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Motivation
• Construct VHDL models of digital systems for 

the purpose of simulating
• Quick start in building useful simulation models
• Core set of language constructs for describing 

attributes of digital systems
– signals, events, propagation delays, concurrency, and 

waveforms
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Signals 1
• Digital systems are about signals
• Signal is the basic part of any HDL
• The first VHDL object type: signal
• Signals may take values such as 1, 0, Z, X, L, H
• We can think of signal type as representative 

of  the wires in a digital system in its simplest 
form

• Signals are different from variables
– They have an associated time value.
– A signal receives a value at a specific point in time.
– It retains this value until it receives another value 

at a point in future.
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Signals 2
• A sequence of values assigned to a signal over 

time is the waveform of the signal
• Signals may be declared to be of a specific type

– Integer, real, or character
– If this is the case, signal does not represent a single 

wire.
– If we are simulating at a higher level of abstraction 

we wouldn’t be concerned how many bit an integer 
signal should be assigned.
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Entity-Architecture

• Design entity: primary programming abstraction
– Register, logic block, chip, or entire system

• What aspects of a digital system we want to describe?
– Interface: how is it connected to other 

components? (inputs and outputs)
– Function: what does it do for us? Internal behavior 

of the design (Boolean equations, truth tables, 
structural description).

a

b

sum

carry
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Modeling a Digital System
• VHDL Language provides two distinct 

constructs to model these two aspects of a 
digital system:

1. Entity
2. Architecture
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Entity Declaration

• Case insensitive
• Hyphen is not allowed in user supplied names first 

character must be a letter, last character cannot be 
underscore

• The interface is a collection of input and output ports.
• Ports are signals. 
• They have types, e.g. bit, integer, character, etc.
• They have a mode of operation, e.g. in, out, inout (bi-

directional)

entity half_adder is

port(a, b: in bit;
sum, carry: out bit);

end entity half_adder;

reserved key words

VHDL 1993

a

b

sum

carry
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IEEE 1164 Standard Object Types

• Signals may be of different types
– Vendors may define propriety types �

incompatibility problem.
– SimVHDL defines a new type called RealSignal

that can take on 12 values.
– IEEE 1164 standard is developed to describe the 

logic systems more accurately.
– The type bit is a part of VHDL.
– But it is not sufficient to simulate the behavior of 

digital system since a wire can take values such as 
Z, X, L, H, etc.

– IEEE 1164 Standard offers object type of 
std_ulogic, std_ulogic_vector
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IEEE 1164
entity half_adder is

port(a, b: in std_ulogic;
sum, carry: out std_ulogic);

end entity half_adder;

entity mux is

port(I0, I1: in std_ulogic_vector(7 downto 0);
I2, I3: in std_ulogic_vector(7 downto 0);
Sel : in std_ulogic_vector(1 downto 0);
Z : out std_ulogic_vector(7 downto 0));

end entity mux;

Z

I0
I1
I2
I3

Sel

4x1
MUX



10

Example Entity Descriptions

S’

R’

D

Clk

Q

Q’

entity D_ff is

port(D, Clk, R, S: in std_ulogic;
Q, Qbar : out std_ulogic);

end entity D_ff;

A B

C

Op
N

Z

entity ALU32 is

port(A, B: in std_ulogic_vector(31 downto 0);
C : out std_ulogic_vector(31 downto 0);
Op : in std_ulogic_vector(5 downto 0);
N, Z: out std_ulogic);

end entity ALU32;
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Describing Behavior: Architecture Construct

• The signal assignment statement: Description 
of events on the signals in left-hand-side 
(LHS) in terms of events on the signals in 
right-hand-side (RHS).

• Specification of propagation delays
• Recall: signal values are time-value pairs.

architecture behavioral of half_adder is
begin
sum <= (a xor b) after 5 ns;
carry <= (a and b) after 5 ns;
end architecture behavioral;

a

b

sum

carry
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Architecture Construct

-- VHDL 1993

architecture behavioral of half_adder is

-- place declarations here

begin
-- place description of behavior here --
end architecture behavioral;

-- VHDL 1987

architecture behavioral of half_adder is

-- place declarations here

begin
-- place description of behavior here --
end behavioral;
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Concurrent Assignment Statements
• Signal assignment operator: <=
• The operation of digital systems is inherently 

concurrent
– Many components of a circuit can be simultaneously 

operating and concurrently driving distinct signals 
to new values.

– Multiple signal assignment statements are executed 
concurrently in simulated time and referred to as 
concurrent signal assignment statements (CSA).
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Simple CAS

When a transition occurs at the right side of the 
assignment statement, the expression is evaluated and 
the assignment is scheduled to be performed at a future 
time determined by the time value after after keyword.

library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port(x, y: in std_ulogic;

sum, carry: out std_ulogic);
end entity half_adder;

architecture concurrent_behavioral of
half_adder is
begin
sum <= (a xor b) after 5 ns;
carry <= (a and b) after 5 ns;
end architecture concurrent_behavioral;

• Textual order is 
not important
• Flow of signals 
is important
• Simulation time 
does not proceed 
from one 
statement to the 
next
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Simple CAS

b

a

carry

sum

event
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VHDL Libraries
• Libraries are repositories for frequently used 

design entities 
– The library clause identifies a library we want to 

access
– The logical name (IEEE in the example) usually map 

to a directory in the system
– The directory contains various design units that 

have been previously compiled.
– A package is one such design unit
– It may contain definition of types, functions, or 

procedures
– The use clause determines which packages will be 

accessed in the library. 



17

IEEE Library
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VHDL Model of a Full Adder 
in1

sum

c_in

in2

c_out

s2

s3

s1

-- VHDL 1993

architecture dataflow of full_adder is

-- place declarations here

begin
-- place description of behavior here --
end architecture dataflow;
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VHDL Model of a Full Adder
library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is
port(in1, in2, c_in: in std_ulogic;

sum, c_out : out std_ulogic);
end entity full_adder;

architecture dataflow of full_adder is
-- declarations
signal s1, s2, s3: std_ulogic;
constant gate_delay: Time:= 5 ns;

begin

L1: s1 <= (in1 xor in2) after gate_delay;
L2: s2 <= (c_in and s1) after gate_delay;
L3: s3 <= (in1 and in2) after gate_delay;
L4: sum <= (s1 xor c_in) after gate_delay;
L5: carry <= (s2 or s3) after gate_delay;

end architecture dataflow;
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VHDL Model of a Full Adder
• Constant: can be declared to be of a specific type. Its 

value is set at the start of the simulation and cannot 
be changed during simulation

• Time is the only predefined physical type of language.
type TIME is range implementation_defined

units
fs; -- femtosecond
ps = 1000 fs; -- picosecond
ns = 1000 ps; -- nanosecond
us = 1000 ns; -- microsecond
ms = 1000 fu; -- millisecond
sec = 1000 ms; -- second
min = 60 sec; -- minutes
hr = 60 min; -- hours

end units;
subtype DELAY_LENGTH is TIME range 0 fs to TIME’HIGH;
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Waveform of Full Adder 

in2

in1

L5: 
c_out = s2 + s3

c_in

L4:
sum = s1 ⊕ c_in 

15 20 25 30 35 40 45 

L1: 
s1 = in1 ⊕ in2
L2:
s2 = s1 · c_in
L3:
s3 = in1 · in2

5 10 
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Activities at 15 ns
• Event: 
in1 (1 � 0)       [in2 0� 0 (no event)]

• Expressions evaluated because of this event:

L1: s1 = in1 ⊕ in2 (1 �0) and 
L3: s3 = in1 · in2 (0�0)

• s1 and s3 does not take the evaluated values 
immediately. Instead, they are scheduled to take the 
evaluated values at 20 ns.

• Therefore, expressions 
L2: s2 = s1 · c_in and L4: sum = s1 ⊕ c_in
use the current value of s1 which is 1.

• The scheduled event on s1 is executed at 20 ns, which 
is itself an event and triggers other events. 
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Concurrent Assignment Rules
• model of simulation time:

1. All statements with event occurring at the current 
time on signal in the RHS of the signal assignment 
are evaluated. 

2. All future events that are generated from the 
execution of these statements are then scheduled

3. Simulation time is advanced to the time of next 
event.

– Process repeats
– User can specify events, delays, and concurrency
– The order of execution of the statements depends 

on the flow of values.
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Implementation of Signals 1
• Initialized declaration:

signal s1 : std_ulogic:=‘0’;

(initialization is not necessary)
• General form of concurrent signal assignment

signal <= value expression after time expression;

• A signal has a history of values over time: waveform.

• RHS is referred to as waveform element.
• Time-value pair is referred to as a transaction.
• Can we specify multiple waveform elements?

s1 <= (x xor y) after 5 ns, (x or y) after 10 ns,
(not x) after 15 ns;

• Three transactions will be generated.
• The list of all the current transactions pending on a 

signal is called driver for the signal.
• Driver is essentially a waveform on the signal
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Implementation of Signals 2
• The transactions that have not been occurred in 

simulation is called projected output waveform.
• Specifying waveforms:
• Example: a single waveform element

s1 <= ‘0’, ‘1’ after 10 ns, ‘0’ after 20 ns, ‘1’
after 40 ns;

10 20 30 40 50

All waveforms must be ordered in increasing time.
s1 <= ‘0’, ‘1’ after 10 ns, ‘1’ after 5 ns,

‘0’ after 20 ns, ‘1’ after 40 ns � Invalid
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Resolved Signals 1
• One assumption

– There is only one driver for a signal.
– In real devices, there may be multiple drivers for a 

signal, e.g. busses, wired logic.
– s1 <= ‘0’,‘1’ after 10 ns,‘0’ after 20 ns,‘1’ after 40 ns;

– s1 <= ‘1’ after 10 ns,‘1’ after 20 ns,‘0’ after 40 ns;

• Resolution function
– A shared signal must be of special type: resolved
– VHDL uses resolution function to resolve driver 

conflicts
– std_logic and std_logic_vector are resolved 

versions of std_ulogic and std_ulogic_vector
– User may define new resolved types, but he must also 

provide an implementation of resolution function.
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STD_ULOGIC
type std_ulogic is(

‘U’, -- Uninitialized
‘X’, -- Forcing unknown
‘0’, -- Forcing 0
‘1’, -- Forcing 1

‘Z’, -- High impedance

‘W’, -- Weak unknown

‘L’, -- Weak 0

‘H’, -- Weak 1

‘-’, -- don’t care
);

subtype std_logic is RESOLVED std_ulogic;

RESOLVED is the name of resolution function.
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Resolved Signals 2

‘1’ @ 10 ns ‘0’ @ 5 ns ‘1’ @ 2 ns

driver 1

‘0’ @ 20 ns ‘1’ @ 5 ns ‘0’ @ 4 ns

driver 2

‘1’ @ 20 ns ‘1’ @ 10 ns

driver 3

resolution
function

Z 
signal
value
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Resolved Signals 3
function WIRED_OR(inputs: bit_vector) return bit is
begin

for j in inputs’range loop
if(inputs(j)= ‘1’ then

return ‘1’;
end if;

end loop;
return ‘0’;

end WIRED_OR;

subtype resolved_bit is WIRED_OR bit;
-- resolved_bit signal is associated with resolution
-- function WIRED_OR
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Conditional Signal Assignment
• 4-to-1, 8-bit MUX
library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port(in0, in1, in2, in3: in std_logic_vector(7 downto 0);

S0, S1: in std_logic;
Z : out std_logic_vector(7 downto 0));

end entity mux4;

architecture behavioral of mux4 is

begin

Z <= in0 after 5 ns when S0 = ‘0’ and S1 = ‘0’ else
in1 after 5 ns when S0 = ‘0’ and S1 = ‘1’ else
in2 after 5 ns when S0 = ‘1’ and S1 = ‘0’ else
in3 after 5 ns when S0 = ‘1’ and S1 = ‘1’ else
“00000000” after 5 ns;

end architecture behavioral;

• Question: What does the last statement cover?
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4-to-1, 8-bit MUX

• Any event on input signals in0-in3 or control 
signals S0, S1 may cause a change in the value 
of the output signal
– When this happens, all four conditions are checked 

and appropriate one is evaluated.
– Expressions in the RHS are evaluated in the order 

they appear.
– This is what is called priority order.
– In the previous example, only one condition holds; 

thus the order does not matter.
– In some models, priority is important
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Priority Behavior
• 4-to-2 priority encoder
library IEEE;
use IEEE.std_logic_1164.all;

entity priority_encoder is
port(S0, S1, S2, S3: in std_logic;

Z : out std_logic_vector(1 downto 0));
end entity priority_encoder;

architecture behavioral of priority_encoder is

begin

Z <= “00” after 5 ns when S0 = ‘1’ else
“01” after 5 ns when S1 = ‘1’ else
“10” after 5 ns when S2 = ‘1’ else
“11” after 5 ns when S3 = ‘1’ else
“00” after 5 ns;

end architecture behavioral;

• What if S0 and S1 are ‘1’ at the same time?
• This model is a combinational logic.
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Unaffected Keyword

• Semantics:
– When S2 = ‘1’ and both S0 and S1 have the value 
‘0’, then  the value of the output signal does not 
change.

– This model represents a sequential circuit.
– unaffected keyword is only supported in VHDL 

1993.

Z <= “00” after 5 ns when S0 = ‘1’ else
“01” after 5 ns when S1 = ‘1’ else
unaffected when S2 = ‘1’ else
“11” after 5 ns when S3 = ‘1’ else
“00” after 5 ns;
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Selected Signal  Assignment 1
• Register file design

– Read-only register file with two reading ports
library IEEE;
use IEEE.std_logic_1164.all;

entity register_file is
port(
addr1, addr2: in std_logic_vector(2 downto 0);
reg_out_1, reg_out_2 : out std_logic_vector(31 downto 0));

end entity register_file;

architecture behavioral of register_file is

signal reg0,reg2:
std_logic_vector(31 downto 0):=x”12345678”;

signal reg1,reg3:
std_logic_vector(31 downto 0):=x”abcdef00”;

begin

...

end architecture behavioral;
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Selected Signal  Assignment 2

• select is similar to case statement in C.
• All choices are evaluated; only one must be true.
• Specified choices must cover all the possibilities
• Question: Why do we need others in the last statement

...

begin

with addr1 select
reg_out_1 <= reg0 after 5 ns when “000”;

reg1 after 5 ns when “001”;
reg2 after 5 ns when “010”;
reg3 after 5 ns when “011”;
reg3 after 5 ns when others;

with addr2(1 downto 0) select
reg_out_2 <= reg0 after 5 ns when “00”;

reg1 after 5 ns when “01”;
reg2 after 5 ns when “10”;
reg3 after 5 ns when “11”;
reg3 after 5 ns when others;

end architecture behavioral;
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A Note in Portability
• signal reg0,reg2:

std_logic_vector(31 downto 0):=x”12345678”;

• In some old simulators, hexadecimal values must be 
converted to the type std_logic_vector.

• The function to_stdlogicvector() is available in 
std_logic_1164 package.

• signal reg0,reg2: std_logic_vector(31 downto 0):=

to_stdlogicvector(x”12345678”);

• CAD vendors offer many type conversion functions 
with different names in packages

• Those kinds of packages are usually in IEEE library.
• Check IEEE library.
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VHDL Models with CSAs
• Construct Schematic

1. Model each component (e.g. gate) as a delay 
element.

2. Draw a schematic interconnecting all the 
components. Uniquely label each component.

3. Identify the input signals as input ports.
4. Identify the output signals as output ports.
5. All remaining signals are internal signals
6. Associate a type with each input, output, and 

internal signals (e.g. std_logic)
7. Make sure that each input port, output port, and 

internal signal are labeled with a unique name
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An Example Schematic
• Delay element model of a digital system

D

D D

D

D

Input
ports

Output
ports

Component
Internal

signal
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A Template for VHDL with CSA
library library-name-1, library-name-2;
use library-name-1.package-name.all;
use library-name-2.package-name.all;

entity entity_name is
port (input signals: in type;

output signals: out type);
end entity entity_name;

architecture arch_name of entity_name is
-- declare internal signals
-- you may have multiple signals of different types
signal internal-signal-1: type := initialization;
signal internal-signal-2: type := initialization;

begin
-- specify value of each signal as a function other signals

internal-signal-1 <= simple, conditional, or selected CSA;
internal-signal-2 <= simple, conditional, or selected CSA;

output-signal-1 <= simple, conditional, or selected CSA;
output-signal-2 <= simple, conditional, or selected CSA;

end architecture behavioral;
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Block Statement
• It disables signal drivers by using guards
block-label: block[(guard-expression)][is]

[block-header]
[block-declarations]

begin
concurrent-statements; -- any number or none

end block;

• If a guard-expression appears in the block statement,
there is a signal called GUARD of type Boolean within 
the block.

B1: block(STROBE=‘1’)
begin

Z <= guarded not A;
end block B1;

• CSA statement is executed if the implicit signal 
GUARD is TRUE. In the example, Z gets the value of A’
when STROBE = ‘1’.
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Block Statement
• The signal GUARD can be used explicitly.
B2: block(CLEAR=‘0’ and PRESET=‘1’)
begin

Q <= ‘1’ when not GUARD else ‘0’;
end block B2;

entity d_flip-flop is
port(d, clk: in std_logic; q, qbar: out std_logic);
end entity d_flip_flop;

architecture behavioral of d_flip_flop is
begin

L1: block(clk=‘1’ and not clk’STABLE)
signal temp: std_logic;
begin

temp <= guarded d;
q <= temp;
q <= not temp;

end block L1;
end architecture behavioral;

• Rising-edge triggered D flip-flop.
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Delay Models
• Propagation delay is an important aspect of a 

component
• We need various delay models to accurately 

represent the behavior of digital circuits.
• These are
1. Inertial
2. Transport
3. Delta
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Inertial Delay Model
• Digital circuits have inertia.

– It takes a finite amount of time and energy for the 
output of circuit to respond to any change on the 
input.

– The change on the input (event) has to persist for 
certain period of time in order the output to 
respond.

– Otherwise, there will be no change at the output 
corresponding to the event.

– This inertial delay model is the default delay model 
for VHDL programs.
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Inertial Delay Model: Example

• Output <= Input + 0 after propagation-delay;

• Out1 is the output waveform for delay = 8 ns
• Out2 is the output waveform for delay = 2 ns

• Any pulse with a width of less than the propagation 
delay through the gate is rejected.

Out 2

Out 1

Input

Input
Output

8 ns

2 ns

5 ns 10 ns 15 ns 20 ns 25 ns 30 ns 35 ns
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Inertial Delay Model
• If the event does not persist for the duration of 

pulse rejection width the output does not respond
– The VHDL language uses the propagation delay through 

the component as the default pulse rejection width.
• If we know the pulse rejection width of a 

component, we can use it
• sum <= reject 2 ns inertial (x xor y) after 5 ns.

• General form in VHDL’93
signal <= reject time-expression inertial value-
expression after time-expression.

• We cannot specify pulse rejection width in 
VHDL’87. Delay value is used for this.
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Transport Delay Model

• We use transport model for components with 
no inertia.
– e.g. accurate modeling of wire delays
– With small feature size in modern day circuits, it is 

important to model the propagation delay of wires.
– Any event is propagated to the output. The change 

does not have to persist. 
– Even very short pulses are propagated in this model.
– sum <= transport (x xor y) after 5 ns;

– Transport model is not commonly used.
– Default delay model is inertial.
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library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port (a, b: in std_logic;

sum, carry: out std_logic);
end entity half_adder;

architecture transport_delay of half_adder is
signal s1, s2: std_logic := ‘0’;
begin
s1 <= (a xor b) after 2 ns;
s2 <= (a and b) after 2 ns;
sum <= transport s1 after 4 ns;
carry <= transport s2 after 4 ns;

end architecture transport_delay;

Transport Delay Model: Example
• Modeling wires as delay 

elements
• delay type is transport

a

b

sum

carry

wire delay is 4 ns

s1

s2
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Transport Delay Model: Example

b

a

carry

sum

2 ns 4 6 8 10 12

s2

s1

inertial

transport

What if we used inertial delay for wires?
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Inertial vs. Transport
• Which model is being used depends on the 

component
– For example, assume that we have a model of board 

level design, and VHDL models for chips on the 
board.

– We may use transport model for the delay 
experienced by signals connecting chips on the 
board
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Delta Delays
• What if we do not specify any delay?

sum <= (x xor y); ≡ sum <= (x xor y) after 0 ns;

• we may choose to ignore delays when 
– we do not have realistic delay for the components
– we are not interested in physical timing behavior

• How can we preserve the concurrency in case 
of no propagation delays for components
– For functional correctness, we must maintain the 

correct ordering of events
– VHDL language provides a infinitesimally small delay 

called delta delay. 
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Delta Delays
• Assignment takes place a delay of ∆ after the 

RHS is evaluated.
– If events with zero delay are produced at timestep 

T, the simulator simply organizes and processes 
events in time order of occurrence:

– Events at T+∆ are processed first,
– then events at T+2∆
– followed by the events occurring 3∆ seconds later.
– While the time advances with steps of ∆ seconds, 

the simulation time does not actually proceed.
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Delta Delays: Example

library IEEE;
use IEEE.std_logic_1164.all;

entity combinational is
port (in1, in2: in std_logic;

z: out std_logic);
end entity combinational;

architecture behavior of combinational is
signal s1, s2, s3, s4: std_logic := ‘0’;
begin
L1: s1 <= not in1;
L2: s2 <= not in2;
L3: s3 <= not (s1 and in2);
L4: s4 <= not (s2 and in1);
L5: z <= not (s3 and s4);
end architecture behavior;

in1

in2

s1

s2

s3

s4

z



53

Delta Delays: Example

in2

in1

10 ns 20 30 40 50 60

s2

s3

70

z

s1

s4

L1:

L2:

L3:

L4:

L5:
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Delta Delays: Closer Look
• At time 10 ns, in2: 1 � 0
• This event leads to another events triggering an event 

on Z.
• event on Z occurs at the same time the event on in2
• Simulator does not show the actual trace as below.

in2

s2

s3

z

10 ns 10 + ∆ 10 + 2∆ 10 + 3∆ 20 ns 
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Delta Delays

• Textual order is not important
• Flow of signals counts

library IEEE;
use IEEE.std_logic_1164.all;

entity combinational is
port (in1, in2: in std_logic;

z: out std_logic);
end entity combinational;

architecture behavior of combinational is
signal s1, s2, s3, s4: std_logic := ‘0’;
begin
L5: z <= not (s3 and s4);
L2: s2 <= not in2;
L4: s4 <= not (s2 and in1);
L3: s3 <= not (s1 and in2);
L1: s1 <= not in1;
end architecture behavior;
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Summary
• Entity and architecture constructs
• Concurrent signal assignments (CSA)

– simple concurrent assignments
– conditional concurrent assignments
– selected concurrent assignments

• Constructing models using CSA
– modeling events, propagation delays, and 

concurrency
• Modeling delays

– inertial
– transport
– delta
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Summary (cont)
• Signal drivers and waveforms
• Shared signals, resolved types, and resolution 

functions
• generating waveforms using waveform 

elements
• events and transactions


