Registers \& Counters

Logic and Digital System Design - CS 303

Erkay Savaş
Sabanci University

Registers

- Registers like counters are clocked sequential circuits
- A register is a group of flip-flops
- Each flip-flop capable of storing one bit of information
- An n-bit register
- consists of n flip-flops
- capable of storing n bits of information
- besides flip-flops, a register usually contains combinational logic to perform some simple tasks
- In summary
- flip-flops to hold information
- combinational logic to control the state transition

Counters

- A counter is essentially a register that goes through a predetermined sequence of states

Uses of Registers and Counters

- Registers are useful for storing and manipulating information
- internal registers in microprocessors to manipulate data
- Counters are extensively used in control logic
- PC (program counter) in microprocessors

4-bit Register

Register with Parallel Load

Loading Register

Register Transfer - 1

Register Transfer-2

$R 1 \leftarrow R 1+R 2$

Datapath \& Control Unit

Shift Registers

- A register capable of shifting its information in one or both directions
- Flip-flops in cascade

- The current state can be output in n clock cycles

Serial Mode

- A digital system is said to operate in serial mode when information is transferred and manipulated one bit a time.

Serial Transfer

- Suppose we have two 4-bit shift registers

Timing pulse	Shift register A				Shift register B			
initial value	1	0	1	1	0	0	1	0
After T_{1}	1	1	0	1	1	0	0	1
After T_{2}	1	1	1	0	1	1	0	0
After T_{3}	0	1	1	1	0	1	1	0
After T_{4}	1	0	1	1	1	0	1	1

$B \leftarrow A$

Serial Addition

- In digital computers, operations are usually executed in parallel, since it is faster
- Serial mode is sometimes preferred since it requires less equipment

Example: Serial Addition

- A and B are 2-bit shift registers

Designing Serial Adder - 1

$$
Q(t+1)=J Q^{\prime}+K^{\prime} Q
$$

Present state	Inputs		Next state	Output		Flip-flop inputs	
\mathbf{Q}	x	y	\mathbf{Q}	S	$\mathrm{J}_{\mathbf{Q}}$	$\mathrm{K}_{\mathbf{Q}}$	
0	0	0	0	0	0	X	
0	0	1	0	1	0	X	
0	1	0	0	1	0	X	
0	1	1	1	0	1	X	
1	0	0	0	1	X	1	
1	0	1	1	0	X	0	
1	1	0	1	0	X	0	
1	1	1	1	1	X	0	

$J_{Q}=x y \quad K_{Q}=x^{\prime} y^{\prime}=(x+y)^{\prime} \quad S=x \oplus y \oplus Q$

Designing Serial Adder-2

$$
J_{Q}=x y \quad K_{Q}=x^{\prime} y^{\prime}=(x+y)^{\prime} \quad S=x \oplus y \oplus Q
$$

Universal Shift Register

Capabilities:

1. A clear control to set the register to 0 .
2. A clock input
3. A shift-right control
4. A shift-left control
5. n input lines
6. A parallel-load control
7. n parallel output lines
8. A shift-control

Universal Shift Register

parallel outputs

Universal Shift Register

Mode Control		
S_{1}	So	Register operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

Counters

- A counter is basically a register that goes through a prescribed sequence of states upon the application of input pulses
- input pulses are usually clock pulses
- Example: n-bit binary counter
- count in binary from 0 to $2^{n}-1$

Classification

1. Ripple counters

- flip-flop output transition serves as the pulse to trigger other flip-flops

2. Synchronous counters

- flip-flops receive the same common clock as the pulse

Binary Ripple Counter

3-bit binary ripple counter

0	0	0	0
1	0	0	1
2	0	1	0
3	0	1	1
4	1	0	0
5	1	0	1
6	1	1	0
7	1	1	1
0	0	0	0

- Idea:
- to connect the output of one flip-flop to the C input of the next high-order flip-flop
- We need "complementing" flip-flops
- We can use T flip-flops to obtain complementing flip-flops or
- JK flip-flops with its inputs are tied together or
- D flip-flops with complement output connected to the D input.

4-bit Binary Ripple Counter

4-bit Binary Ripple Counter

- Suppose the current state is 1100
- What is the next state?
- $A_{0}=1(0 \rightarrow 1)$
- $A_{1}=1(0 \rightarrow 1)$
- $A_{2}=0(1 \rightarrow 0)$
- $A_{3}=1$
- next state: 1011
- Binary count-down counter

BCD Ripple Counter

- State diagram

BCD Ripple Counter

- State transitions

A_{3}	A_{2}	A_{1}	A_{0}
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
0	0	0	0

BCD Ripple Counter with JK FFs

Multi-digit BCD Counter

3-digit BCD counter

Synchronous Counters

- There is a common clock
- that triggers all flip-flops simultaneously
- If $\mathrm{T}=0$ or $\mathrm{J}=\mathrm{K}=0$ the flip-flop does not change state.
- If $T=1$ or $\mathrm{J}=\mathrm{K}=1$ the flip-flop does change state.
- Design procedure is so simple
- no need for going through sequential logic design process
- A_{0} is always complemented
- A_{1} is complemented when $A_{0}=1$
- A_{2} is complemented when $A_{0}=1$ and $A_{1}=1$
- so on

4-bit Binary Synchronous Counter

Up-Down Binary Counter

- When counting downward
- the least significant bit is always complemented (with each clock pulse)
- A bit in any other position is complemented if all lower significant bits are equal to 0.
- For example: 0100
- Next state: 0011
- For example: 1100
- Next state: 1011

Up-Down Binary Counter

Synchronous BCD Counter

- Better to apply the sequential circuit design procedure

Present state				Next state				outputy	Flip-Flop inputs			
A_{8}	A_{4}	A_{2}	A_{1}	A_{8}	A_{4}	A_{2}	A_{1}		T_{8}	T_{4}	T_{2}	T_{1}
0	0	0	0	0	0	0	1	0	0	0	0	1
0	0	0	1	0	0	1	0	0	0	0	1	1
0	0	1	0	0	0	1	1	0	0	0	0	1
0	0	1	1	0	1	0	0	0	0	1	1	1
0	1	0	0	0	1	0	1	0	0	0	0	1
0	1	0	1	0	1	1	0	0	0	0	1	1
0	1	1	0	0	1	1	1	0	0	0	0	1
0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	0	0	1	0	0	0	0	1
1	0	0	1	0	0	0	0	1	1	0	0	1

Synchronous BCD Counter

- The flip-flop input equations
- $\mathrm{T}_{1}=1$
- $T_{2}=A_{8}^{\prime} A_{1}$
- $T_{4}=A_{2} A_{1}$
$-T_{8}=A_{8} A_{1}+A_{4} A_{2} A_{1}$
- Output equation
$-y=A_{8} A_{1}$
- Cost
- Four T flip-flops
- four 2-input AND gates
- one OR gate
- one inverter

Binary Counter with Parallel Load

Binary Counter with Parallel Load

Function Table

clear	clock	load	Count	Function
0	X	X	X	clear to 0
1	\uparrow	1	X	load inputs
1	\uparrow	0	1	count up
1	\uparrow	0	0	no change

Other Counters

- Ring Counter
- Timing signals control the sequence of operations in a digital system
- A ring counter is a circular shift register with only one flip-flop being set at any particular time, all others are cleared.

initial value 1000

Ring Counter

- Sequence of timing signals

Ring Counter

- To generate 2^{n} timing signals,
- we need a shift register with 2^{n} flip-flops
- or, we can construct the ring counter with a binary counter and a decoder

Cost:

- 2 flip-flop
- 2-to-4 line decoder

Cost in general case:

- n flip-flops
- n-to- 2^{n} line decoder
- 2^{n} n-input AND gates

Johnson Counter

- A k-bit ring counter can generate k distinguishable states
- The number of states can be doubled if the shift register is connected as a switch-tail ring counter

Johnson Counter

- Count sequence and required decoding

sequence number	Flip-flop outputs				
	X	Y	Z	T	Output
1	0	0	0	0	$X^{\prime} T^{\prime}$
2	1	0	0	0	X^{\prime}
3	1	1	0	0	Y^{\prime}
4	1	1	1	0	$Z T$
5	1	1	1	1	$X T$
6	0	1	1	1	$X^{\prime} Y$
7	0	0	1	1	$Y^{\prime} Z$
8	0	0	0	1	$Z^{\prime} T$

Johnson Counter

- Decoding circuit

Unused States in Counters

- 4-bit Johnson counter

Johnson Counter

Inputs				Outputs			
X	y	Z	T	X	y	Z	T
0	0	0	0	1	0	0	0
1	0	0	0	1	1	0	0
1	1	0	0	1	1	1	0
1	1	1	0	1	1	1	1
1	1	1	1	0	1	1	1
0	1	1	1	0	0	1	1
0	0	1	1	0	0	0	1
0	0	0	1	0	0	0	0
1	0	1	0	1	1	0	1
1	1	0	1	0	1	1	0
0	1	1	0	1	0	1	1
1	0	1	1	0	1	0	1
0	1	0	1	0	0	0	0
0	0	1	0	1	0	0	1
1	0	0	1	0	1	0	0
0	1	0	0	1	0	0	0

K-Maps

$$
X=T^{\prime}
$$

Unused States in Counters

- Remedy

Unused States in Counters

- State diagram

