PROBLEM SOLVING AND SEARCH

CHAPTER 3
How to Solve a (Simple) Problem

Start State

![Start State]

Goal State

![Goal State]
Simple goal-based agents can solve problems via searching the state space for a solution, starting from the initial state and terminating when (one of) the goal state(s) are reached.

The search algorithms can be blind or informed (using heuristics).

Before we see how we can search the state space of the problem, we need to decide on what the states and operators of a problem are.

⇒ problem formulation
Example: Traveling in Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

You have access to a map.
Example: Romania

Imagine that this is not given as a graph as in here (since you see the solution easily), but as a list of roads from each city to another. This is in fact how a robot will see the map, as a list of edges on a graph (with also associated distances):

Arad to Zerind, Sibiu, Timisoara
Bucharest to Pitesti, Guirgiu, Fagaras, Urziceni
Craiova to Dobreta, Pitesti
Dobreta to Craiova, Mehadia
...
Oradea to Zerind, Sibiu
...
Zerind to Oradea, Arad
Example: Traveling in Romania

Formulate goal:
 be in Bucharest

Formulate problem:

Action sequence needs to be in the form of "drive from Arad to ...; drive from ... to ...; ...; drive from ... to Bucharest). Hence the states of the robot, abstracted for this problem are "various cities".

The corresponding operators taking one state to the other are "driving between cities".

Find solution: sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Selecting a state space

Real world is absurdly complex
⇒ state space must be *abstracted* for problem solving

(Abstract) state = set of real states

(Abstract) operator = complex combination of real actions
e.g., “Arad → Zerind” represents a complex set
of possible routes, detours, rest stops, etc.

(Abstract) solution =
set of real paths that are solutions in the real world
A problem is defined by four items:

- **initial state** e.g., “at Arad”

- **operators** (or **successor function** $S(x)$)
 e.g., Arad → Zerind Arad → Sibiu etc.

- **goal test**, can be
 - **explicit**, e.g., $x = “at Bucharest”$
 - **implicit**, e.g., $NoDirt(x)$

- **path cost** (additive)
 e.g., sum of distances, number of operators executed, etc.

A **solution** is a sequence of operators leading from the initial state to a goal state.
Example: vacuum world

Your robot needs to vacuum a two-room area. Each room may have dirt in it and the robot may be in one of the rooms and move left or right to go to the other room.

What are the states of this vacuum world?
Example: vacuum world

The 8 States:

1

2

3

4

5

6

7

8
Example: vacuum world

states??
operators??
goal test??
path cost??
Example: vacuum world

states??: integer dirt and robot locations (ignore dirt *amounts*)

operators??: *Left*, *Right*, *Suck*

goal test??: no dirt

path cost??: 1 per operator
Example: 8-puzzle

Start State

Goal State

states
operators
goal test
path cost
Example: The 8-puzzle

Start State

Goal State

\begin{itemize}
\item states: integer locations of tiles (ignore intermediate positions)
\item operators: move blank left, right, up, down (ignore unjamming etc.)
\item goal test: = goal state (given)
\item path cost: 1 per move
\end{itemize}

[Note: optimal solution of \textit{n}-Puzzle family is NP-hard]
states: real-valued coordinates of robot joint angles parts of the object to be assembled

operators: continuous motions of robot joints

goal test: complete assembly

path cost: time to execute
Problem-solving agents

Restricted form of general agent, an intelligent agent will solve problems among others):

```plaintext
function SIMPLE-PROBLEM-SOLVING-AgENT(p) returns an action
  inputs: p, a percept
  static: s, an action sequence, initially empty
    state, some description of the current world state
    g, a goal, initially null
    problem, a problem formulation

  state ← UPDATE-STATE(state, p)
  if s is empty then
    g ← FORMULATE-GOAL(state)
    problem ← FORMULATE-PROBLEM(state, g)
    s ← SEARCH(problem)
    action ← RECOMMENDATION(s, state)
    s ← REMAINDER(s, state)
  return action
```
Implementation of search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end
Tree search example

(a) The initial state

(b) After expanding Arad

(c) After expanding Sibiu
Implementation: states vs. nodes

A state is a (representation of) a physical configuration
A node is a data structure constituting part of a search tree
 includes state, parent, children, operator, depth, path cost $g(x)$
States do not have parents, children, depth, or path cost!

The `expand` function creates new nodes, filling in the various fields and
using the `operators` (or `successorFn`) of the problem to create the
corresponding states.
Terminology

♦ depth of a node: number of steps from root (starting from depth=0)

♦ path cost: cost of the path from the root to the node

♦ expanding a node: pulling it out from the queue, goal test and expanding (interchangeable with visiting a node)

♦ generated nodes: different than nodes expanded!
Implementation of search algorithms

function `TREE-SEARCH(problem, fringe)` **returns** a solution, or failure

```
fringe ← INSERT(MAKE-NODE(Initial-State[problem]), fringe)
loop do
  if fringe is empty then return failure
  node ← REMOVE-FRONT(fringe)
  if GOAL-TEST[problem] applied to STATE(node) succeeds return node
  fringe ← INSERTALL(EXPAND(node, problem), fringe)
```

function `EXPAND(node, problem)` **returns** a set of nodes

```
successors ← the empty set
for each action, result in SUCCESSOR-FN[problem](STATE[node]) do
  s ← a new NODE
  PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
  PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
  DEPTH[s] ← DEPTH[node] + 1
  add s to successors
return successors
```
Implementation of search algorithms

Notice that we will always take a node from the front of the Queue (called the Fringe), so insertion of the expanded nodes (depending on the Queueing Function) is what distinguishes between different search strategies.

The GeneralSearch (next slide) was the skeleton search algorithm given instead of the TreeSearch in AIMA’s (our book) first edition, highlighting the dependence to the Queueing Function:
function \textsc{General-Search}(problem, \textsc{Queuing-Fn}) \textbf{returns} a solution, or failure

\hspace{1em} \textit{nodes} ← \textsc{Make-Queue}(\textsc{Make-Node}(\textsc{Initial-State}[problem]))

\textbf{loop do}

\hspace{2em} \textbf{if} \textit{nodes} is empty \textbf{then return failure}

\hspace{2em} \textit{node} ← \textsc{Remove-Front}(\textit{nodes})

\hspace{2em} \textbf{if} \textsc{Goal-Test}[problem] applied to \textsc{State}(\textit{node}) succeeds \textbf{then return} \textit{node}

\hspace{2em} \textit{nodes} ← \textsc{Queuing-Fn}(\textit{nodes}, \textsc{Expand}(\textit{node}, \textsc{Operators}[problem]))

\textbf{end}
Search strategies

A strategy is defined by picking the *order of node expansion*

Strategies are evaluated along the following dimensions:
- **completeness**—does it always find a solution if one exists?
- **time complexity**—maximum number of nodes generated/expanded
 (the slides mostly use visited (goal test and expand if necessary) nodes)
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of
- b—maximum branching factor of the search tree (finite)
- d—depth of the least-cost solution
- m—maximum depth of the state space (may be ∞)
An algorithm’s time complexity is often measured asymptotically. Assume you “process” n items with your algorithm. We say that the time

$T(n)$ of the algorithm is $O(f(n))$ if

(e.g. $T(n)$ is $O(n^2)$)

$\exists n_0$ such that $T(n) \leq kf(n), \forall n \geq n_0$

◇ The time complexity analysis can be done (separately) for the worst case and average case

◇ In simple terms, it checks what is the dominating factor in the spent time, for large enough problem size (n).
Time Complexity

◊ Some problems can be solved in *polynomial time* (*P*). These are considered as "easy" problems (e.g. \(O(n)\), \(O(\log n)\) algorithms.

◊ Some problems do not have a polynomial-time solution, but can be verified in polynomial time if one can guess the solution. They are called *non-deterministic polynomial* (*NP*) problems.

◊ NP-complete problems: those "harder" NP problems that if you find a polynomial time solution, you can solve all the other NP problems (by reducing one problem into another).

◊ Read Appendix pp.977-979 on time complexity
Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

\[\text{QUEUEINGFN} = \text{first in first out (FIFO)} \]
Breadth-first search
Breadth-first search

Arad
Breadth-first search

Zerind

Sibiu

Timisoara
Breadth-first search

Arad
Oradea
Zerind
Sibiu
Timisoara

Chapter 3
Breadth-first search

Arad - Oradea - Rimnicu Vilcea - Fagaras - Sibiu - Timisoara - Arad - Lugoj

Chapter 3 33
Properties of breadth-first search

Complete??

Time??

Space??

Optimal??
Properties of breadth-first search

Complete? Yes (if b is finite - otherwise it may be stuck at generating the first level)
Properties of breadth-first search

Complete?? Yes (if \(b \) is finite)

Time: ?? \(1 + b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b) = O(b^{(d+1)}) \), using the basic tree search algorithm.

Time: ?? \(1 + b + b^2 + b^3 + \ldots + b^d = O(b^d) \), using the tree search algorithm that is modified so that last level is not generated in BFS (fig. 3.11, in next slide)

The exact numbers depend on a particular code for the implementation. For instance when the goal test is in the code...

Note: To be precise, we have to specify whether we are talking about visited/expanded or generated nodes.
In action BREADTH-FIRST-SEARCH (problem) returns a solution, or failure

node ← a node with STATE = problem.INITIAL. STATE, PATH-COST = 0
if problem.GOAL-TEST (node.STATE) then return SOLUTION (node)
frontier ← a FIFO queue with node as the only element
explored ← an empty set
loop do
 if EMPTY?(frontier) then return failure
 node ← POP(frontier).f* chooses the shallowest node in frontier */
 add node. STATE to explored
 for each action in problem ACTIONS (node. STATE) do
 child ← CHILD-NODE (problem, node, action)
 if child . STATE is not in explored or frontier then
 if problem.GOAL-TEST (child. STATE) then return SOLUTION (child)
 frontier ← INSERT (child, frontier)

Figure 3.11 Breadth-first search on a graph.
Properties of breadth-first search

Space \(O(b^d) \) for fig.3.11 algorithm
Properties of breadth-first search

Complete?? Yes (if \(b \) is finite)

Time: ?? \(1 + b + b^2 + b^3 + \ldots + b^d + (b^{d+1} - b) = O(b^{(d+1)}) \), using the basic tree search algorithm

Time: ?? \(1 + b + b^2 + b^3 + \ldots + b^d = O(b^d) \), using the tree search algorithm that is modified so that last level is not generated in BFS (fig. 3.11)

Space?? \(O(b^d) \) for fig.3.11 algorithm

Optimal?? No (Yes if cost = 1 per step); not optimal in general

Note: BFS finds the shallowest solution; if the shallowest solution is not the optimal one (step costs are not uniform) than BFS is not optimal.
Time-Space Requirements

Assuming $b = 10$ and processing speed of 1000 nodes/second (100 bytes/node).

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1 millisecond</td>
<td>100 bytes</td>
</tr>
<tr>
<td>2</td>
<td>111</td>
<td>.1 seconds</td>
<td>11 kilobytes</td>
</tr>
<tr>
<td>4</td>
<td>11,111</td>
<td>11 seconds</td>
<td>1 megabyte</td>
</tr>
<tr>
<td>6</td>
<td>10^6</td>
<td>18 minutes</td>
<td>111 megabytes</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>31 hours</td>
<td>11 gigabytes</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>128 days</td>
<td>1 terabyte</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>35 years</td>
<td>111 terabytes</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>3500 years</td>
<td>11,111 terabytes</td>
</tr>
</tbody>
</table>

Space is the bigger problem!
Exponential complexity search problems cannot be solved for all but smallest instances!
BFS finds the shallowest goal state. What if we have a more general path cost?
Uniform-cost search

Expand least-cost (path cost) unexpanded node

Implementation:

\[\text{QUEUEINGFN} = \text{insert in order of increasing path cost} \]
Uniform-cost search

Arad
Uniform-cost search

Chapter 3
Uniform-cost search

Chapter 3
Uniform-cost search
Properties of uniform-cost search

Complete??

Time??

Space??

Optimal??

Note: What would happen if some paths had negative costs?
Properties of uniform-cost search

Complete? Yes, if step cost $\geq \epsilon$ (nondecreasing)

Time?

Space?

Optimal?

Note: What would happen if some paths had negative costs?
Properties of uniform-cost search

Complete? Yes, if step cost \(\geq \epsilon \)

Time? \# of nodes with \(g \leq \) cost of optimal solution

Space?

Optimal?

If each step costs at least \(\epsilon > 0 \), then time complexity is \(O(b^{\lceil C^*/\epsilon \rceil}) \), if the optimum solution has cost \(C^* \)

Why?
Properties of uniform-cost search

Complete?? Yes, if step cost $\geq \epsilon$

Time?? # of nodes with $g \leq$ cost of optimal solution

Space??

Optimal??

If each step costs at least $\epsilon > 0$, then time complexity is $O\left(b^{\lceil C^*/\epsilon \rceil}\right)$, if the optimum solution has cost C^*.

Why? since the optimum solution would be at a maximum depth of $\lceil C^*/\epsilon \rceil$.
Properties of uniform-cost search

Complete
Yes, if step cost $\geq \epsilon$

Time
of nodes with $g \leq$ cost of optimal solution

Space
of nodes with $g \leq$ cost of optimal solution

Optimal
Properties of uniform-cost search

Complete?? Yes, if step cost $\geq \epsilon$

Time?? # of nodes with $g \leq$ cost of optimal solution

Space?? # of nodes with $g \leq$ cost of optimal solution

Optimal?? Yes

Optimality is provided only if we use the algorithm given in Fig. 3.14, which is modified from the basic GRAPH search. Otherwise, it is NOT guaranteed to be optimal.
function UNIFORM- COST-SEA RC (problem) returns a solution, or failure

node 4— a node with STATE = problem.INITIAL. STATE. PATH-COST = frontier 4— a priority queue ordered by PATH-COST, with node as the only element explored 4— an empty set

loop do
 if EMPTY?(frontier) then return failure
 node ← Poet frontier /* chooses the lowest-cost node in frontier e/
 if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
 add node. STATE to explored.
 for each action in problem.ACTIONS(node.STATE) do
 child 4— CHILE- NODE(problem, node, action)
 if child. STATE is not in explored or frontier then
 frontier INSERT(child, frontier)
 else if child. STATE is in frontier with higher PATH-COST then
 replace that frontier node with child

Figure 3.14 Uniform-cost search on a graph. The algorithm is identical to the general graph search algorithm in Figure 3.7, except for the use of a priority queue and the addition of an extra check in case a shorter path to a frontier state is discovered. The data structure for frontier needs to support efficient membership testing, so it should combine the capabilities of a priority queue and a hash table.
BFS versus uniform-cost search

Uniform cost search becomes Breadth-first search when the path cost function \(g(n) \) is \(\text{DEPTH}(n) \)

Equivalently, if all the step costs are equal.
Depth-first search

Expand deepest unexpanded node

Implementation:

\[\text{QUEUEING}_N = \text{last in first out (LIFO)} \]
Depth-first search
Depth-first search
I.e., depth-first search can perform infinite cyclic excursions. Need a finite, non-cyclic search space (or repeated-state checking).
Properties of depth-first search

Complete??

Time??

Space??

Optimal??
Properties of depth-first search

Complete?
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?

Space?

Optimal?

Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space??

Optimal??

Notice here that you can find the big-Oh answer by considering the number of nodes in the last level that needs to be considered.
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
- Modify to avoid repeated states along path
 - \(\Rightarrow \) complete in finite spaces

Time?? \(O(b^m) \): terrible if \(m \) is much larger than \(d \)
 - but if solutions are dense, may be much faster than breadth-first

Space?? \(O(bm) \), i.e., linear space!

Optimal??

Why? Calculate the size of the Queue assuming that the left-most branch has the maximum depth, \(m \). Now reason that the Queue will never get bigger, wherever the solution may be.
Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space? $O(bm)$, i.e., linear space!

Optimal? No
BFS vs DFS

Notice that if the problem does not have the issue of very long (possibly infinite) paths, DFS is very advantageous! It has very small memory requirements and it is very easy to program.
Depth-limited search

= depth-first search with depth limit \(l \):
Nodes at depth \(l \) are treated as if they have no successors

E.g. when we know that there are 20 cities on the map of Romania, there is no need to look beyond depth 19. Compare with the diameter of a problem.

Implementation:
Nodes at depth \(l \) have no successors
Depth-limited search - properties

Similar to DFS.

Complete yes, if $l \geq d$

Time $O(b^l)$

Space $O(bl)$

Optimal No

Code used:
function \textsc{depth-limited-search}(\text{pro Hens, limit}) \textbf{returns} a solution, or failure/cutoff
return \textsc{recursive-dls}(\text{make-node}(\text{problem}\text{.initial-state}), \text{problem}, \text{limit})

function \textsc{recursive-dls}(\text{node, problem, limit}) \textbf{returns} a solution, or failure/cutoff
\textbf{if} \text{problem}\text{.goal-test}(\text{node}\text{.state}) \textbf{then return} \text{solution}(\text{node})
\textbf{else if} limit = 0 \textbf{then return} \text{cutoff}
\textbf{else}
\hspace{1em} \text{cutoff_occurred?} \leftarrow \text{false}
\hspace{1em} \textbf{for each} \text{action in} \text{problem}\text{.actions(}\text{node}\text{.state}) \textbf{do}
\hspace{2em} \text{child} \text{ =} \text{child-node}(\text{problem, node, action})
\hspace{2em} \text{result} \text{ =} \text{recursive-dls}(\text{child, problem, Emit - 1})
\hspace{2em} \textbf{if} \text{result} = \text{cutoff} \textbf{then} \text{cutoff_occurred?} \leftarrow \text{true}
\hspace{2em} \textbf{else if} \text{result} \neq \text{failure} \textbf{then return} \text{result}
\hspace{2em} \textbf{if} \text{cutoff_occurred?} \textbf{then return} \text{cutoff} \textbf{else return} \text{failure}

\textbf{Figure 3.17} \hspace{1em} \text{A recursive implementation of depth-limited tree search.}
Iterative deepening search

Can we do away with trying to estimate the limit?
Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
 inputs: problem, a problem

 for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED-SEARCH(problem, depth)
 if result ≠ cutoff then return result
 end

 cutoff: no solution within the depth-limit
 Failure: no solution at all
Iterative deepening search $l = 0$
Iterative deepening search $l = 1$

Arad
Iterative deepening search $l = 1$
Iterative deepening search \(l = 2 \)
Iterative deepening search $l = 2$
Iterative deepening search
<table>
<thead>
<tr>
<th>Properties of iterative deepening search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete??</td>
</tr>
<tr>
<td>Time??</td>
</tr>
<tr>
<td>Space??</td>
</tr>
<tr>
<td>Optimal??</td>
</tr>
</tbody>
</table>
Properties of iterative deepening search

Complete?? Yes

Time?? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d) \)

Space?? \(O(bd) \)

Optimal?? Yes, if step cost = 1
 Can be modified to explore uniform-cost tree
Properties of iterative deepening search

The higher the branching factor, the lower the overhead of repeatedly expanded states (number of leaves dominate).

Number of generated nodes for $b = 10$ and $d = 5$:

$N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450$

$N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100$

Preferred method when there is a large search space and the depth of the solution is not known.
Bidirectional search

Simultaneously search both forward from the initial state and backward from the goal state.
Bidirectional search

Need to define predecessors

Operators may not be reversible

What if there are many goal states?
Bidirectional search

Time?

Space?
Bidirectional search

Time? $O\left(b^{d/2}\right)$

Space? $O\left(b^{d/2}\right)$

For $b=10$, $d = 6$, BFS vs. BDS: million vs 2222 nodes.
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note that conditional Yes* and No are not that different: they both do not guarantee completeness, only differ in the strength of the assumptions (\(b \) is finite or the max. depth is finite etc.)
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one, even for non-looping problems!

Solution: Remember every visited state using a graph search.
function Graph-Search(problem, fringe) returns a solution, or failure

 closed ← an empty set
 fringe ← Insert(Make-Node(Initial-State[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← Remove-Front(fringe)
 if Goal-Test[problem](State[node]) then return node
 if State[node] is not in closed then
 add State[node] to closed
 fringe ← InsertAll(Expand(node, problem), fringe)
 end
end

Compare to tree search!
Problems with Graph Search:

◇ Memory Requirements: Increased space requirements for Depth-First search (keep track of states to check for repetition!)

◇ Optimality: Basic Graph search deletes the later found path to a repeated state, which could be the path with a shorter cost according to the chosen search strategy (e.g. in iterative deepening, unless modifications are made).

This was the reason why graph search was modified to guarantee optimality of Uniform Cost in graphs (where a previously found node is replaced with a smaller cost one), in Fig. 3.14
Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored.

Variety of uninformed search strategies.

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms.