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ROM
library ieee;
use ieee.std_logic_1164.all;

entity rom16x8 is
port(address: in integer range 0 to 15;

data: out std_ulogic_vector(7 downto 0));
end entity;

architecture sevenseg of rom16x8 is
type rom_array is array (0 to 15) of std_ulogic_vector (7

downto 0);

constant rom: rom_array := ( “11111011”, “00010010”,
“10011011”, “10010011”, “01011011”, “00111010”,
“11111011”, “00010010”, “10100011”, “10011010”,
“01111011”, “00010010”, “10101001”, “00110110”,
“11011011”, “01010010”);

begin

data <= rom(address);

end architecture;
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Static RAM

Static RAM
2n word of 

m bits

n

m
CS’

OE’

WE’

Address

Data input/output

CS’ - when asserted low, memory read and write operations are possible. 

OE’ - when asserted low, memory output is enabled onto an external bus 

WE’ - when asserted low, memory can be written 
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A Cell  of Static RAM
• The RAM contains address decoders and a memory 

array.
• A cell of RAM that stores one bit of data

D

G

Q
data_out

data_in

SEL’
WR’

Read mode:  SEL’ = ‘0’ and WR’ = ‘1’, (G=‘0’) and data_out = Q 

Write mode:  SEL’ = ‘0’ and WR’ = ‘0’, (G=‘1’) and Q = data_in

When SEL’ = ‘1’ or WR’ = ‘1’, the data is stored in the latch

When SEL’ = ‘1’, data_out = ‘Z’
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Truth Table of Static RAM

data_inwriteLXL

data_outreadHLL

high-Zoutput 
disabled

HHL

high-Znot 
selected

XXH

I/O pinsModeWE’OE’CS’
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6116 Static CMOS RAM

Memory Matrix
128 x 128
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Read Cycle Timing I

tRC

Adress

dout previous data valid data valid
tOH

tAA tOH

CS’ = 0, OE’ = 0 WE’ = 1

After the address changes, the old data remains at the 
output for a time tOH

Then there is a transition period during which the data 
may change (cross-hatching section)
The new data is stable at the memory after the address access 
time tAA

The address must be stable for the read cycle time, tRC
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Read Cycle Timing II

CS’

dout data valid

tCLZ

tACS tCHZ

Address is stable, OE’ = 0, WE’ = 1
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WE’ Controlled Write Cycle Time (OE’ = 0).

address

CS’

tWC

• CS’ goes low before or at the same time as WE’ goes low
• WE’ goes high before or at the same time as CS’ goes high

tCW tWR

WE’

tAS

tWP

tAW

dout

tWHZ tOW

din

tDW

valid data

tDH
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CS’ controlled write cycle time (OE’ = 0).

Adress

CS’

tWC

• WE’ goes low before or at the same time as CS’ goes low
• CS’ goes high before or at the same time as WE’ goes high

tCW tWR

WE’

tAS

tAW

dout

din

tDW

new data

tDH

high - Z

old data or high-Z
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Writing to the Memory
• In both CS’ and WE’ controlled write cycles, 

writing to memory occurs when both CS’ and 
WE’ are low,

• writing is completed when either one of these 
signals goes high.
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Timing Specifications for CMOS SRAM

43258A-2561162-2SymbolParameter

-3-10tOHOutput hold from address change

1034010tOHZChip disable to output in high-Z

1034010tCHZChip de-selection to output in 
high-Z

-0-10tOLZOutput enable to output in low-Z

12-80-tOEOutput enable to output valid

-3-10tCLZChip selection to output in low-Z

25-120-tACSChip Select Access Time

25-120-tAAAddress Access Time

-25-120tRCRead Cycle Time

maxmin maxmin
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Timing Specifications for CMOS SRAM

-0-0tDHData hold from end of write

43258A-2561162-2SymbolParameter

-0-10tOWOutput active from end of write

-12-35tDWData valid to end of write

1033510tWHZWrite enable to output in high-Z

-0-0tWRWrite recovery time

-15-70tWPWrite pulse width

-0-0tASAddress setup time

-15-105tAWAddress valid to end of write

-15-70tCWChip selection to end of write

-25-120tWCWrite Cycle Time

maxmin maxmin
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Simple Memory Model
library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity ram6116 is
port(address: in unsigned(7 downto 0);

data: inout std_logic_vector(7 downto 0);
WE_b, CS_b, OE_b: in std_ulogic);

end entity ram6116;
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Simple Memory Model
architecture simple_ram of ram6116 is

type ram_type is array (0 to 2**8-1) of
std_logic_vector(7 downto 0);

signal ram1: ram_type:= (others => (others => ’0’));

begin

process

begin

data <= (others => ‘Z’); -- chip is not selected

if (CS_b = ‘0’) then

if rising_edge(WE_b) then -- write

ram1(conv_integer(address’delayed)) <= data;
wait for 0 ns;

end if;

if WE_b = ‘1’ and OE_b = ‘0’ then -- read

data <= ram1(conv_integer(address));

else

data <= (others => ‘Z’);
end if;

end if;

wait on WE_b, CS_b, OE_b, address;

end process; end simple_ram;
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Synthesizeable Memory Model
architecture simple_ram of ram6116 is

type ram_type is array (0 to 2**8) of
std_logic_vector(7 downto 0);

signal ram1: ram_type;

begin

process (address, CS_b, WE_b, OE_b) is

begin

data <= (others => ‘Z’); -- chip is not selected

if (CS_b = ‘0’) then

if WE_b = ‘0’ then -- write

ram1(conv_integer(address)) <= data;
end if;

if WE_b = ‘1’ and OE_b = ‘0’ then -- read

data <= ram1(conv_integer(address));

else

data <= (others => ‘Z’);
end if;

end if;

end process;

end simple_ram;
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Timing Model for SRAM I
library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity ram6116 is

generic (constant t_AA: Time := 120 ns;
constant t_ACS: Time := 120 ns;
constant t_CLZ: Time := 10 ns;
constant t_CHZ: Time := 10 ns;
constant t_OH: Time := 10 ns;
constant t_WC: Time := 120 ns;
constant t_AW: Time := 105 ns;
constant t_WP: Time := 70 ns;
constant t_WHZ: Time := 35 ns;
constant t_DW: Time := 35 ns;
constant t_DH: Time := 0 ns;
constant t_OW: Time := 10 ns);

port(address: in unsigned(7 downto 0);
data: inout std_logic_vector(7 downto 0);
WE_b, CS_b, OE_b: in std_ulogic);

end entity ram6116;



18

Timing Model for SRAM II
architecture SRAM of ram6116 is

type ram_type is array(0 to 2**8) of std_logic_vector(7 downto 0);
signal ram1: ram_type := (others => (others => ‘0’));

begin
ram: process
begin

if (rising_edge(WE_b) and CS_b’delayed = ‘0’)
or (rising_edge(CS_b) and WE_b’delayed = ‘0’) then
-- write

ram1(conv_integer(address’delayed)) <= data’delayed;

-- data’delayed is the value of data just before the falling_edge

data <= transport data’delayed after t_OW;

end if;

if (falling_edge(WE_b) and CS_b = ‘0’) then
–- enter write mode
data <= transport “ZZZZZZZZ” after t_WHZ;

end if;
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Timing Model for SRAM III
architecture SRAM of ram6116 is

...
begin

ram: process
begin

...

if CS_b’event and OE_b = ‘0’ then

if CS_b = ‘1’ then -- RAM is de-selected
data <= transport “ZZZZZZZZ” after t_CHZ;

elsif WE_b = ‘1’ then –- read
data <= “XXXXXXXX” after t_CLZ;
data <= transport ram1((conv_integer(address)) after t_ACS;

end if;
end if;

if address’event and CS_b = ‘0’ and OE_b = ‘0’ and WE_b = ‘1’
then

data <= “XXXXXXXX” after t_OH;
data <= transport ram1(conv_integer(address)) after t_AA;

end if;

wait on CS_b, WE_b, address;

end process RAM;

...
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Timing Model for SRAM IV
architecture SRAM of ram6116 is

...
begin
...

check: process
begin

if CS_b’delayed = ‘0’ and NOW /= 0 ns then

if address’event then

assert (address’delayed’stable(t_WC)) –- t_RC = t_WC

report “address cycle is too short”

severity WARNING;

end if;

...
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Timing Model for SRAM V
architecture SRAM of ram6116 is
...

begin
...

check: process
begin

if CS_b’delayed = ‘0’ and NOW /= 0 ns then

...
if rising_edge(WE_b) then

assert (address’delayed’stable(t_AW))
report “address not long enough to end of write”
severity WARNING;
assert (WE_b’delayed’stable(t_WP))
report “write pulse is too short” severity WARNING;

assert (data’delayed’stable(t_DW))
report “data setup time is too short” severity WARNING;
wait for t_DH;
assert (data’last_event >= t_DH)
report “data hold time is too short” severity WARNING;

end if;

end if;

wait on WE_b, address, CS_b;

end process check;
end architecture sram;
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Dynamic RAM
library ieee;
use ieee.std_logic_1164.all;

entity dram1024 is
port(address: in integer range 0 to 2**5-1;

data: inout std_ulogic_vector(7 downto 0);
RAS, CAS, WE: in std_ulogic);

end entity;
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Dynamic RAM
architecture beh of dram1024 is
begin

p0: process(RAS, CAS, WE) is
type dram_array is array (0 to 2**10-1) of

std_ulogic_vector (7 downto 0);

variable row_address: integer range 0 to 2**5-1;

variable mem_address: integer range 0 to 2**10-1;

variable mem: dram_array;

begin

...

end process p0;

end architecture;
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Dynamic RAM
architecture beh of dram1024 is
begin

p0: process(RAS, CAS, WE) is
begin

data <= (others => ‘Z’);

if falling_edge(RAS) then row_address := address;

elsif falling_edge(CAS) then
mem_address := row_address*2**5 + address;

if RAS = ‘0’ and WE = ‘0’ then
mem(mem_address) := data;

end if;

if CAS = ‘0’ and RAS = ‘0’ and WE = ‘1’ then
data <= mem(mem_address);

end if;

end process p0;

end architecture;


