2 \ldots a k]$ where a_{i} are the attributes C_{j} is the jth class. How is the term below simplified, if we assume the Naive Bayes classifier. Be careful about details/indices....

$$
\mathrm{P}(\mathrm{a} 1, \mathrm{a} 2, . ., \mathrm{ad} \mid \mathrm{Cj})=
$$

\qquad
d) 6 pt - Assume we have the following two distributions for x for the two classes $\mathbf{C 1}$ and $\mathbf{C 2}$.

- 3pts - Write the appropriate labels on each of the two distributions, so that the given decision boundary is optimal (minimizes misclassification error). Be careful, no partial.
- 3pts -Indicate the area that corresponds to the probability of error corresponding to C 2 samples being classified as class C1 and give its formula as an integral.
f) $\mathbf{1 0 p t}-$
- 6pts - Consider a naive Bayes classifier trained on the dataset given below. A new patient comes
 only the posterior probability of having Flu given these symptoms without considering the denominator ($\mathrm{P}($ symptoms)). Do not use smoothing for this example.

You should just leave as a product of probabilities, without doing the final arithmetic.

	Fever	Body Ache	Runny Nose	Throat Pain	Disease
1	High	Yes	No	Yes	Flu
2	High	Yes	No	No	Flu
3	High	No	Yes	No	Flu
4	Medium	Yes	No	No	Flu
5	Medium	No	No	No	Flu
6	High	Yes	No	Yes	Flu
7	Low	No	Yes	Yes	Common cold
8	Low	No	Yes	Yes	Common cold
9	Low	Yes	No	No	Common cold
10	Medium	No	Yes	Yes	Common cold

- 4pts - Use Laplace smoothing to calculate only:
$\mathrm{P}($ Fever $=$ High \mid Flu $)=$ \qquad
$\mathrm{P}($ RunnyNose $=$ No \mid Flu $)=$ \qquad

7) 3pts -

Assume you have observed N coin tosses and 8 of them are Heads and 2 are tails.

- What is the ML estimate of the probability p of observing a head with this coin?

