
1

VHDL
Memory Models

EL 310
Erkay Savaş

Sabancı University

2

ROM
library ieee;
use ieee.std_logic_1164.all;

entity rom16x8 is
port(address: in integer range 0 to 15;

data: out std_ulogic_vector(7 downto 0));
end entity;

architecture sevenseg of rom16x8 is
type rom_array is array (0 to 15) of std_ulogic_vector (7

downto 0);

constant rom: rom_array := (“11111011”, “00010010”,
“10011011”, “10010011”, “01011011”, “00111010”,
“11111011”, “00010010”, “10100011”, “10011010”,
“01111011”, “00010010”, “10101001”, “00110110”,
“11011011”, “01010010”);

begin

data <= rom(address);

end architecture;

3

Static RAM

Static RAM
2n word of

m bits

n

m
CS’

OE’

WE’

Address

Data input/output

CS’ - when asserted low, memory read and write operations are possible.

OE’ - when asserted low, memory output is enabled onto an external bus

WE’ - when asserted low, memory can be written

4

A Cell of Static RAM
• The RAM contains address decoders and a memory

array.
• A cell of RAM that stores one bit of data

D

G

Q
data_out

data_in

SEL’
WR’

Read mode: SEL’ = ‘0’ and WR’ = ‘1’, (G=‘0’) and data_out = Q

Write mode: SEL’ = ‘0’ and WR’ = ‘0’, (G=‘1’) and Q = data_in

When SEL’ = ‘1’ or WR’ = ‘1’, the data is stored in the latch

When SEL’ = ‘1’, data_out = ‘Z’

5

Truth Table of Static RAM

data_inwriteLXL

data_outreadHLL

high-Zoutput
disabled

HHL

high-Znot
selected

XXH

I/O pinsModeWE’OE’CS’

6

6116 Static CMOS RAM

Memory Matrix
128 x 128

Row
Decoder

Column I/O

Column Decoder

input
data

control

A10

A4

A3 A2 A1 A0

I/O7

I/O0

OE’

WE’

CS’

7

Read Cycle Timing I

tRC

Adress

dout previous data valid data valid
tOH

tAA tOH

CS’ = 0, OE’ = 0 WE’ = 1

After the address changes, the old data remains at the
output for a time tOH

Then there is a transition period during which the data
may change (cross-hatching section)
The new data is stable at the memory after the address access
time tAA

The address must be stable for the read cycle time, tRC

8

Read Cycle Timing II

CS’

dout data valid

tCLZ

tACS tCHZ

Address is stable, OE’ = 0, WE’ = 1

9

WE’ Controlled Write Cycle Time (OE’ = 0).

address

CS’

tWC

• CS’ goes low before or at the same time as WE’ goes low
• WE’ goes high before or at the same time as CS’ goes high

tCW tWR

WE’

tAS

tWP

tAW

dout

tWHZ tOW

din

tDW

valid data

tDH

10

CS’ controlled write cycle time (OE’ = 0).

Adress

CS’

tWC

• WE’ goes low before or at the same time as CS’ goes low
• CS’ goes high before or at the same time as WE’ goes high

tCW tWR

WE’

tAS

tAW

dout

din

tDW

new data

tDH

high - Z

old data or high-Z

11

Writing to the Memory
• In both CS’ and WE’ controlled write cycles,

writing to memory occurs when both CS’ and
WE’ are low,

• writing is completed when either one of these
signals goes high.

12

Timing Specifications for CMOS SRAM

43258A-2561162-2SymbolParameter

-3-10tOHOutput hold from address change

1034010tOHZChip disable to output in high-Z

1034010tCHZChip de-selection to output in
high-Z

-0-10tOLZOutput enable to output in low-Z

12-80-tOEOutput enable to output valid

-3-10tCLZChip selection to output in low-Z

25-120-tACSChip Select Access Time

25-120-tAAAddress Access Time

-25-120tRCRead Cycle Time

maxmin maxmin

13

Timing Specifications for CMOS SRAM

-0-0tDHData hold from end of write

43258A-2561162-2SymbolParameter

-0-10tOWOutput active from end of write

-12-35tDWData valid to end of write

1033510tWHZWrite enable to output in high-Z

-0-0tWRWrite recovery time

-15-70tWPWrite pulse width

-0-0tASAddress setup time

-15-105tAWAddress valid to end of write

-15-70tCWChip selection to end of write

-25-120tWCWrite Cycle Time

maxmin maxmin

14

Simple Memory Model
library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity ram6116 is
port(address: in unsigned(7 downto 0);

data: inout std_logic_vector(7 downto 0);
WE_b, CS_b, OE_b: in std_ulogic);

end entity ram6116;

15

Simple Memory Model
architecture simple_ram of ram6116 is

type ram_type is array (0 to 2**8-1) of
std_logic_vector(7 downto 0);

signal ram1: ram_type:= (others => (others => ’0’));

begin

process

begin

data <= (others => ‘Z’); -- chip is not selected

if (CS_b = ‘0’) then

if rising_edge(WE_b) then -- write

ram1(conv_integer(address’delayed)) <= data;
wait for 0 ns;

end if;

if WE_b = ‘1’ and OE_b = ‘0’ then -- read

data <= ram1(conv_integer(address));

else

data <= (others => ‘Z’);
end if;

end if;

wait on WE_b, CS_b, OE_b, address;

end process; end simple_ram;

16

Synthesizeable Memory Model
architecture simple_ram of ram6116 is

type ram_type is array (0 to 2**8) of
std_logic_vector(7 downto 0);

signal ram1: ram_type;

begin

process (address, CS_b, WE_b, OE_b) is

begin

data <= (others => ‘Z’); -- chip is not selected

if (CS_b = ‘0’) then

if WE_b = ‘0’ then -- write

ram1(conv_integer(address)) <= data;
end if;

if WE_b = ‘1’ and OE_b = ‘0’ then -- read

data <= ram1(conv_integer(address));

else

data <= (others => ‘Z’);
end if;

end if;

end process;

end simple_ram;

17

Timing Model for SRAM I
library ieee;
use ieee.std_logic_1164.all;

use ieee.std_logic_arith.all;

entity ram6116 is

generic (constant t_AA: Time := 120 ns;
constant t_ACS: Time := 120 ns;
constant t_CLZ: Time := 10 ns;
constant t_CHZ: Time := 10 ns;
constant t_OH: Time := 10 ns;
constant t_WC: Time := 120 ns;
constant t_AW: Time := 105 ns;
constant t_WP: Time := 70 ns;
constant t_WHZ: Time := 35 ns;
constant t_DW: Time := 35 ns;
constant t_DH: Time := 0 ns;
constant t_OW: Time := 10 ns);

port(address: in unsigned(7 downto 0);
data: inout std_logic_vector(7 downto 0);
WE_b, CS_b, OE_b: in std_ulogic);

end entity ram6116;

18

Timing Model for SRAM II
architecture SRAM of ram6116 is

type ram_type is array(0 to 2**8) of std_logic_vector(7 downto 0);
signal ram1: ram_type := (others => (others => ‘0’));

begin
ram: process
begin

if (rising_edge(WE_b) and CS_b’delayed = ‘0’)
or (rising_edge(CS_b) and WE_b’delayed = ‘0’) then
-- write

ram1(conv_integer(address’delayed)) <= data’delayed;

-- data’delayed is the value of data just before the falling_edge

data <= transport data’delayed after t_OW;

end if;

if (falling_edge(WE_b) and CS_b = ‘0’) then
–- enter write mode
data <= transport “ZZZZZZZZ” after t_WHZ;

end if;

19

Timing Model for SRAM III
architecture SRAM of ram6116 is

...
begin

ram: process
begin

...

if CS_b’event and OE_b = ‘0’ then

if CS_b = ‘1’ then -- RAM is de-selected
data <= transport “ZZZZZZZZ” after t_CHZ;

elsif WE_b = ‘1’ then –- read
data <= “XXXXXXXX” after t_CLZ;
data <= transport ram1((conv_integer(address)) after t_ACS;

end if;
end if;

if address’event and CS_b = ‘0’ and OE_b = ‘0’ and WE_b = ‘1’
then

data <= “XXXXXXXX” after t_OH;
data <= transport ram1(conv_integer(address)) after t_AA;

end if;

wait on CS_b, WE_b, address;

end process RAM;

...

20

Timing Model for SRAM IV
architecture SRAM of ram6116 is

...
begin
...

check: process
begin

if CS_b’delayed = ‘0’ and NOW /= 0 ns then

if address’event then

assert (address’delayed’stable(t_WC)) –- t_RC = t_WC

report “address cycle is too short”

severity WARNING;

end if;

...

21

Timing Model for SRAM V
architecture SRAM of ram6116 is
...

begin
...

check: process
begin

if CS_b’delayed = ‘0’ and NOW /= 0 ns then

...
if rising_edge(WE_b) then

assert (address’delayed’stable(t_AW))
report “address not long enough to end of write”
severity WARNING;
assert (WE_b’delayed’stable(t_WP))
report “write pulse is too short” severity WARNING;

assert (data’delayed’stable(t_DW))
report “data setup time is too short” severity WARNING;
wait for t_DH;
assert (data’last_event >= t_DH)
report “data hold time is too short” severity WARNING;

end if;

end if;

wait on WE_b, address, CS_b;

end process check;
end architecture sram;

22

Dynamic RAM
library ieee;
use ieee.std_logic_1164.all;

entity dram1024 is
port(address: in integer range 0 to 2**5-1;

data: inout std_ulogic_vector(7 downto 0);
RAS, CAS, WE: in std_ulogic);

end entity;

23

Dynamic RAM
architecture beh of dram1024 is
begin

p0: process(RAS, CAS, WE) is
type dram_array is array (0 to 2**10-1) of

std_ulogic_vector (7 downto 0);

variable row_address: integer range 0 to 2**5-1;

variable mem_address: integer range 0 to 2**10-1;

variable mem: dram_array;

begin

...

end process p0;

end architecture;

24

Dynamic RAM
architecture beh of dram1024 is
begin

p0: process(RAS, CAS, WE) is
begin

data <= (others => ‘Z’);

if falling_edge(RAS) then row_address := address;

elsif falling_edge(CAS) then
mem_address := row_address*2**5 + address;

if RAS = ‘0’ and WE = ‘0’ then
mem(mem_address) := data;

end if;

if CAS = ‘0’ and RAS = ‘0’ and WE = ‘1’ then
data <= mem(mem_address);

end if;

end process p0;

end architecture;

