Uncertainty

AIMA2e Chapter 13
Outline

♦ Uncertainty
♦ Probability
♦ Syntax and Semantics
♦ Inference
♦ Independence and Bayes’ Rule
FOL and Uncertainty

One problem with FOL is that it can not handle uncertainty:

Assume two propositions:

\(A=\text{Leaving for the airport 2hrs before your flight}\)
\(B=\text{Catching the flight}\)

Then, you can reasonably say:

\[A \Rightarrow B\]

But this is not always True.
Uncertainty

Uncertainty is due to either:

◊ Laziness: too much work to list all the antecedents to ensure an exceptionless rule:

\[A \land \neg Rain \land \neg Traffic \ldots \Rightarrow B \]

◊ Ignorance: We may not have a complete theory for the domain (e.g. medical)

Even if we listed a long precedent list, we may not be able to apply such a rule because we may have only partial information
Uncertainty in FOL

Let action $A_t = \text{leave for airport } t \text{ minutes before flight}$

A purely logical approach either
1) risks falsehood: “A_{30} will get me there on time” or
2) leads to conclusions that are too weak for decision making:
 “A_{30} will get me there on time if there’s no accident on the bridge
 and it doesn’t rain and my tires remain intact etc etc.”
3) be overly pessimistic:
 A_{1440} will get me there on time but I’d have to stay overnight in the airport . . .)
Methods for handling uncertainty

Making assumptions:
 Assume my car does not have a flat tire
 Assume there is no outrageous traffic...
Issues: What assumptions are reasonable? How to handle contradiction?

Rules with fudge factors:
 $A_{25} \leftrightarrow_{0.3} \text{get there on time}$
 $\text{Sprinkler} \leftrightarrow_{0.99} \text{WetGrass}$
 $\text{WetGrass} \leftrightarrow_{0.7} \text{Rain}$
Issues: Problems with combination, e.g., \textit{Sprinkler} causes \textit{Rain}??

Fuzzy logic:
 Handles \textit{degree of truth} NOT uncertainty e.g.,
 WetGrass is true to degree 0.2

\textbf{Probability}(Mahaviracarya(9th C.), Cardamo(1565) - theory of gambling):
 Given the available evidence,
 A_{25} will get me there on time with probability 0.04
Probability

- Probabilities relate propositions to one’s own state of knowledge, by assigning a numerical degree of belief between 0 and 1, to each event.
 \[P(A_{25} \text{ gets me there on time}|\text{no reported accidents}) = 0.06 \]

- Probabilities of propositions change with new evidence:
 \[P(A_{25} \text{ gets me there on time}|\text{no reported accidents, 5 a.m.}) = 0.15 \]

Probabilistic assertions \textit{summarize} effects of
 - laziness: failure to enumerate exceptions, qualifications, etc.
 - ignorance: lack of relevant facts, initial conditions, etc.
Probability

Degree of belief is different than degree of truth:

♦ Fuzzy logic handles degree of truth
 e.g. WetGrass is true to degree 0.2

♦ Probability deals with degree of belief,
 e.g. \(P(\text{rain}) = 0.8 \) reflects our belief that there is an 80% chance of rain.
Making decisions under uncertainty

Suppose then that I believe the following:

\[
\begin{align*}
P(A_{25} \text{ gets me there on time} | \ldots) &= 0.04 \\
P(A_{90} \text{ gets me there on time} | \ldots) &= 0.70 \\
P(A_{120} \text{ gets me there on time} | \ldots) &= 0.95 \\
P(A_{1440} \text{ gets me there on time} | \ldots) &= 0.9999
\end{align*}
\]

Which action to choose?

Depends on my preferences for missing flight vs. airport cuisine, etc.

Utility theory is used to represent and infer preferences

Decision theory = utility theory + probability theory
Probability basics

◊ Begin with a set \(\Omega \)—the *sample space*
 e.g., 6 possible rolls of a die.
 \(\omega \in \Omega \) is a sample point/possible world/atomic event

◊ A *probability space* or *probability model* is a sample space
 with an assignment \(P(\omega) \) for every \(\omega \in \Omega \) s.t.
 \[
 0 \leq P(\omega) \leq 1 \\
 \sum_\omega P(\omega) = 1
 \]
 e.g., \(P(1) = P(2) = P(3) = P(4) = P(5) = P(6) = \frac{1}{6} \).

◊ An *event* \(A \) is any subset of \(\Omega \)
 \[
 P(A) = \sum_{\{\omega \in A\}} P(\omega)
 \]
 E.g., \(P(\text{die roll} < 4) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2} \)
Random variables and Probability

A *random variable* is a function that maps outcomes of some random experiment to some range, e.g., Real or Boolean values

◊ A random variable *DiceValue*, can be used to describe the outcome of rolling a fair die to the possible outcomes 1, 2, 3, 4, 5, 6.

◊ A random variable *OddDice*, can be used to describe the evenness-oddness of the rolled dice with possible outcomes True,False.

◊ P induces a *probability distribution* for any random variable X:

$$P(X = x_i) = \sum_{\{\omega: X(\omega) = x_i\}} P(\omega)$$

where $\omega \in \Omega$ is the samples in the *sample space*

 e.g., $P(OddDice = true) = 1/6 + 1/6 + 1/6 = 1/2$
 i.e., the event is the random variable taking certain values.
Given Boolean random variables A and B:

- event $a = \text{set of sample points } \omega \text{ where } A(\omega) = \text{true}$
- event $\neg a = \text{set of sample points } \omega \text{ where } A(\omega) = \text{false}$
- event $a \land b = \text{set of sample points } \omega \text{ where } A(\omega) = \text{true}$ and $B(\omega) = \text{true}$

◊ Often in AI applications, the sample points are defined by the values of a set of random variables, i.e., the sample space is the Cartesian product of the ranges of the variables

e.g., $A = \text{true}$, $B = \text{false}$, or $a \land \neg b$.

◊ Proposition = disjunction of atomic events in which it is true

e.g., $(a \lor b) \equiv (\neg a \land b) \lor (a \land \neg b) \lor (a \land b)$

$\Rightarrow P(a \lor b) = P(\neg a \land b) + P(a \land \neg b) + P(a \land b)$
Why use probability?

The definitions imply that certain logically related events must have related probabilities

E.g., \(P(a \lor b) = P(a) + P(b) - P(a \land b) \)

de Finetti (1931): an agent who bets according to probabilities that violate these axioms can be forced to bet so as to lose money regardless of outcome.
Syntax for propositions

◊ **Propositional** or **Boolean** random variables
e.g., *Cavity* (do I have a cavity?)

◊ **Discrete** random variables (**finite** or **infinite**)
e.g., *Weather* is one of \{sunny, rain, cloudy, snow\}
Values must be exhaustive and mutually exclusive

◊ **Continuous** random variables (**bounded** or **unbounded**)
e.g., *Temp* ∈ ℝ

◊ **Arbitrary Boolean combinations of basic propositions**
Weather = rain is a proposition
Temp < 22.0 is a proposition
Prior probability

Prior or unconditional probabilities of propositions
e.g., \(P(Cavity = true) = 0.1 \) and \(P(Weather = sunny) = 0.72 \)
correspond to belief prior to arrival of any (new) evidence

Probability distribution gives values for all possible assignments:
\[
P(Weather) = \langle 0.72, 0.1, 0.08, 0.1 \rangle \quad \text{(normalized, i.e., sums to 1)}
\]

Joint probability distribution for a set of r.v.s gives the probability of every atomic event on those r.v.s (i.e., every sample point)
\[
P(Weather, Cavity) = \begin{bmatrix}
 \text{sunny} & \text{rain} & \text{cloudy} & \text{snow} \\
 \text{Cavity = true} & 0.144 & 0.02 & 0.016 & 0.02 \\
 \text{Cavity = false} & 0.576 & 0.08 & 0.064 & 0.08
\end{bmatrix}
\]

Every question about a domain can be answered by the joint distribution because every event is a sum of sample points
Probability for continuous variables

Express distribution as a parameterized function of value:

$$P(X = x) = U[18, 26](x) = \text{uniform density between 18 and 26}$$

Here P is a *density*, integrates to 1.

$P(X = 20.5) = 0.125$ really means

$$\lim_{dx \to 0} \frac{P(20.5 \leq X \leq 20.5 + dx)}{dx} = 0.125$$
Gaussian density

\[P(x) = \frac{1}{\sqrt{2\pi \sigma}} e^{-(x-\mu)^2/2\sigma^2} \]
Joint probability distribution for a set of variables gives values for each possible assignment to all the variables

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.01</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Note that the entries sum up to 1 (mutually exclusive and exhaustive)
Joint Distribution

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.01</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Adding across rows or columns give unconditional probability of a variable:

\[
P(Cavity) = \]

\[
P(Cavity \lor Toothache) = \]

\[
P(Cavity \land Toothache) = \]
Joint Distribution

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.01</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Adding across rows or columns gives unconditional probability of a variable:

\[
P(Cavity) = 0.04 + 0.06 = 0.10
\]

\[
P(Cavity \lor Toothache) = 0.04 + 0.06 + 0.01 = 0.11
\]

Alternatively: \[1 - P(\neg Cavity \land \neg Toothache) = 1 - 0.89\]

\[
P(Cavity \land Toothache) = 0.04
\]
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>(\neg) toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>(\neg) catch</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>(\neg) cavity</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>

For any proposition \(\phi\), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)
\]
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th>cavity</th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>catch</td>
<td>.072</td>
<td>.008</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.144</td>
<td>.576</td>
</tr>
</tbody>
</table>

For any proposition ϕ, sum the atomic events where it is true:

$$P(\phi) = \sum_{\omega:\omega \models \phi} P(\omega)$$

$$P(\text{toothache}) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2$$
Inference by enumeration

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>0.108</td>
<td>0.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>0.072</td>
<td>0.008</td>
</tr>
<tr>
<td>cavity</td>
<td>0.016</td>
<td>0.064</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>0.144</td>
<td>0.576</td>
</tr>
</tbody>
</table>

For any proposition \(\phi \), sum the atomic events where it is true:

\[
P(\phi) = \sum_{\omega: \omega \models \phi} P(\omega)
\]

\[
P(\text{cavity} \lor \text{toothache}) = 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064 = 0.28
\]
Conditional probability

Definition of conditional (or posterior) probability:

\[P(A|B) = \frac{P(A \land B)}{P(B)} \text{ if } P(B) \neq 0 \]

e.g., \(P(Cavity|Toothache) = 0.8 \)

A general version holds for whole distributions, e.g.,

\[P(Weather, Cavity) = P(Weather|Cavity)P(Cavity) \]
Conditional probability

If we know more, e.g., *Cavity* is also given, then we have

\[P(Cavity|Toothache, Cavity) = 1 \]

Note: the less specific belief *remains valid* after more evidence arrives, but is not always *useful*

New evidence may be irrelevant, allowing simplification, e.g.,

\[P(Cavity|Toothache, GSWon) = P(Cavity|Toothache) = 0.8 \]

This kind of inference, sanctioned by domain knowledge, is crucial
Bayes’ Rule

Product rule \(P(A \land B) = P(A|B)P(B) = P(B|A)P(A) \)

\[\Rightarrow \text{Bayes’ rule} \quad P(A|B) = \frac{P(B|A)P(A)}{P(B)} \]

Why is this useful???

For assessing diagnostic probability from causal probability:

\[P(Cause|Effect) = \frac{P(Effect|Cause)P(Cause)}{P(Effect)} \]

E.g., let \(M \) be meningitis, \(S \) be stiff neck:

\[P(M|S) = \frac{P(S|M)P(M)}{P(S)} = \frac{0.8 \times 0.0001}{0.1} = 0.0008 \]

Note: posterior probability of meningitis still very small!
Chain Rule

Product rule $P(A \land B) = P(A|B)P(B) = P(B|A)P(A)$

\Rightarrow Bayes’ rule $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$

A general version holds for whole distributions, e.g.,

$P(Weather, Cavity) = P(Weather|Cavity)P(Cavity)$

(View as a 4×2 set of equations, not matrix mult.)

Chain rule is derived by successive application of product rule:

$P(X_1, \ldots, X_n) = P(X_1, \ldots, X_{n-1}) P(X_n|X_1, \ldots, X_{n-1})$

$= P(X_1, \ldots, X_{n-2}) P(X_{n-1}|X_1, \ldots, X_{n-2}) P(X_n|X_1, \ldots, X_{n-1})$

$= \ldots$

$= \prod_{i=1}^{n} P(X_i|X_1, \ldots, X_{i-1})$
Back to our example:

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.01</td>
<td>0.89</td>
</tr>
</tbody>
</table>

We can compute conditional probabilities from joint probabilities:

\[
P(Cavity|Toothache) = ?
\]
Inference by enumeration

<table>
<thead>
<tr>
<th></th>
<th>Toothache</th>
<th>¬Toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cavity</td>
<td>0.04</td>
<td>0.06</td>
</tr>
<tr>
<td>¬Cavity</td>
<td>0.01</td>
<td>0.89</td>
</tr>
</tbody>
</table>

We can compute conditional probabilities from joint probabilities:

\[
P(Cavity|Toothache) = \frac{P(Cavity \land Toothache)}{P(Toothache)} = \frac{0.04}{0.04 + 0.01} = 0.8
\]
Inference by enumeration - 3 variables

Start with the joint distribution:

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td>catch</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.016</td>
<td>.064</td>
</tr>
<tr>
<td>catch</td>
<td>.072</td>
<td>.008</td>
</tr>
<tr>
<td>¬ catch</td>
<td>.144</td>
<td>.576</td>
</tr>
</tbody>
</table>

\[
P(\neg \text{cavity}|\text{toothache}) = \frac{P(\neg \text{cavity} \land \text{toothache})}{P(\text{toothache})} = \frac{0.016 + 0.064}{0.108 + 0.012 + 0.016 + 0.064} = 0.4
\]
Normalization

Suppose we wish to compute the posterior probability of Meningitis given StiffNeck.

\[P(m|S) = P(s|m)P(m)/P(s) \]

If we are also entertaining the possibility that the patient may be suffering from a Whiplash, so we consider:

\[P(w|S) = P(s|w)P(w)/P(s) \]

\[\checkmark\] Now we can use the relative likelihoods of Meningitis and Whiplash, \textit{without} computing \(P(s) \) (divide the above two equations two cancel out \(P(s) \)), to find which is the more likely cause.

\[\checkmark\] If we still want to be able to compute \(P(M|S) \), we need normalization...
Consider:
\[P(m|S) = P(s|m)P(m)/P(s) \text{ and } P(\neg m|S) = P(s|\neg m)P(\neg m)/P(s) \]

Since the above two terms sum to 1 (there are only two possibilities given \(s \)), we obtain:
\[P(M|s) + P(\neg m|s) = P(s|m)P(m)/P(s) + P(s|\neg m)P(\neg m) = 1 \]

From which we can find that:
\[P(s|m)P(m) + P(s|\neg m)P(\neg m) = P(s) \]

So once we have:
\[P(M|s) = \langle P(s|m)P(m)/P(s), P(s|\neg m)P(\neg m)/P(s) \rangle \]
\[P(M|s) = \alpha \langle P(s|m)P(m), P(s|\neg m)P(\neg m) \rangle \]

we can sum the terms of the vector \((P(s|m)P(m) \text{ and } P(s|\neg m)P(\neg m)) \) to find \(\alpha \) using the above equality and normalize the terms by that.
Normalized Example

<table>
<thead>
<tr>
<th></th>
<th>toothache</th>
<th>¬ toothache</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>catch</td>
<td>¬ catch</td>
</tr>
<tr>
<td>cavity</td>
<td>.108</td>
<td>.012</td>
</tr>
<tr>
<td>¬ cavity</td>
<td>.016</td>
<td>.064</td>
</tr>
</tbody>
</table>

Denominator can be viewed as a **normalization constant**
\[\alpha = 1/P(\text{toothache}) \] for this case:

\[
P(Cavity | \text{toothache}) = \alpha P(Cavity, \text{toothache})
\]
\[
= \alpha (P(Cavity, \text{toothache}, \text{catch}) + P(Cavity, \text{toothache}, \neg \text{catch}))
\]
\[
= \alpha (\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle)
\]
\[
= \alpha \langle 0.12, 0.08 \rangle = \langle 0.6, 0.4 \rangle
\]
Note: Vector indicators ⟨ and ⟩ and proper Uppercase/lowercase usage, for random variable (Cavity) or given fixed evidence (toothache).

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables.
Suppose we wish to compute $P(A|B = b)$ and suppose A has possible values $a_1 \ldots a_m$

We can apply Bayes’ rule for each value of A:

$$P(A = a_1|B = b) = P(B = b|A = a_1)P(A = a_1)/P(B = b)$$

$$\ldots$$

$$P(A = a_m|B = b) = P(B = b|A = a_m)P(A = a_m)/P(B = b)$$

Adding these up, and noting that $\sum_i P(A = a_i|B = b) = 1$:

$$P(B = b) = \sum_i P(B = b|A = a_i)P(A = a_i)$$

This is the normalization factor $1/\alpha$:

$$P(A|B = b) = \alpha P(B = b|A)P(A)$$

Typically compute an unnormalized distribution, normalize at end

e.g., suppose $P(B = b|A)P(A) = \langle 0.4, 0.2, 0.2 \rangle$

then $P(A|B = b) = \alpha \langle 0.4, 0.2, 0.2 \rangle = \frac{\langle 0.4, 0.2, 0.2 \rangle}{0.4 + 0.2 + 0.2} = \langle 0.5, 0.25, 0.25 \rangle$
Inference by enumeration, contd.

Typically, we are interested in
the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variables be $H = X - Y - E$

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y|E=e) = \alpha P(Y, E=e) = \alpha \sum_h P(Y, E=e, H=h)$$

The terms in the summation are joint entries because Y, E, and H together exhaust the set of random variables

Obvious problems:
1) Worst-case time complexity $O(d^n)$ where d is the largest arity
2) Space complexity $O(d^n)$ to store the joint distribution
3) How to find the numbers for $O(d^n)$ entries???
Independence

A and B are independent iff

$P(A|B) = P(A)$ or $P(B|A) = P(B)$ or $P(A, B) = P(A)P(B)$

$P(\text{Toothache, Catch, Cavity, Weather}) = P(\text{Toothache, Catch, Cavity})P(\text{Weather})$

◊ Required parameters is greatly reduced: in this case, 32 entries reduced to 12. ($2^3 + 4$ for weather)

◊ For n independent biased coins, required parameters: $2^n \rightarrow n$

◊ Absolute independence powerful but rare. What to do? (e.g. dentistry is a large field with hundreds of variables, none of which are independent.)
Conditional independence

\[P(\text{Toothache}, \text{Cavity}, \text{Catch}) \] has \(2^3 - 1 = 7 \) independent entries

If I have a cavity, the probability that the probe catches in it doesn’t depend on whether I have a toothache:

(1) \[P(\text{catch} | \text{toothache}, \text{cavity}) = P(\text{catch} | \text{cavity}) \]

The same independence holds if I haven’t got a cavity:

(2) \[P(\text{catch} | \text{toothache}, \neg \text{cavity}) = P(\text{catch} | \neg \text{cavity}) \]

We say that **Catch is conditionally independent** of **Toothache** given **Cavity**:

\[P(\text{Catch} | \text{Toothache}, \text{Cavity}) = P(\text{Catch} | \text{Cavity}) \]

Equivalent statements (you may use one or the other as suitable):

\[P(\text{Toothache} | \text{Catch}, \text{Cavity}) = P(\text{Toothache} | \text{Cavity}) \]

\[P(\text{Toothache}, \text{Catch} | \text{Cavity}) = P(\text{Toothache} | \text{Cavity})P(\text{Catch} | \text{Cavity}) \]
Conditional independence contd.

Write out full joint distribution using chain rule:
\[P(\text{Toothache}, \text{Catch}, \text{Cavity}) \]
\[= P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}, \text{Cavity}) \]
\[= P(\text{Toothache}|\text{Catch}, \text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity}) \]
\[= P(\text{Toothache}|\text{Cavity})P(\text{Catch}|\text{Cavity})P(\text{Cavity}) \]

Note that the bold \(P \)s indicate full probability distributions, weather joint or conditional, and we multiply the appropriate terms.
- e.g. \(2 \times 2 \) for the first and second and \(2 \times 1 \) for the last
- \(\rightarrow 2 + 2 + 1 = 5 \) independent numbers (equations 1 and 2 remove 2)

In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in \(n \) to linear in \(n \).

Conditional independence is our most basic and robust form of knowledge about uncertain environments.
Bayes’ Rule and Conditional independence

Using the Bayes rule:

\[P(Cavity|\text{toothache, catch}) = \alpha P(\text{toothache, catch, Cavity}) = \alpha P(\text{toothache, catch}|Cavity)P(Cavity) = \alpha P(\text{toothache}|Cavity)P(\text{catch}|Cavity)P(Cavity) \]

This is an example of the *naive Bayes* model which makes a simplifying assumption of conditional independence between different attributes/effects/symptoms given the same cause:

\[P(Cause, Effect_1, \ldots, Effect_n) = P(Cause) \prod_i P(Effect_i|Cause) \]
Total number of parameters is *linear* in n.
The knowledgebase contains the following:

\[P_{ij} = \text{true} \text{ iff } [i, j] \text{ contains a pit} \]

\[B_{ij} = \text{true} \text{ iff } [i, j] \text{ is breezy} \]

\[b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \text{ and } \text{known} = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1} \]

Assume pits are placed randomly, probability 0.2 per square.
Specifying the probability model

The full joint distribution is involving only pits and \(b_{1,1}, \neg b_{1,2}, \neg b_{2,1} \) is

\[
P(P_{1,1}, \ldots, P_{4,4}, b_{1,1}, \neg b_{1,2}, \neg b_{2,1})
\]

To get to the form of \(P(Effect | Cause) \), apply the product rule:

\[
P(b_{1,1}, \neg b_{1,2}, \neg b_{2,1} | P_{1,1}, \ldots, P_{4,4}) P(P_{1,1}, \ldots, P_{4,4})
\]

First term: 1 if pits are adjacent to breezes, 0 otherwise
Second term: pits are placed randomly, probability 0.2 per square:

\[
P(P_{1,1}, \ldots, P_{4,4}) = \prod_{i,j=1,1}^{4,4} P(P_{i,j}) = 0.2^n \times 0.8^{16-n} \text{ for } n \text{ pits.}
\]
Observations and query

Now let's go to our actual problem:

◊ We know the following facts:
 \[b = \neg b_{1,1} \land b_{1,2} \land b_{2,1} \]
 \[known = \neg p_{1,1} \land \neg p_{1,2} \land \neg p_{2,1} \]

◊ Query is \(P(P_{1,3}|known, b) \)

◊ Define \textit{Unknown} = \(P_{ij} \)s other than \(P_{1,3} \) and \(Known \)

◊ Using enumeration, we have

\[
P(P_{1,3}|known, b) = \alpha \sum_{unknown} P(P_{1,3}, unknown, known, b)
\]

Note: The terms in this grows exponentially with the number of squares!
Using conditional independence

Basic insight: observations are conditionally independent of other hidden squares given neighbouring hidden squares

Define $Unknown = Fringe \cup Other$

$P(b|P_{1,3}, Known, Unknown) = P(b|P_{1,3}, Known, Fringe)$

Manipulate query into a form where we can use this!
Using conditional independence contd.

\[P(P_{1,3}|\text{known}, b) = \alpha \sum_{\text{unknown}} P(P_{1,3}, \text{unknown}, \text{known}, b) \]
\[= \alpha \sum_{\text{unknown}} P(b|P_{1,3}, \text{known}, \text{unknown})P(P_{1,3}, \text{known}, \text{unknown}) \]
\[= \alpha \sum_{\text{fringe, other}} P(b|\text{known}, P_{1,3}, \text{fringe}, \text{other})P(P_{1,3}, \text{known}, \text{fringe, other}) \]
\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3}, \text{known}, \text{fringe, other}) \]
\[= \alpha \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe}) \sum_{\text{other}} P(P_{1,3})P(\text{known})P(\text{fringe})P(\text{other}) \]
\[= \alpha P(\text{known})P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe}) \sum_{\text{other}} P(\text{other}) \]
\[= \alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe}) \]
Using conditional independence contd.

\[P(P_{1,3}|\text{known}, b) = \alpha' P(P_{1,3}) \sum_{\text{fringe}} P(b|\text{known}, P_{1,3}, \text{fringe})P(\text{fringe}) \]
\[= \alpha' \langle 0.2, 0.8 \rangle \sum_{\text{compatible fringe}} P(\text{fringe}) \]
\[= \alpha' \langle 0.2, 0.8 \rangle \langle (0.04 + 0.16 + 0.16), (0.04 + 0.16) \rangle \]
\[= \alpha' \langle 0.2 \times 0.36, 0.8 \times 0.20 \rangle = \alpha' \langle 0.072, 0.16 \rangle \]
\[\approx \langle 0.31, 0.69 \rangle \]

\[P(P_{2,2}|\text{known}, b) \approx \langle 0.86, 0.14 \rangle \]

The agent infers that it is safer to go to \([1,3]\).
Probability is a rigorous formalism for uncertain knowledge.

Joint probability distribution specifies probability of every atomic event.

Queries can be answered by summing over atomic events.

For nontrivial domains, we must find a way to reduce the joint size.

Independence and conditional independence provide the tools.