

- Digital systems are about signals

» Signal is the basic part of any HDL

* The first VHDL object type: signal

- Signals may take values suchas 1,0,Z, X, L, H
 We can think of signal type as representative

of the wires in a digital system in its simplest
form

» Signals are different from variables

- They have an associated time value.

- A signal receives a value at a specific point in time.

- It retains this value until it receives another value
at a point in future.

3

entity half_adder is

port(a, b: in bit;
sum carry. out bit);

end entity hal f _adder;

- Signals may be of different types
- Vendors may define propriety types =
incompatibility problem.

- SimVHDL defines a new type called Real Si gnal
that can take on 12 values.

- IEEE 1164 standard is developed to describe the
logic systems more accurately.

- The type bit is a part of VHDL.

- But it is not sufficient to simulate the behavior of
digital system since a wire can take values such as
Z, X, L, H,etc.

- TEEE 1164 Standard offers object type of
std ulogic, std ul ogic vector

entity half _adder is

port(a, b: in std ul ogic;
sum carry: out std ulogic);

end entity hal f_adder;

entity nmux is

ul ogi c_vector(7 downto 0);
ul ogi c_vector (7 downto 0);

ul ogi c_vector(1 downto 0);
_ulogic_vector(7 downto 0));

end entity nux

entity Dff is

port(D, Ak, R S: in std _ulogic;
Q Qoar . out std ulogic);
end entity D ff;

entity ALU32 is

port(A B: in std_ulogic_vector(31 downto 0);
C : out std ulogic vector(31 downto 0);

in std_ulogic_vector(5 downto 0);

N, Z: out std ul ogi c);
end entity ALU32;

architecture behavioral of half _adder is
begi n

sum <= (a xor b) after 5 ns;

carry <= (a and b) after 5 ns;

end architecture behavioral;

-- VHDL 1993
architecture behavioral of half adder is
-- place decl arations here

begi n o
-- place description of behavior here --
end architecture behavi oral;

-- VHDL 1987
architecture behavioral of half adder is

-- place decl arations here

begi n
-- place description of behavior here --
end behavi oral;

» Signal assignment operator: <=

» The operation of digital systems is inherently
concurrent

- Many components of a circuit can be simultaneously
operating and concurrently driving distinct signals
to new values.

- Multiple signal assignment statements are executed
concurrently in simulated time and referred to as
concurrent signal assignment statements (CSA).

13

| i brary | EEE;
use | EEE. std |l ogic 1164. al | ;

entity half_adder is
port(x, y: in std ulogic;

sum carry:. out std _ulogic);
end entity hal f_adder;

archi tecture concurrent_behavi oral of
hal f _adder is

begi n

sum <= (a xor b) after 5 ns;

carry <= (a and b) after 5 ns;

end architecture concurrent behavioral;

- Libraries are repositories for frequently used
design entities

The library clause identifies a library we want to
access

The logical name (IEEE in the example) usually map
to a directory in the system

The directory contains various design units that
have been previously compiled.

A package is one such design unit

It may contain definition of types, functions, or
procedures

The use clause determines which packages will be
accessed in the library.

16

EN C:\Modeltech_xe starter'.jeee'std logic 1164

J File Edit View Faworites Tools

Help

J P Back ~ = - [&] | ‘0 search

L3 Folders S History | s S X w | -

J Address II:I Cii\Modelkech_xe_startertieeeistd_logic_1164

Folders

=

-] MATLABERS
{27 mikkextemp
L—__|-I:| Modelkech_xe_skarter
{:I docs
{:l drivers
- Erkay
{:I examples
EH:I ieeE
-] math_complex
-{_7] math_real
-] numeric_bit
numeric_sktd
skd_logic_1 164
std_|ogic_arith
sbd_loigic_misc
std_logic_signed
std_|ogic_textio
std_logic_unsigried
vital_primitives
- wikal_timing
:II:I iereepuUre
-7 include
F-1_] modelsim_lib
F-{_] std
-] skd_developerskit
F-1_] svnopsys

F-] kol

COCOCODOD

=

-

Y

Size

|_Tvpe

_I:E&‘ﬂ' e q £
i : IJ Mame

_primary.dat
_whdl, psm

std_logic_1164 body.dat

biodyw. psm

Seleck an item ko view its

description,

See also:
My Docurments

[y Mekbwork Places

My Compuker

[y MNebwork Places contains shortcuts to warious locakions
on the corporate nebwaork and the Internet.

4|

3EKBE
ZFkB
14 KB
57 KB

DAT File
PSM File
DAT File
PSM File

i3

My Metwork Places contains shortcuts ko warious locations on the corporate nekbvwork and the Internet. |1I:IZ KE

Astart ||| [&€ 51 D 2

>

InhD... 'SD:II,E...I

@ My Computer

[Elmicr... | &9ou... II@D\M--- CDnt...I B < 1o:iaem

-- VHDL 1993
architecture dataflow of full adder is

-- place declarations here

begi n
-- place description of behavior here --
end architecture datafl ow,

| i brary | EEE;
use | EEE. std logic 1164. all;

entity full adder is

port(inl, in2, c_in: in std ulogic;
sum c_out : out std uloglc)

end entity full adder;

architecture dataflow of full adder is
-- declarations

signal sl1l, s2, s3:. std uloglc

const ant gate del ay: Tine:= 5 ns;

begi n

L1: s1 <= (inl xor in2) after gate_del ay;
L2: s2 <= (c_in and sl1) after gate del ay;
L3: s3 <= (inl and in2) after gate_del ay;
L4: sum <= (sl xor c_in) after gate del ay;
L5: carry <= (s2 or s3) after gate_del ay;

end architecture datafl ow

type TIME i s range i nplenentation_defined
units

fs; f ent osecond

1000 fs; pi cosecond
1000 ps; nanosecond
1000 ns; m cr osecond
1000 f u; mllisecond
1000 ns; second
m n 60 sec; m nut es
hr 60 m n; hour s
end units;
subt ype DELAY LENGTH is TIME range 0 fs to TI M H GH;

PS
ns
us
s
sec

- Event:

inl (1>0) [i n2 0> O (no event)]

+ Expressions evaluated because of this event:

L1: s1 =inl O in2(1->0)and
L3: s3 =inl - in2(0>0)
s1 and s3 does not take the evaluated values

immediately. Instead, they are scheduled to take the
evaluated values at 20 ns.

+ Therefore, expressions

L2: s2 = s1 - cinandlL4: sum=s1 0O c_in
use the current value of s1 which is 1.

- The scheduled event on s1 is executed at 20 ns, which

is itself an event and triggers other events.
22

model of simulation time:

1.

All statements with event occurring at the current
time on signal in the RHS of the signal assignment
are evaluated.

All future events that are generated from the
execution of these statements are then scheduled

Simulation time is advanced to the time of next
event.

Process repeats
User can specify events, delays, and concurrency

The order of execution of the statements depends
on the flow of values.

23

Initialized declaration:
signal s1 : std ulogic:="0";
(initialization is not necessary)

General form of concurrent signal assignment
signal <= val ue expression after tinme expression;

A signal has a history of values over time: waveform.
RHS is referred to as waveform element.
Time-value pair is referred to as a transaction.

Can we specify multiple waveform elements?
sl <= (x xor y) after 5 ns, (x or y) after 10 ns,
(not x) after 15 ns;

Three transactions will be generated.

The list of all the current transactions pending on a
signal is called driver for the signal.

Driver is essentially a waveform on the signal

24

* One assumption
- There is only one driver for a signal.

- In real devices, there may be multiple drivers for a

signal, e.g. busses, wired logic.
— sl <= ‘0,1 after 10 ns, ‘0 after 20 ns,‘ 1 after 40 ns;
— s1 <= ‘1" after 10 ns, ‘1 after 20 ns,‘ 0’ after 40 ns;

* Resolution function
- A shared signal must be of special type: resolved

- VHDL uses resolution function to resolve driver
conflicts

—std | ogi candstd | ogi c_vect or are resolved
versions of std_ul ogi c and st d_ul ogi ¢c_vect or

- User may define new resolved types, but he must also

provide an implementation of resolution function.
26

resolution

function

function WRED OR(inputs: bit _vector) return bit is
begi n
for j Iin inputs’ range |oop
I f(inputs(j)= "1 then
return “1’;
end if;
end | oop;
return ‘0 ;
end W RED OR;

subtype resolved bit is WRED OR bit;
-- resolved bit signal is associated wth resolution
-- function WRED OR

| i brary | EEE;
use | EEE. std logic 1164. all;

entity mux4 is

port (i n0, ini, 3: |n std_l ogic_vector(7 downto O);

n2, in
SO0, S1: |n std | ogic
td_ | ogic_vector(7 downto 0));

Z . out s
end entity nux4;

architecture behavioral of mux4 is
begi n

Z <= 1n0 after 5 ns when SO
inl after 5 ns when SO
in2 after 5 ns when SO
I n3 after 5 ns when SO
“00000000" after 5 ns;

end architecture behavioral;

* Any event on input signals i n0-i n3 or control
signals SO, S1 may cause a change in the value
of the output signal

- When this happens, all four conditions are checked
and appropriate one is evaluated.

- Expressions in the RHS are evaluated in the order
they appear.

- This is what is called priority order.

- In the previous example, only one condition holds;
thus the order does not matter.

- In some models, priority is important

31

| i brary | EEE;
use | EEE. std logic 1164. all;

entity priority _encoder is
port (SO, S1, S2, S3: in std _|ogic;

Z . out std logic vector(l downto 0));
end entity priority_encoder;

architecture behavioral of priority encoder is
begi n

Z <= "“00" after ns when SO
“01" after ns when S1
“10" after ns when S2
“11" after ns when S3
“00” after ns:

‘1" el se
‘1" el se
‘1" el se
‘1 el se

end architecture behavioral ;

“00” after 5 ns when SO ‘1" el se
“01” after 5 ns when S1 ‘1" el se
unaf fected when S2 = ‘1" el se

“11” after 5 ns when S3 ‘1" el se
“00” after 5 ns;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity register fileis
port (

addrl, addr2: in std |ogic vector(2 downto 0);

reg_ out 1, reg_out_2 : out std_logic_vector(31 downto 0));
end entity reglster file;

architecture behavioral of register fileis

signal regO, reg2:

std |l ogic vector(31 downto 0):=x"12345678";
si gnal regl, reg3:

std |l ogic vector(31 downto 0):=x"abcdef 00”;

begi n

end architecture behavioral;

begi n

with addrl sel ect

reg out 1 <= reg0 after
regl after
reg2 after
reg3 after
reg3 after

with addr2(1 downto 0) s

reg out 2 <= reg0 after
regl after

ns when “000”:
ns when “001";
ns when “010”:
ns when “011";
ns when ot hers;
| ect

ns when “00":
ns when “01”;
ns when “10”;
ns when “11":
ns when ot hers;

reg2 after
reg3 after
reg3 after

aororo1o1® 101010101

end architecture behavioral ;

Construct Schematic

1.

e

O OIS

Model each component (e.g. gate) as a delay
element.

Draw a schematic interconnecting all the
components. Uniquely label each component.

Identify the input signals as input ports.
Identify the output signals as output ports.
All remaining signals are internal signals

Associate a type with each input, output, and
internal signals (e.g. std_logic)

Make sure that each input port, output port, and
internal signal are labeled with a unique name

37

library |ibrary-nane-1, |ibrary-nane- 2,
use |i brary-nane-1. package-nane. al | ;
use |i brary-nane- 2. package- nane. al | ;

entity entity nanme is

port (input signals: in type;
out put signals: out type);

end entity entity nane;

architecture arch _nane of entity nane is

-- declare internal signals

-- you may have nultiple signals of different types
signal internal-signal-1. type : i tialization;
signal internal-signal-2: type : itialization;

begi n
-- specify value of each signal as a function other signals

:in
=1n

internal -signal -1 <= sinple, conditional, or selected CSA
i nternal -signal-2 <= sinple, conditional, or selected CSA

output-signal -1 <= sinple, conditional, or selected CSA
output-signal -2 <= sinple, conditional, or selected CSA

end architecture behavioral;

bl ock-1 abel : bl ock[(guard-expression)][is]

[bl ock- header]

[bl ock- decl ar ati ons]
begi n

concurrent-statenents; -- any nunber or none
end bl ock;

Bl: bl ock(STROBE='1")
begin

Z <= guarded not A
end bl ock Bl;

EZ: bl ock(CLEAR=" 0’ and PRESET='1")
egi n

Q<=1 when not GQUARD else ‘0’ ;
end bl ock B2;

entity d flip-flop is

port(d, clk: in std logic; g, gbar: out std |logic);
end entity d flip flop;

architecture behavioral of d flip flopis
begi n

L1: block(clk="1" and not cl k' STABLE)
signal tenp: std_|ogic;
begi n
tenp <= guarded d;
q <= tenp;
q <= not tenp,
end bl ock L1;
end architecture behavioral;

@000 00cccco] 0000000000 -0000000000

Pececccsccerecccccccce

eeccccccccpeccrccccoe

@000000000 0000000000

» If the event does not persist for the duration of
pulse rejection width the output does not respond

- The VHDL language uses the propagation delay through
the component as the default pulse rejection width.
» If we know the pulse rejection width of a

component, we can use it
sum <= reject 2 ns inertial (x xor y) after 5 ns.

» General form in VHDL'93

signal <= reject tine-expression inertial val ue-
expression after tine-expression.

* We cannot specify pulse rejection width in
VHDL'87. Delay value is used for this.

45

* We use transport model for components with
no inertia.
- e.g. accurate modeling of wire delays

- With small feature size in modern day circuits, it is
important to model the propagation delay of wires.

- Any event is propagated to the output. The change
does not have to persist.

- Even very short pulses are propagated in this model.
—sum <= transport (x xor y) after 5 ns;

- Transport model is not commonly used.
- Default delay model is inertial.

46

| i brary | EEE;
use | EEE. std logic 1164.all;

entity half_adder is
port (a, b: in std | ogic;

sum carry: out std_logic);
end entity hal f _adder;

architecture transport delay of half _adder is
signal sl1, s2: std logic := ‘0 ;

begi n

sl <= (a xor b) after 2 ns;

s2 <= (a and b) after 2 ns;

sum <= transport sl after 4 ns;

carry <= transport s2 after 4 ns;

end architecture transport _del ay;

What if we do not specify any delay?

sum <= (X Xxor y); =sum<= (x xor y) after 0 ns;

we may choose to ignore delays when
- we do not have realistic delay for the components
- we are not interested in physical timing behavior

How can we preserve the concurrency in case
of no propagation delays for components

- For functional correctness, we must maintain the
correct ordering of events

- VHDL language provides a infinitesimally small delay
called delta delay.

50

+ Assignment takes place a delay of A affer the
RHS is evaluated.

- If events with zero delay are produced at timestep
T, the simulator simply organizes and processes
events in tfime order of occurrence:

- Events at T+A are processed first,
- then events at T+2A
- followed by the events occurring 3A seconds later.

- While the time advances with steps of A seconds,
the simulation time does not actually proceed.

o1

| i brary | EEE;
use | EEE. std |l ogic 1164. all;

entity conbinational is

port (inl, in2: in std | ogic;
z: out std |ogic);
end entity conblnatlonal

architecture behavi or of conbinational is
signal sl, s2, s3, s4:. std logic := ‘0 ;
begi n

L1: s1 not inl:

L2: s2 not i n2:

L3: s3 not (sl and in2);

L4: s4 not (s2 and inl);

L5: z not (s3 and s4);

end architecture behavi or:

| i brary | EEE;
use | EEE. std |l ogic 1164. al|;

entity conbinational is

port (inl, in2: in std | ogic;
z: out std _|ogic);

end entity conbi national;

architecture behavior of combinational is
signal sl1, s2, s3, s4: std_logic := '0";
begi n

L5: z not (s3 and s4);
L2: s2 not i n2;
L4: s4 not (s2 and inl);
L3: s3 not (sl and in2);
L1: s1 not i nil;
end architecture behavi or;

