Synchronous Sequential Logic

Logic and Digital System Design - CS 303
Erkay Savaş
Sabanci University

Sequential Logic

- Digital circuits we have learned, so far, have been combinational
- no memory,
- outputs are entirely defined by the "current" inputs
- However, many digital systems encountered everyday life are sequential (i.e. they have memory)
- the memory elements remember past inputs
- outputs of sequential circuits are not only dependent on the current input but also the state of the memory elements.

Sequential Circuits Model

current state is a function of past inputs

Classification-1

- Two types of sequential circuits

1. Synchronous

- Signals affect the memory elements at discrete instants of time.
- Discrete instants of time requires synchronization.
- Synchronization is usually achieved through the use of a common clock.
- A "clock generator" is a device that generates a periodic train of pulses.

Classification-2

1. Synchronous

- The state of the memory elements are updated with the arrival of each pulse
- This type of logical circuit is also known as clocked sequential circuits.

2. Asynchronous

- No clock
- behavior of an asynchronous sequential circuits depends upon the input signals at any instant of time and the order in which the inputs change.
- Memory elements in asynchronous circuits are regarded as time-delay elements

Clocked Sequential Circuits

- Memory elements are flip-flops which are logic devices capable of storing one bit of information each.

Clocked Sequential Circuits

- The outputs of a clocked sequential circuit can come from the combinational circuit, from the outputs of the flip-flops or both.
- The state of the flip-flops can change only during a clock pulse transition
- i.e. low-to-high and high-to-low
- clock edge
- When the clock is at logic-0, the flip-flop output does not change
- The transition from one state to the other occurs at the clock edge.

Latches

- The most basic types of memory elements are not flip-flops, but latches.
- A latch is a memory device that can maintain a binary state indefinitely.
- Latches are, in fact, asynchronous devices and they usually do not require a clock to operate.
- Therefore, they are not directly used in clocked synchronous sequential circuits.
- They rather be used to construct flip-flops.

SR-Latch

- A circuit is made of cross-coupled NOR (or NAND) gates

Undefined State of SR-Latch

- $S=R=1$ may result in an undefined state
- the reason being is that the next state is unpredictable when both S and R goes to 0 at the same time.
- It may oscillate
- Or the outcome state will depend on which of S and R goes to 0 first.

it oscillates

SR-Latches with NAND Gates

Also known as $S^{\prime} R^{\prime}$-latch

S	R	Q	Q'	
1	0	0	1	
1	1	0	1	After S $=1, R=0$
0	1	1	0	
1	1	1	0	After S $=0, \mathrm{R}=1$
0	0	1	1	Undefined

SR-Latch with Control Input

- Control inputs allow the changes at S and R to change the state of the latch.

c	S	R	Q Q ${ }^{\prime}$
0	X	X	No change
1	0	0	No change
1	0	1	$Q=0$ Reset state
1	1	0	$Q=1$ Set state
1	1	1	Indeterminate

D-Latch

- SR latches are seldom used in practice because the indeterminate state may cause instability
- Remedy: D-latches

This circuit guarantees that the inputs to the SR-latch is always complement of each other when $C=1$.

D-Latch

C	D	Next state of Q
0	X	No change
1	0	$Q=0 ;$ reset state
1	1	$Q=1 ;$ set state

- We say that the D input is sampled when $C=1$

SR-latch

S'R'-latch

D-latch

D-Latch as a Storage Unit

- D-latches can be used as temporary storage
- The input of D-latch is transferred to the Q output when $C=1$
- When $C=0$ the binary information is retained.
- We call latches level-sensitive devices.
- So long as C remains at logic-1 level, any change in data input will change the state and the output of the latch.
- Level sensitive latches may suffer from a serious problem.
- A memory devices that are sensitive to the rising or falling edge of control input is called flipflops.

Need for Flip-Flops - 1

- Remember in a latch
- there is a feedback path from the output to the input of the circuit.
- When control input remains at logic-1 for a period of time
- The state transition occurs as soon as C becomes 1
- The new state appears at the outputs of the latches
- This output is connected to the input
- Since the input changes again, the state of the latches may change again
- This may lead to a situation where the state of latches keeps changing so long as $C=1$
- This is why we need edge-sensitive devices.

Need for Flip-Flops - 1

- Another problem
- We want the states of the memory elements to change synchronously
- What we need is memory elements that should respond to the changes in input at certain points in time.
- This is the very characteristics of synchronous circuits.
- To this end, we use flip-flops that change states during a signal transition of control input (clock)

Edge-Triggered D Flip-Flop

- An edge-triggered D flip-flop can be constructed using two D latches

Negative edge-triggered D flip-flop
clk'

Positive Edge-Triggered D Flip-Flop

Symbols for D Flip-Flops

Positive edge-triggered D Flip-Flop

Negative edge-triggered
D Flip-Flop

Setup \& Hold Times - 1

- Timing parameters are associated with the operation of flip-flops
- Recall Q gets the value of D in clock transition

Setup \& Hold Times - 2

- Setup time,t_{s}
- The change in the input D must be made before the clock transition.
- Input D must maintain this new value for a certain minimum amount time.
- If a change occurs at D less than t_{s} second before the clock transition, then the output may not acquire this new value.
- It may even demonstrate unstable behavior.
- Hold time, t_{h},
- Similarly the value at D must be maintained for a minimum amount of time (i.e. t_{h}) after the clock transition.

Propagation Time

- Even if setup and hold times are achieved, it takes some time the circuit to propagate the input value to the output.
- This is because of the fact that flip-flops are made of logic gates that have certain propagation times.

Other Flip-Flops

D flip-flop is the most common

- since it requires the fewest number of gates to construct.
- Two other widely used flip-flops
- JK flip-flops
- T flip-flops
- JK flip-flops
- Three FF operations

1. Set
2. Reset
3. Complement

JK Flip-Flops

- Characteristic equation
- $Q(t+1)=J Q^{\prime}(t)+K^{\prime} Q(\dagger)$

T (Toggle) Flip-Flop

- Complementing flip-flop

T	$Q(t+1)$	next state
0	$Q(t)$	no change
1	$Q^{\prime}(t)$	Complement

Characteristic Table

- Characteristic equation

$$
-Q(t+1)=T \oplus Q(t)=T Q^{\prime}(t)+T^{\prime} Q(t)
$$

Characteristic Equations

- The logical properties of a flip-flop can be expressed algebraically using characteristic equations
- D flip-flop
- $Q(t+1)=D$
- JK flip-flop
$-Q(t+1)=J Q^{\prime}(\dagger)+K^{\prime} Q(t)$
- T flip-flop
$-Q(t+1)=T \oplus Q(\dagger)$

Asynchronous Inputs of Flip-Flops

- They are used to force the flip-flop to a particular state independent of clock
- "Preset" (direct set) set FF state to 1
- "Clear" (direct reset) set FF state to 0
- They are especially useful at startup.
- In digital circuits when the power is turned on, the state of flip-flops are unknown.
- Asynchronous inputs are used to bring all flip-flops to a known "starting" state prior to clock operation.

Asynchronous Inputs

R	C	D	Q	Q	
0	X	X	0	1	
1	\uparrow	0	0	1	
1	\uparrow	1	1	0	

Analysis of Clocked Sequential Circuits

- Goal:
- to determine the behavior of clocked sequential circuits
- "Behavior" is determined from
- Inputs
- Outputs
- State of the flip-flops
- We have to obtain
- (state) table
- (state) diagram
- Boolean expression for next state and output
- They must include time sequence information

State Equations

- Also known as "transition equations"
- specify the next state as a function of the present state and inputs
- Example

Example: Output and State Equations

- Flip-Flop input (excitation) equations
- Same as state equations in D flip-flops

$$
\begin{aligned}
-A(t+1) & =x A(t)+x B(t) \\
& =x A+x B \\
-B(t+1) & =x A^{\prime}(t) \\
& =x A^{\prime}
\end{aligned}
$$

- Output equation

$$
\begin{aligned}
-y(t) & =[A(t)+B(t)] x^{\prime} \\
& =(A+B) x^{\prime}
\end{aligned}
$$

Example: State (Transition) Table $A(t+1)=x A+x B \quad B(t+1)=x A^{\prime} \quad y=(A+B) x^{\prime}$

Present state		input \times	Next state		output y
A	B		A	B	
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

A sequential circuit with m FFs and n inputs needs 2^{m+n} rows in the transition table

Example: State Diagram

State diagram provides the same information as state table

Analysis with D Flip-Flops - 1

- Flip-Flop input equation
$-D_{A}=x y+x A+y A$
- $Q(t+1)=D_{A}$
- Output equation
$-z=x \oplus y \oplus A$

Analysis with D Flip-Flops - 2

State Table

| Present |
| :---: | :---: | :---: | :---: |
| state |

Analysis with D Flip-Flops - 3

It is a serial adder.

Analysis with JK Flip-Flops

- For a D flip-flop, the state equation is the same as the flip-flop input equation
- $Q(t+1)=D_{Q}$

For JK flip-flops, situation is different

- Goal is to find state equations
- Method

1. determine flip-flop input equations
2. List the binary values of each input equation
3. Use the corresponding flip-flop characteristic table to determine the next state values in the state table

Example: Analysis with JK FFs

- Flip-flop input equations
$-J_{A}=B$ and $K_{A}=x^{\prime} B$
- $J_{B}=x^{\prime}$ and $K_{B}=x \oplus A$

Example: Analysis with JK FFs

- $J_{A}=B$ and $K_{A}=x^{\prime} B$
- $J_{B}=x^{\prime}$ and $K_{B}=x \oplus A$

$$
Q(t+1)=J Q^{\prime}(t)+K^{\prime} Q(t)
$$

present State input next state
FF inputs

A	B	x	A	B	J_{A}	K_{A}	J_{B}	K_{B}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Example: Analysis with JK FFs

- Characteristic equations

$$
\begin{aligned}
& -A(t+1)=J_{A} A^{\prime}+K_{A}^{\prime} A \\
& -B(t+1)=J_{B} B^{\prime}+K_{B}^{\prime} B
\end{aligned}
$$

- Input equations

$$
\begin{aligned}
& -J_{A}=B \text { and } K_{A}=x^{\prime} B \\
& -J_{B}=x^{\prime} \text { and } K_{B}=x \oplus A
\end{aligned}
$$

- State equations

$$
\begin{aligned}
-A(t+1) & =B A^{\prime}+\left(x^{\prime} B\right)^{\prime} A \\
& =B A^{\prime}+\left(x+B^{\prime}\right) A=B A^{\prime}+A B^{\prime}+A x \\
-B(t+1) & =x^{\prime} B^{\prime}+(x \oplus A)^{\prime} B \\
& =x^{\prime} B^{\prime}+x A B+x^{\prime} A^{\prime} B
\end{aligned}
$$

State Diagram

