
Synchronous Sequential Logic

Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Sequential Logic

- Digital circuits we have learned, so far, have been combinational
 - no memory,
 - outputs are entirely defined by the "current" inputs
- However, many digital systems encountered everyday life are sequential (i.e. they have memory)
 - the memory elements remember past inputs
 - outputs of sequential circuits are not only dependent on the current input but also the state of the memory elements.

Sequential Circuits Model

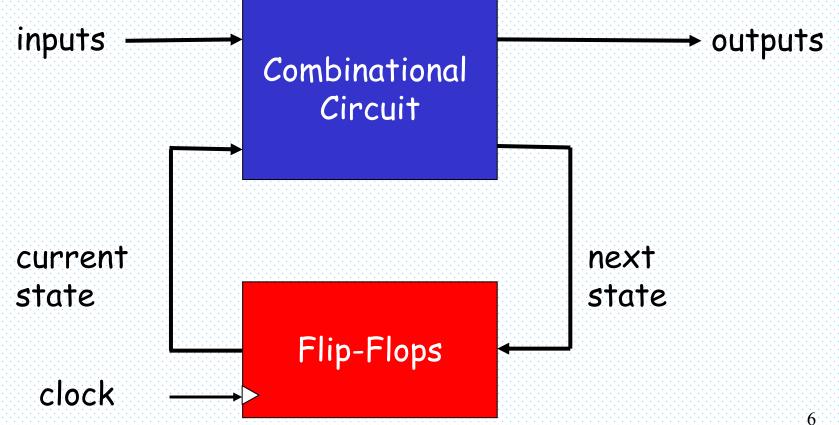
current state is a function of past inputs

Classification - 1

- Two types of sequential circuits
 - Synchronous
 - Signals affect the memory elements at discrete instants of time.
 - Discrete instants of time requires synchronization.
 - Synchronization is usually achieved through the use of a common clock.
 - A "clock generator" is a device that generates a <u>periodic train of pulses</u>.

Classification - 2

1. Synchronous


- The state of the memory elements are updated with the arrival of each pulse
- This type of logical circuit is also known as <u>clocked</u> <u>sequential</u> circuits.

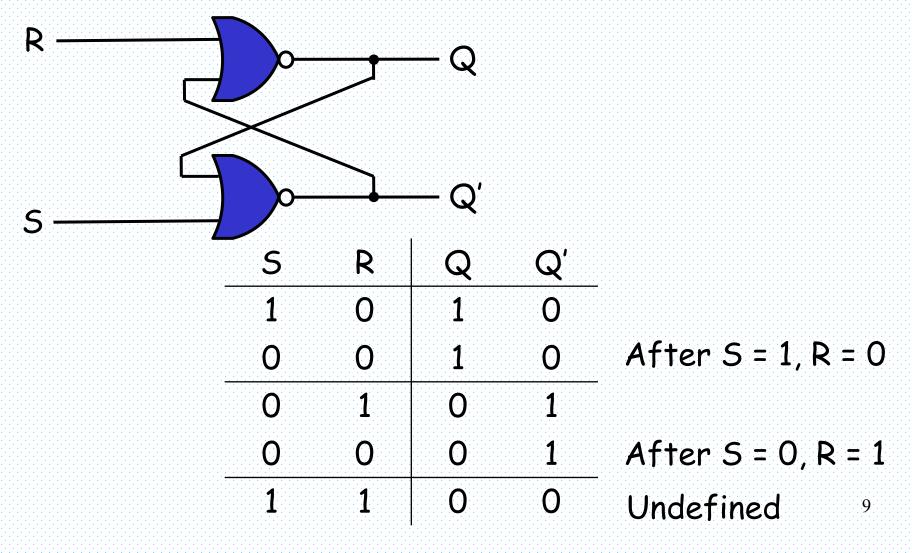
2. Asynchronous

- No clock
- behavior of an asynchronous sequential circuits depends upon the input signals at any instant of time and the order in which the inputs change.
- Memory elements in asynchronous circuits are regarded as time-delay elements

Clocked Sequential Circuits

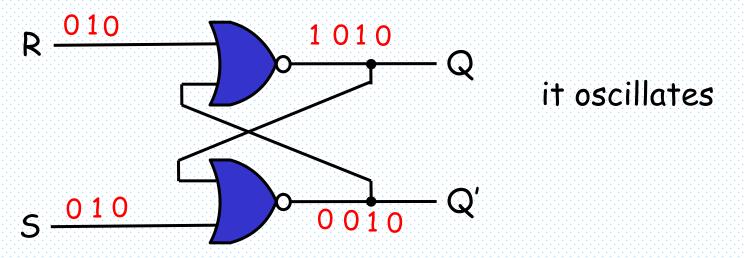
 Memory elements are flip-flops which are logic devices capable of storing one bit of information each.

Clocked Sequential Circuits

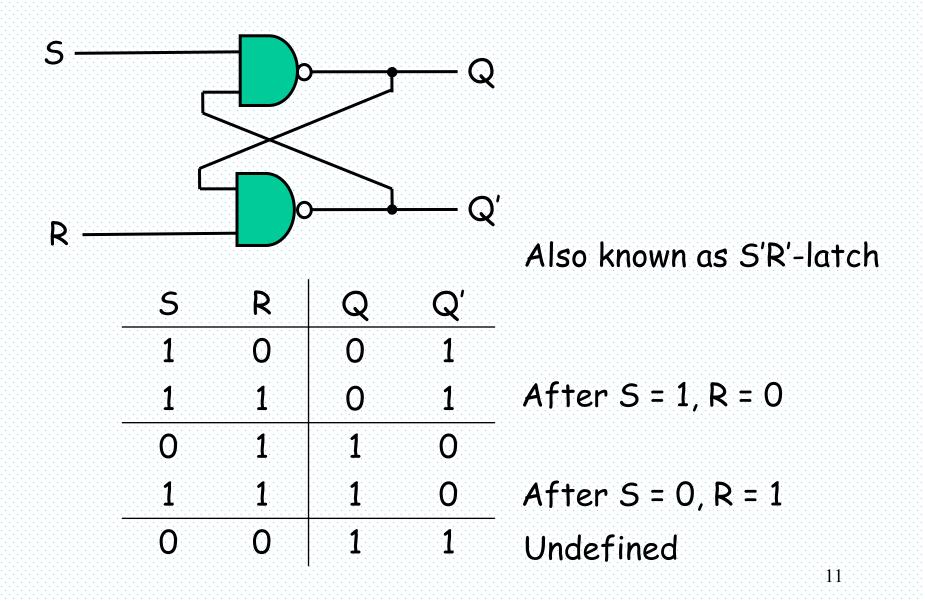

- The outputs of a clocked sequential circuit can come from the combinational circuit, from the outputs of the flip-flops or both.
- The state of the flip-flops can change only during a clock pulse transition
 - i.e. low-to-high and high-to-low
 - clock edge
- When the clock is at logic-0, the flip-flop output does not change
- The transition from one state to the other occurs at the clock edge.

Latches

- The most basic types of memory elements are not flip-flops, but latches.
- A latch is a memory device that can maintain a binary state indefinitely.
- Latches are, in fact, asynchronous devices and they usually do not require a clock to operate.
- Therefore, they are not directly used in clocked synchronous sequential circuits.
- They rather be used to construct flip-flops.

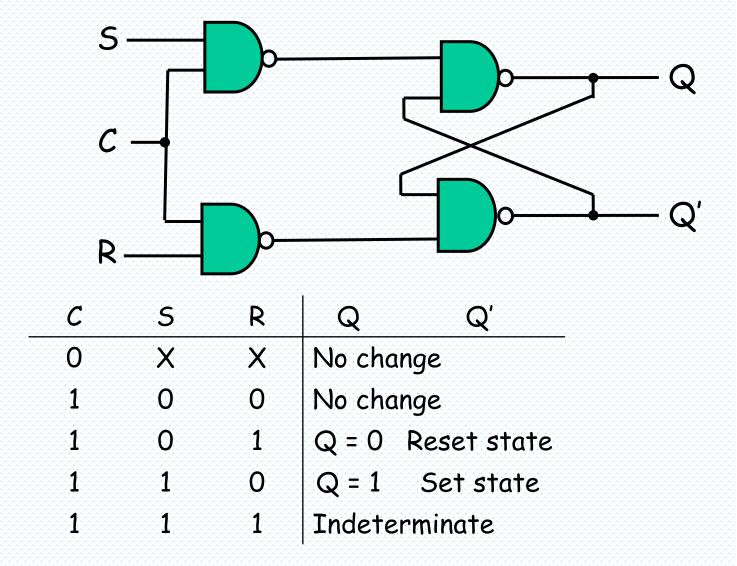

SR-Latch

 A circuit is made of cross-coupled NOR (or NAND) gates

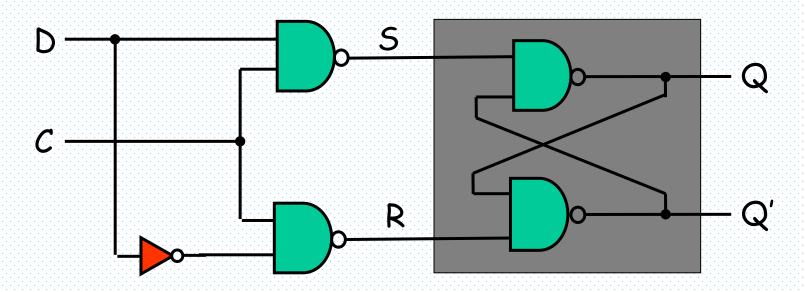


Undefined State of SR-Latch

- S = R = 1 may result in an undefined state
 - the reason being is that the next state is unpredictable when both S and R goes to 0 at the same time.
 - It may oscillate
 - Or the outcome state will depend on which of S and R goes to 0 first.



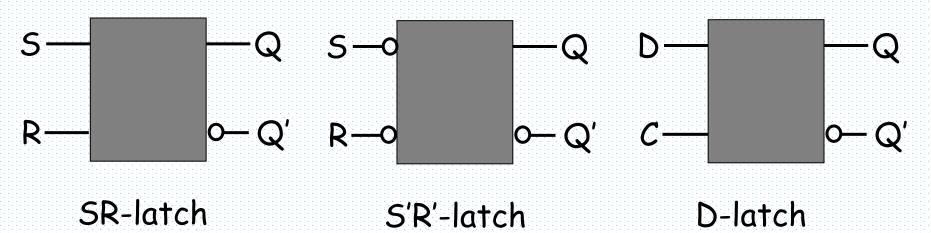
SR-Latches with NAND Gates


SR-Latch with Control Input

 Control inputs allow the changes at S and R to change the state of the latch.

D-Latch

- SR latches are seldom used in practice because the indeterminate state may cause instability
- <u>Remedy</u>: D-latches



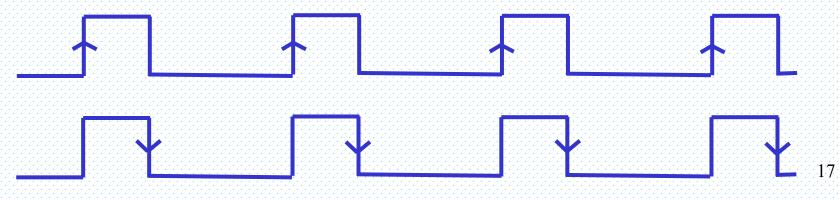
This circuit guarantees that the inputs to the SR-latch is always complement of each other when C = 1.

D-Latch

			С				[)			Next state of Q
			0				>	K			No change
			1				()			Q = 0; reset state
			1					1			Q = 1; set state

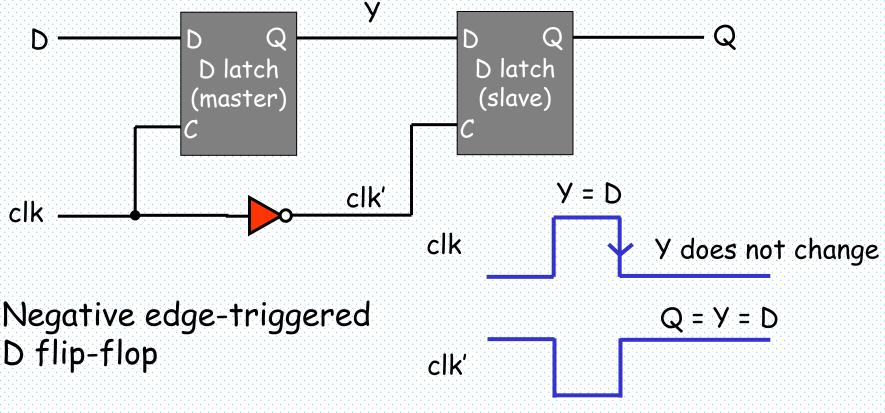
• We say that the D input is sampled when C = 1

D-Latch as a Storage Unit

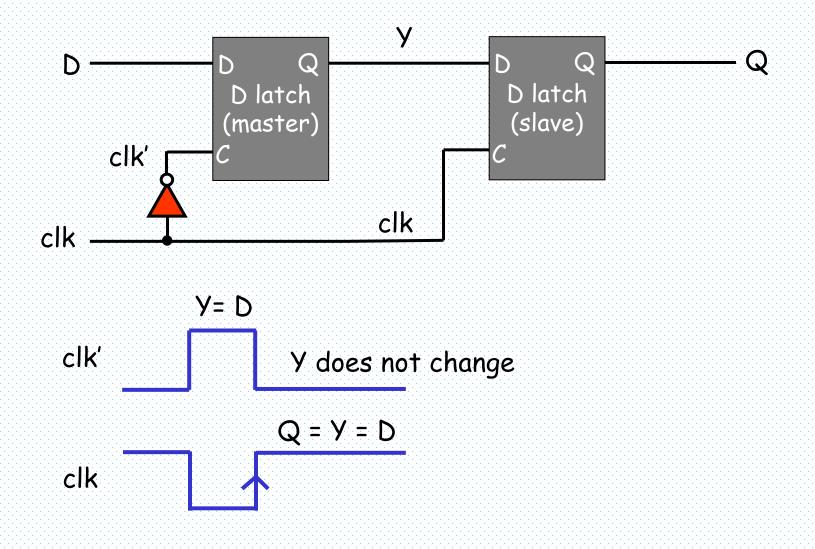

- D-latches can be used as temporary storage
- The input of D-latch is transferred to the Q output when C = 1
- When C = 0 the binary information is retained.
- We call latches <u>level-sensitive</u> devices.
 - So long as C remains at logic-1 level, any change in data input will change the state and the output of the latch.
 - Level sensitive latches may suffer from a serious problem.
- A memory devices that are sensitive to the rising or falling edge of control input is called flipflops.

Need for Flip-Flops - 1

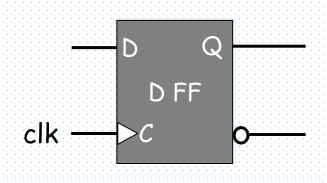
- Remember in a latch
 - there is a feedback path from the output to the input of the circuit.
 - When control input remains at logic-1 for a period of time
 - The state transition occurs as soon as C becomes 1
 - The new state appears at the outputs of the latches
 - This output is connected to the input
 - Since the input changes again, the state of the latches may change again
 - This may lead to a situation where the state of latches keeps changing so long as C = 1
 - This is why we need edge-sensitive devices.

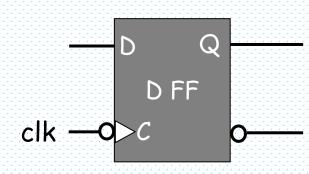

Need for Flip-Flops - 1

- Another problem
 - We want the states of the memory elements to change synchronously
 - What we need is memory elements that should respond to the changes in input at certain points in time.
 - This is the very characteristics of synchronous circuits.
 - To this end, we use flip-flops that change states during a signal transition of control input (clock)

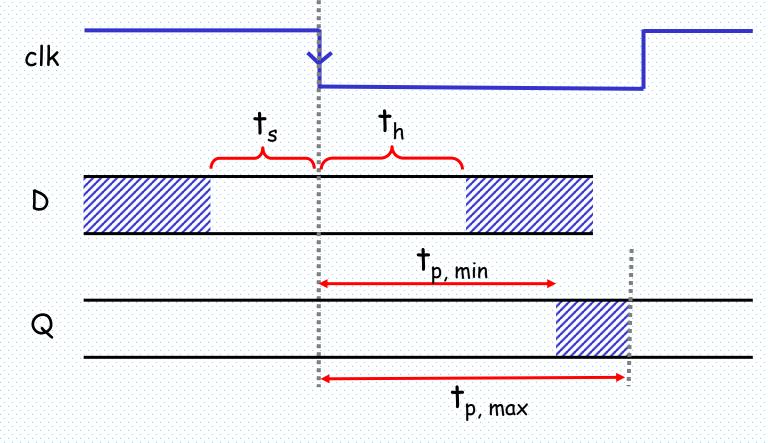


Edge-Triggered D Flip-Flop


 An edge-triggered D flip-flop can be constructed using two D latches


Positive Edge-Triggered D Flip-Flop

Symbols for D Flip-Flops


Positive edge-triggered D Flip-Flop

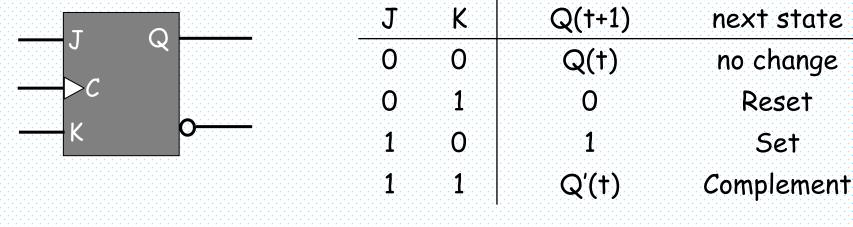
Negative edge-triggered D Flip-Flop

Setup & Hold Times - 1

- Timing parameters are associated with the operation of flip-flops
- Recall Q gets the value of D in clock transition

Setup & Hold Times - 2

- Setup time, t_s
 - The change in the input D must be made before the clock transition.
 - Input D must maintain this new value for a certain minimum amount time.
 - If a change occurs at D less than ${\sf t}_{\sf s}$ second before the clock transition, then the output may not acquire this new value.
 - It may even demonstrate unstable behavior.
- Hold time, t_h,
 - Similarly the value at D must be maintained for a minimum amount of time (i.e. t_h) after the clock transition.

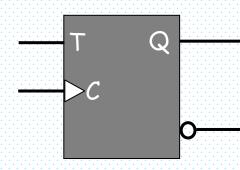

Propagation Time

- Even if setup and hold times are achieved, it takes some time the circuit to propagate the input value to the output.
- This is because of the fact that flip-flops are made of logic gates that have certain propagation times.

Other Flip-Flops

- D flip-flop is the most common
 - since it requires the fewest number of gates to construct.
- Two other widely used flip-flops
 - JK flip-flops
 - Tflip-flops
- JK flip-flops
 - Three FF operations
 - 1. Set
 - 2. Reset
 - 3. Complement

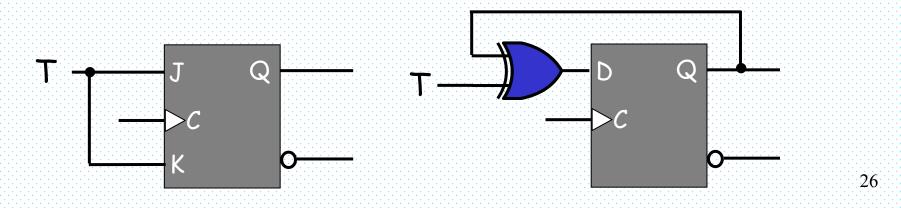
JK Flip-Flops



Characteristic Table

- Characteristic equation
 - -Q(++1) = JQ'(+) + K'Q(+)

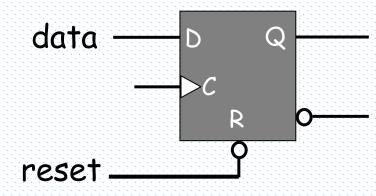
T (Toggle) Flip-Flop


Complementing flip-flop

TQ(t+1)next state0Q(t)no change1Q'(t)Complement

Characteristic Table

- Characteristic equation
 - $Q(t+1) = T \oplus Q(t) = TQ'(t) + T'Q(t)$


Characteristic Equations

- The logical properties of a flip-flop can be expressed algebraically using characteristic equations
- D flip-flop
 - Q(†+1) = D
- JK flip-flop
 - Q(t+1) = JQ'(t) + K'Q(t)
- T flip-flop
 - Q(†+1) = T⊕Q(†)

Asynchronous Inputs of Flip-Flops

- They are used to force the flip-flop to a particular state independent of clock
 - "Preset" (direct set) set FF state to 1
 - "Clear" (direct reset) set FF state to 0
- They are especially useful at startup.
 - In digital circuits when the power is turned on, the state of flip-flops are unknown.
 - Asynchronous inputs are used to bring all flip-flops to a known "starting" state prior to clock operation.

Asynchronous Inputs

R C	D	Q Q'
0 X	X	0 1 Starting State
1	0	0 1
1 1	1	1 0
	4	

Analysis of Clocked Sequential Circuits

- Goal:
 - to determine the behavior of clocked sequential circuits
 - "Behavior" is determined from
 - Inputs
 - Outputs
 - State of the flip-flops
 - We have to obtain
 - (state) table
 - (state) diagram
 - Boolean expression for next state and output
 - They must include time sequence information

State Equations

- Also known as "transition equations"
 - specify the next state as a function of the present state and inputs
- Example A(++1) Х Α' B(++1) B clk B

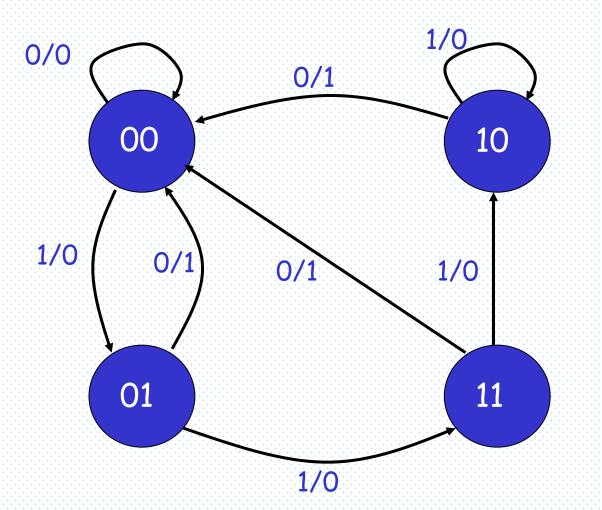
31

Example: Output and State Equations

- Flip-Flop input (excitation) equations
 - Same as state equations in D flip-flops
 - A(t+1) = x A(t) + x B(t)= xA + xB

$$- B(++1) = X A'(+)$$

Output equation

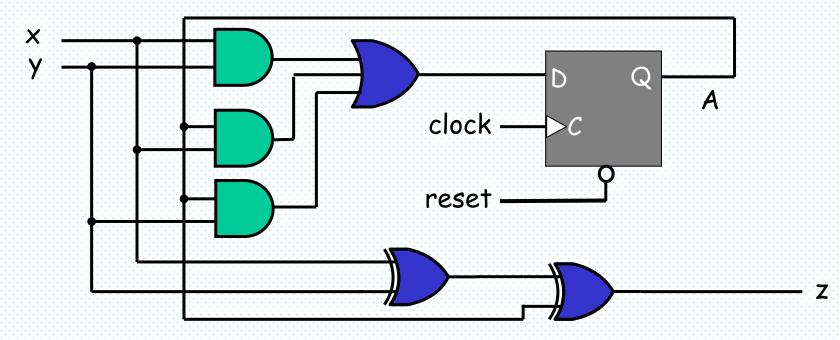

-
$$y(t) = [A(t) + B(t)] x'$$

= $(A + B) x'$

Example: State (Transition) TableA(t+1) = xA + xBB(t+1) = xA'y = (A + B) x'

Presen	t state	input	Next	state	output
A	В	×	A	В	У
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

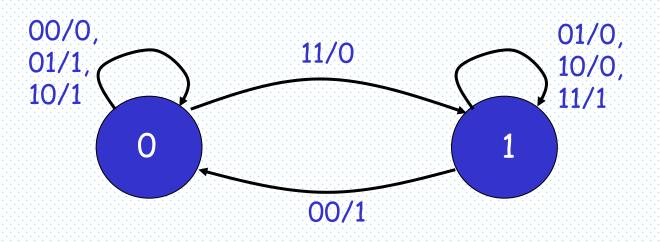
A sequential circuit with m FFs and n inputs needs 2^{m+n} rows in the transition table ³³


Example: State Diagram

State diagram provides the same information as state table

34

Analysis with D Flip-Flops - 1

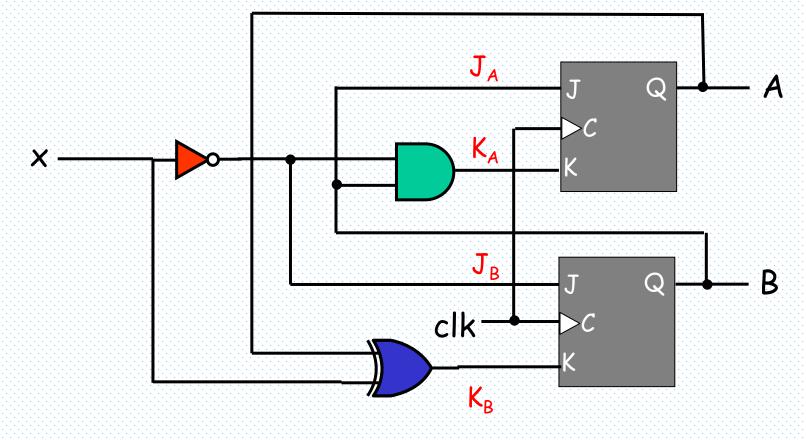

- Flip-Flop input equation
 - $D_A = xy + xA + yA$
 - $Q(t+1) = D_A$
- Output equation
 - $z = x \oplus y \oplus A$

Analysis with D Flip-Flops - 2

State Table

Present state	Inp	outs	next state	output
A	×	у	A	Z
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Analysis with D Flip-Flops - 3



It is a serial adder.

Analysis with JK Flip-Flops

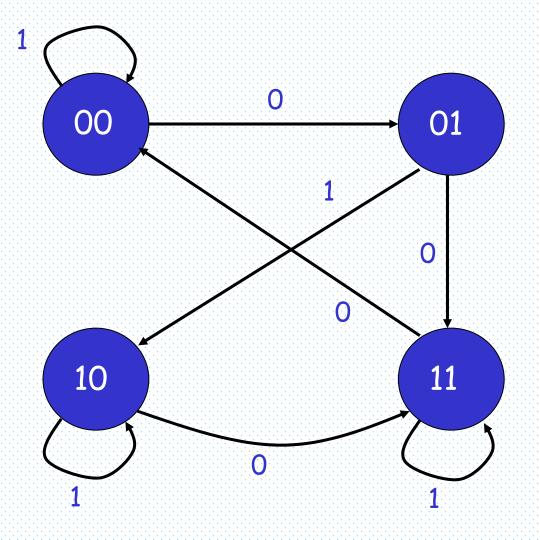
- For a D flip-flop, the state equation is the same as the flip-flop input equation
 - Q(++1) = D_Q
- For JK flip-flops, situation is different
 - Goal is to find state equations
 - Method
 - 1. determine flip-flop input equations
 - 2. List the binary values of each input equation
 - 3. Use the corresponding flip-flop characteristic table to determine the next state values in the state table

Example: Analysis with JK FFs

- Flip-flop input equations
 - $J_A = B$ and $K_A = x'B$
 - $J_B = x'$ and $K_B = x \oplus A$

Example: Analysis with JK FFs

- $J_A = B$ and $K_A = x'B$
- $J_B = x'$ and $K_B = x \oplus A$


Q(t+1) = JQ'(t) + K'Q(t)

present	t State	input	next	state	FF inputs			
Α	В	X	A	В	JA	K _A	\mathbf{J}_{B}	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Example: Analysis with JK FFs

- Characteristic equations
 - $A(++1) = J_A A' + K_A' A$
 - $B(+1) = J_BB' + K_B'B$
- Input equations
 - $J_A = B$ and $K_A = x'B$
 - $J_B = x'$ and $K_B = x \oplus A$
- State equations
 - -A(t+1) = BA' + (x'B)'A
 - = BA' + (x + B')A = BA' + AB' + AX
 - B(t+1) = $x'B' + (x \oplus A)'B$
 - = x'B' + xAB + x'A'B

State Diagram

