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What Size Test Set Gives
Good Error Rate Estimates?
Isabelle Guyon, John Makhoul, Fellow, IEEE, Richard Schwartz, and Vladimir Vapnik

Abstract —We address the problem of determining what size test set guarantees statistically significant results in a character
recognition task, as a function of the expected error rate. We provide a statistical analysis showing that if, for example, the expected
character error rate is around 1 percent, then, with a test set of at least 10,000 statistically independent handwritten characters
(which could be obtained by taking 100 characters from each of 100 different writers), we guarantee, with 95 percent confidence,
that: (1) The expected value of the character error rate is not worse than 1.25 E, where E is the empirical character error rate of the
best recognizer, calculated on the test set; and (2) a difference of 0.3 E between the error rates of two recognizers is significant. We
developed this framework with character recognition applications in mind, but it applies as well to speech recognition and to other
pattern recognition problems.

Index Terms —Pattern recognition, test set, test set size, benchmark, hypothesis testing, designed experiment, statistical
significance, estimation, guaranteed estimators, recognition error.
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1 INTRODUCTION

HE problem often arises when organizing benchmarks
T in pattern recognition to determine what size test set
will give statistically significant results. This is a chicken
and egg problem, since before getting the recognizer per-
formance, it is not possible to determine the statistical
significance. Nevertheless, since approximate values of
the error rates of particular recognizers on similar tasks
are known, it is possible to estimate what reasonable
size a test set should have. In this paper, we use fairly
straightforward statistical arguments [1] to address that
problem. The method has been designed to help in pre-
paring the data for the first UNIPEN benchmark [2], but
the results are fairly general and a broader applicability is
expected.

We tackle the problem from the point of view of the
benchmark organizer. Thus, our approach differs from the
classical “hypothesis testing” framework (see, e.g., [1]) in
that we do not test the statistical significance of the result of
an actual experiment. Rather, we seek bounds on the mini-
mum number of test examples that guarantee our future
benchmark to provide: a good estimate of the state-of-the-
art error rate on the target task and good confidence that
one system is better than another, for a relatively small dif-
ference in their error rates.

1) We introduce the principle of our method and the
notion of guaranteed estimators.

1. Guyon is an independent consultant working at 955 Creston Road, Ber-
keley, CA 94708. E-mail: isabelle@clopinet.com.

* V. Vapnik is with AT&T Labs, Red Bank, NJ 07701.
E-mail: vlad@research.att.com.

¢ J. Makhoul and R. Schwartz are with BBN Systems and Technologies,
Cambridge, MA 02138. E-mail: {makhoul, schwartz}@bbn.com.

Manuscript received 11 Dec. 1995; revised 25 Aug. 1997. Recommended for accep-
tance by J.J. Hull.

For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 105690.

2) We estimate test set sizes, assuming that the errors are
independently and identically distributed.

3) We introduce the problem of “correlations” between
errors due, for instance, to having many consecutive
examples provided by the same writer. We generalize
the results to the case of multiple factors of correla-
tion, including: recording conditions and linguistic
material.

4) We treat the problem of the statistical significance of
the difference in performance of two recognizers.

5) We summarize the practical aspects for determining
the number of examples necessary to obtain statistical
significance and analyze examples.

6) We suggest some statistical tests to be performed after
the benchmark to verify the quality of the results.

The reader interested in only practical aspects of the re-
sults can go directly to Section 6.

2 PRINCIPLE OF THE METHOD: GUARANTEED
ESTIMATORS

2.1 Punctual Estimators and Guaranteed Estimators

The problem addressed in a pattern recognition bench-
mark is to calculate and compare error rates of various
recognizers. The error rate p of a given recognizer is esti-
mated by computing the average error p over a finite
number n of test examples or patterns. Let x;, i =1, ..., n,
represent the recognition results for the test patterns,
i.e., x; = 1 if there is a recognition error for pattern i, and
X; = 0 otherwise. The average error rate, then, is computed
as

f):

S| -

Z X;. (1)

Patterns are assumed to be drawn randomly and in-
dependently from a source of patterns. For a particular
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recognizer, the failure or success of recognition of the ith

pattern is the realization x; of a random variable X;. The

random variable

n

2% @

i=1

is a punctual estimator of the mean, the expected value of

which is p. The average error rate p is a realization of X .
For pattern recognition benchmarks we are also inter-

ested in confidence intervals. Two scenarios are possible

here. With a certain confidence (1 — ¢), 0 < o < 1, we want

the expected value of the error rate p to be either within a

certain range:

)?:

S|

p-ena)<p<p+en a) @)
(two-sided risk), or simply not to exceed a certain value:
p<p+e(na) (4)

(one-sided risk). In this paper, we use the one-sided risk
because it is not of concern to us if the expected value of the
error rate is better than what we estimate.

The random variable of which § + &(n, o) is a realization
is a guaranteed estimator of the mean. We are guaranteed,
with risk o of being wrong, that the mean does not exceed
p +é&n, a):

Prob(p = p+&(n, ) < . (5)

2.2 Methods for Obtaining Estimators
Punctual estimators are often obtained by the Maximum
Likelihood (ML) method. For instance, the estimator

X = (1/n)2‘inzlxi is the ML estimator of the mean for the

Gaussian distribution. It is consistent (its realizations con-
verge to the mean for an infinite amount of examples) and
unbiased (its expected value is equal to the mean).

Guaranteed estimators are obtained either from the prop-
erties of the underlying probability distribution, if it is
known, or from distribution-independent bounds. One of
the most well-known distribution-independent bounds is
the Chebychev inequality (see, e.g., [1]):

Prob(|p > %} <a, (6)
or, for the one-sided version:
Prob(p—ﬁz ° )Sa, (7)
Nera)
where 02 is the variance of X;, estimated, for instance, as:
A2 1 L A 2
6°=——72.(0-x)", ®)

i=1
Other tighter bounds have been proposed more recently
by Chernoff [3], Hoeffding [4], and others for the binomial
distribution. Those bounds are tighter than Chebychev’s
inequality, but Chebychev’s inequality is distribution
independent.

1. The denominator (n — 1) can be approximated by n for large values of
n. It accounts for the fact that p is not known and is also estimated from
data, which removes one “degree of freedom.”

0

Fig. 1. One sided risk: With probability (1 — ), z < z,.

Better bounds are obtained if more is known about the
probability distribution. In particular, assume that X; is
distributed according to the Normal law (Gaussian distri-
bution) of mean u = p and variance 62, and with probability
function:

PusX) = ef%(%) . 9)

The random variable X = Zin:lxi is distributed according

to the Normal law of mean np and of variance the sum of
the variances: no* (assuming the X; are independent). Thus

the random variable Y:(yn)zin:lxi is distributed ac-

cording to the Normal law of mean p and of variance /.
Consequently, the random variable:

_p-X
-

obeys the standardized Normal law (with mean 0 and vari-
ance 1).2 The distribution of this law is tabulated, which
allows us to determine the threshold z, under which we
find all realizations of Z with probability (1 — o) (Fig. 1).
The bound of interest, then, is:

Prob 5 2,0 _
robjp-p=2—|<«,

p-p n
where p is a realization of X .

The standardized Normal law distribution table pro-
vides values of z, for various values of one-sided risk o
(see, e.g., [1]). A relatively good approximation of z, in this
range of values is given by:

z (10)

(11)

(12)

where In is the Neperian logarithm (see Table 1). This ap-
proximation is convenient since it provides us with a func-
tional relation between o and z, which will prove to be use-
ful in our calculations.

z,=J-Ina,

2. When the variance is not known and has to be estimated from data as
well as the mean, Z obeys Student’s law with (n — 1) degrees of freedom.
For values of n sufficiently large (n > 30), the Normal law is a very good
approximation to Student’s law.
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TABLE 1
VALUES OF z, FOR ONE-SIDED RISK AND
RELATED COEFFICIENTS APPEARING IN OTHER BOUNDS

o Z, 2 | Jna | -Ina | J2Ina | 2Ina
0.01 2.33 5.29 2.15 4.61 3.03 9.21
0.05 1.65 2.72 1.73 3.00 2.45 5.99
0.10 1.28 1.64 1.52 2.30 2.15 4.60

2.3 Number of Test Examples Needed

Before the benchmark, guaranteed estimators (inequality (4))
are used to determine the number of test examples

needed to guarantee a certain margin of error g(n, o) (e.g.,
&(n, o) = z,0/+/n for the Normal law).
In this paper, we fix g(n, ¢) to be a given fraction of p:

&(n, ) = fp (13)
and we solve (13) for n to obtain the desired number of test
examples.

The values of p and o which are necessary to determine
n are generally unknown. Thus our estimate of n will de-
pend on the hypotheses we make for p and o. These hy-
potheses are based on the results of other similar bench-
marks and/Zor on human performance. After the bench-
mark, actual values of § and & are computed and guaran-
teed estimators can be used again to verify the statistical sig-
nificance of the results (hypothesis testing, see Section 7).

3 TEST SET SizE NEEDED FOR I.1.D. ERRORS

3.1 Recognition Errors as Bernoulli Trials

In many benchmarks, the errors on the test examples are
not independently and identically distributed (i.i.d). In
particular, for speech and handwriting recognition,
speaker/writer-independent tasks are usually tested with
data containing long sequences of examples from each of a
number of speakers/writers (see Section 4). There may be
also error correlations introduced by the recognizer itself if,
for instance, use is made of a language model. In the pres-
ent section, we consider the simple case of i.i.d. errors, an
illustration of which could be a speaker/writer-dependent
isolated word recognition task, using a specific vocabulary
distribution and specific recording conditions.

Consider a source of i.i.d. data which are drawn according
to a certain probability distribution P(pattern, class) =
P(pattern) P(class|pattern) and a recognizer which recog-
nizes those data independently of each other with a prob-
ability of error p. The ensemble {data source, recognizer} is
a source of binary events: 1 for error and 0 for no error,
with probability p of drawing a 1 and (1 — p) of drawing a 0
(Fig. 2). Such a random process is known under various
names, including “random walk” and “Bernoulli trials.”
The random variable K counting the number of errors in n
trials is distributed according to the binomial distribution:

PppK) = Uz)pk(l— p)" ",

of mean np and variance np(1 — p).
For a test set size of n examples, the following is an esti-
mate of p:

(14)

( _ ,//‘; pattern

\P(

]

class

lasslpatte rnk)\]
N T

P(pattern) |
Yar'e
-V

L

\ / yes=>x=0
L & |
NS no=>x=1

I a recognizer N
class

random binary source (p)

Fig. 2. Recognition process of i.i.d. data: patterns are, for instance,
handwritten characters and class labels are, for instance, “0,” “1,” ...,
“a,” “b,”... The ensemble {data source, recognizer} is a random binary
source which produces 1 with probability p and 0 with probability (1 — p),
where p is the expected value of the error rate of the recognizer.

ok
p= ﬁv (15)
where k is the number of errors. The expected value of the
error rate is p and p is the empirical value of the error rate
estimated on the test set.

We are seeking a guaranteed estimator which provides the
guarantee that, with probability (1 — ), p is not larger than
p plus a certain error g(n, c):

Prob(p 2 p+e(n )= an,p(k) <a.

np—k=en

(16)

If we express g(n, &) as a small fraction g of p, then (16) be-
comes:

Y oK) <a. 17

k<(1-B)np

We are interested in solving this equation for n but, unfor-
tunately, there is no analytical solution. Furthermore, a
numerical solution is tedious. To simplify matters, we ap-
proximate the binomial law by the Normal law (probability
function (9)) of mean np and of variance np(1 — p).
With this approximation,
Z= p_ (18)

p(1-p)

s|=

o

obeys the standardized Normal law (with mean 0 and vari-
ance 1).
Similarly, (11) reduces to:

(19)

PR,

Prob(p -p=1z, n

where z,, is a threshold under which we find all realizations
of Z, with probability (1 - a).

Therefore, from (19) we can assert with probability (1 — &)
that:

p-p<ena), (20)
with
PL-Pp)

en,a) =z, .

(21)
Assume that we want to fix &(n, ) to a given fraction
of p:

e(n, o) = Pp. (22)
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TABLE 2
TEST SET SizES NEEDED FOR 1.1.D. ERRORS: TABLE OBTAINED BY APPROXIMATING
THE BINOMIAL LAW WITH THE NORMAL LAW

p 0.01 0.03 0.1

Pa 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
0.1 | 53,746 | 26,952 | 16,220 | 17,553 8,803 5,297 4,886 2,450 1,474
0.2 | 13,436 6,738 4,055 4,388 2,201 1,324 1,221 612 368

We assume that the best recognizer will not have an error rate p lower than 1 percent, 3 percent, or 10 per-
cent. With such test set sizes, with risk o of being wrong, the expected value of the error rate will not be
worse than 1/(1 — f) times the empirical test error rate p .

From (20), (21), and (22), we can assert, with risk « of
being wrong that a number of examples:

-5

is sufficient to guarantee that the expected value of the er-
ror rate p is not worse than /(1 - f8). To use this formula, p
needs to be estimated from the results of previous bench-

(23)

marks and z, can be taken from Table 1 or conveniently
approximated by z,=v-Ina.
For small values of p, we will use the simplified formula:

_(zajz 1
n= 7 E

The validity of the approximation of the binomial law by
the Normal law in the tail of the distribution is questionable,
even for large values of the product np. However, a bound
due to Chernoff [3] asserts that with probability (1 — ¢):

p—ﬁ<«/—2lna\/g.

Following a similar derivation as above, the number of ex-
amples needed to satisfy this more pessimistic bound is:

-2Ina

n=—s;—.
Bp

By comparing (24) and (26), we see that, at worst, the
approximation of the binomial law by the Normal law sug-
gests the use of a test set which is two times too small.

For practical purposes, we will use a simplified formula,
which lies between the Normal law and the pessimistic bound,
obtained for typical values of ¢and §(oc=0.05and $=0.2):

100 27)
n=——o
p

(24)

(25)

(26)

3.1.1 Numerical Application

From (27), for small values of p, n is inversely proportional
to p. Therefore, the choice of n (the number of test samples
needed) is determined by the smallest error rate which is
provided by the best recognizer.

A survey of the handwriting recognition literature and
of the results of recent benchmarks [5], [6], [7] indicates that
the best recognizers of isolated handwritten characters will
probably not have a character error rate lower than 1 per-
cent (p =0.01).

For p = 0.01, we obtain:

n == 10,000 characters (28)

Performance of word recognizers using lexicons vary a
lot depending on the size of the lexicon. For a task of inter-
mediate difficulty, such as the recognition of handprinted
characters with a 25,000 word vocabulary, the best recog-
nizers will probably not have a word error rate lower than
3 percent (p = 0.03).

For p = 0.03, we obtain:

n = 3,000 words (29)

It is important to note that the above derivation and re-
sults do not depend on the number of classes being recog-
nized. In fact, to get statistically meaningful results, it may
not even be necessary to have samples of all the classes in
the test. For example, in the word recognition example
given above, the number of test words that is recom-
mended is only 3,000 words, even if the vocabulary is
25,000 words. However, the 3,000 words must be obtained
randomly from a variety of writers.

The suggested test sizes given above assume that the
data/errors are i.i.d., which they are not in practice. In a
realistic test, where the data/errors are correlated, the re-
quired number of test examples increases somewhat, as we
will see in the next section.

4 TeST SET SizE NEEDED WHEN THE WRITER
DIVERSITY IS LIMITED

The variability of the test results is affected by a number of
parameters, including number of writers, conditions of data
collection, and choices of test material. The theoretical so-
lution to that problem when designing a test set is to vary
as much as possible these parameters to reflect “all” the
situations which could arise in the “real” world. In practice,
we have little or no handle over most parameters. The so-
lution which was adopted for the UNIPEN project [2] is to
gather data collected by a large number of institutions and
therefore obtain a variety of writers, conditions of data col-
lection, and choices of test material. There is enough data that
we can consider splitting it into several test sets and a train-
ing set. Our strategy is to use data from every institution to
maximize the variety of conditions of data collection and
choices of test material. The problem reduces to finding how
many writers and how many examples per writer should go
into each set, knowing that data are valuable for training and
that we want to keep the test sets as small as possible.

In this section, we assume that the data are drawn from a
double random process: first a writer i is picked at random
from an unknown probability distribution P(writer;). Then, an
example is drawn at random according to another unknown
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Fig. 3. Recognition of multiwriter data: We consider a double random
process. A writer i is first picked at random. Then a pattern is picked
from that writer’s distribution P{pattern).

probability distribution P;(pattern). P;(error) = P(error | writer;)
is then fully determined from P;(pattern), P(class|pattern),
and the recognizer (Fig. 3). The overall error distribution is
given by P(error) = %, P(writeri)Pi(error).3 We will assume
that P;(error) still follows a Bernoulli process, with prob-
ability p; that the recognizer makes an error and (1 — p;) that
it recognizes correctly. We will assume that P;(error) pro-
viding the probability of error p; is distributed according to
the Normal law of mean p and variance o

The direct solution to this problem would be to compute
guaranteed estimators of the error rate for the distribution
P(error) = ¥; P(writer;)P;(error). We simplify the problem by
calculating first the number of writers needed to guarantee
a good estimate of the mean, neglecting the uncertainty on
the writer means. We then estimate the minimum number
of examples per writer needed. The considerations devel-
oped in this section have strong connections with the
analysis of variance (ANOVA) statistical test [1].

4.1 Number of Writers

We call Xj; the random variables the realizations of which
are the indicators x; (x; = 0 or 1) of the errors made by a
given recognizer on examples j obtained from writers i.

We introduce further the notation X;.= (1/nW)Z?:1Xij

for the writer mean over n,, examples.5 The expected value
of X;. is p; and its variance, the “within-writer” variance, is
pi(1 — py)/n,, = p;i/n,,. Realizations of X;. are called p;.
m
We denote by X..= (l/m)ZiﬂXi. the global mean over

m writers. The expected value of X.. is called p and a reali-
zation of itis p .

We call 0'2 the variance of the X;s, also called the
“between-writer” variance. It is the expected value of
X;. - p)2 over writers drawn according to their underlying
distributions, for test sets of n, examples per writer, also

3. We sometimes talk about “correlations” between errors, hinting that
errors might depend on one another. We can either view the problem as an
i.i.d. problem with a more complex overall distribution or as a non-i.i.d.
problem for which drawing a pattern from a particular writer increases the
chance of drawing again a pattern from the same writer. For simplicity,
we treat the problem as an i.i.d. problem with a more complex overall
distribution.

4. This is a rather strong assumption. In general, nothing allows us to as-
sert that this is true. Since the distribution of average writer error rates in
unknown, it is difficult to find good guaranteed estimators which do not
make simplifying assumptions. The empirical distributions provided in [5]
indicate that in the case of isolated handwritten character recognition, this
assumption is more or less reasonable.

5. For simplicity, we assume that all the writers have the same number n,,
of examples per writer.

drawn according to their underlﬁying distribution. An esti-
mate of this quantity is given by:
m . A\ 2
6'2 zi=1(pi - p)

~Le (30)

It is important for the discussion that will follow to no-
tice that o is not the expected value of (p; — p)z. When all
writers are identical (p; = p), this last quantity is null,
whereas what we call the “between-writer” variance o
tends to p(1 — p)/n,, (the variance of the mean error of a
given writer, that we call “within-writer” variance).

Since X.. is the mean over m writers of X., its variance is
o*/m. Under the assumption that the writer error rates are
Normally distributed, the random variable:

_PoX (31)
~ o/Jm
obeys the standardized Normal law (with mean 0 and vari-
ance 1).
With a risk o of being wrong, we have:
c
-p<z,— 32
P=P <2, 7 (32)

where f is a realization of X.., and z, a threshold obtained
from table of the Normal distribution (see Table 1).

This provides us with a guaranteed estimator of the aver-
age error rate per writer:

p-p<elma) (33)
with:
e(m,a) = za%. (34)

Assume that we want to fix &(m, ) to a given fraction of p:

&(m, &) = Bp. (35)
From (34) and (35), we can assert, with risk o of being
wrong, that a number of writers:

. (zaa ]2

Bp
is sufficient to guarantee that the expected value of the av-
erage error rate across writers is not worse than p/(1- ),

(36)

where p is the expected error rate, & is the “between-
writer” variance and z,, can be taken from Table 1 for given

risks « of underestimating m. As before, z, can be conven-
iently approximated by z,=+-Ino.

4.1.1 Numerical Application

We remind the reader that o is a function of the number of
examples per writer n,. However, for large values of n,, it
is largely independent of n,,,.

In Table 3, we calculated estimates of the number of writ-
ers needed for various values of ocand 3 and the ratio o/p. In
Fig. 4, we show a plot of & versus { for data obtained from
the NIST benchmark of OCR for isolated handwritten char-
acters [5]. The “between-writer” standard deviation of those
data & lies roughly between 0.5 § and f . In [8], the authors

6. We neglect the corrective terms that arise because the means are esti-
mated from data (see [1] for details).
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TABLE 3
NUMBER OF WRITERS NEEDED
olp 0.5 1 2
Po 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
0.1 136 68 41 543 272 164 2,172 1,089 655
0.2 34 17 10 136 68 41 543 272 164

It is assumed that the best recognizer will have an expected character error rate p and a “between-writer”
standard deviation around o = 0.5p, ¢ = p, or ¢ = 2p. Using the prescribed number of writers, with risk
o of being wrong, the expected value of the error rate will not be worse than p/(l - ﬁ) .

also report a “between-writer” standard deviation which is of
the order of the mean. Therefore, we adopted the value:

o=p (37)
in our calculations.

We know that p/nW is a lower bound of o. Therefore,

with the value o = p, our hypothesis that o is largely inde-

pendent of n,, will be verified when n,, > 1/p.

It is unclear whether the ratio o/p is affected by changes
in the classes of interest (e.g., words instead of characters)
and whether this result applies to speech as well. We hope
that new benchmark results will allow us to refine that
value in the future.

Assuming o == p, we obtain the simplified formula:

(5]

With o = p, for 68 writers, with 95 percent confidence
(o = 0.05), the expected value of the error rate is not
worse than 1.25 times the error rate of the best recog-
nizer (§ = 0.2). One needs to double the number of writ-
ers to get 99 percent confidence (o = 0.01) and to multiply
it by four to decrease the margin of error to 0.1 (8 = 0.1).
In the following, we adopt:

(38)

m = 100 writers (39)

4.2 Number of Examples Per Writer

We examine now the problem of determining the number
of examples per writer. In the numerical examples, we fix
the values of e and g to o = 0.05 and 8 = 0.2, the number
of writers to m = 100 and the error rate of the best recog-
nizer to p = 0.01. In each subsection below, we make a
different assumption and derive a different requirement.

N
o

o

0 10 20 30
. N\
% writer average error rate (p')

% writer standard dev. (&)

Fig. 4. Between writer variance as a function of the error rate: Each point
represents the results of one recognizer from the benchmark of isolated
handwritten characters published by NIST in 1992 [5]. A strong correla-
tion between the between-writer variance and the error rate is observed.

4.2.1 Each Writer Error Rate Is Statistically Significant
The most stringent criterion is to ask for the error rate for
each writer to be individually statistically significant. For
instance, if we use o = 0.05, B = 0.2, and p = 0.01, we obtain
from (27) a number of characters per writer of approximately:

(40)

and the total number of characters comes to n’ = mn,, =
100 x 10,000 = 1,000,000. With this calculation,

n,, = 10,000 characters/writer

n>n (41)

where n is calculated according to (27), using i.i.d. hypothe-
ses (n = 10,000). Note that, unless the goal is to estimate

individual writer error rates accurately, n’ is an overesti-
mate of the number of characters needed.

4.2.2 All Writers Are Identical

The other extreme is to ignore the correlations between ex-
amples of the same writer and make the assumption that all
writers are identical. This means that the expected value of
the error rate of a given recognizer has the same value p for
all writers. Let us further assume that the test set is com-
posed of identical size subsets of n, examples per writer.
We call p; the empirical error rate of a given recognizer for
writer i. The differences between p,, p,, ... are only due to the
fact that they are estimated on a limited data set of size n.
These differences are reflected by the “within-writer” vari-
ance p(1 — p)/n,,. It is known from the ANOVA test [1] that
when all the writers are identical, the expected values of the
“within-writer” variance and the “between-writer” vari-
ance are equal. By replacing & = p(1 - p)/n, in (36), we
obtain m = n / n,,, where n is given by (24). Consequently,
the total number of examples is the same as the one calcu-
lated for i.i.d. errors:

n=n (42)
For a=0.05, B=0.2, and p = 0.01, the number of charac-
ters of 10,000 obtained from (27) is the total size of the test

set n” = n = mn,. The number of characters per writer is
only n,, =n/m = 10,000 = 100:

n,, = 100 characters/writer (43)

4.2.3 Balance Between “Within-Writer” and “Between-
Writer” Variance

We make now the more realistic assumption that the em-

pirical writer error rates are random variables X;., normally

distributed with mean p and variance & In our notation, p
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TABLE 4
NUMBER OF EXAMPLES PER WRITER
y 100 50 20 10 5 2 1
n, | 10,000 | 5,000 | 2,000 | 1,000 500 200 100

It is assumed that the best recognizer will not have an average character error rate p lower
than 1 percent and will have a “between-writer” standard deviation also around 1 percent.
v is the ratio between the “between-writer” variance and the “within-writer” variance.

is the expected value of the writer error rates f, (which are
no longer identical), 0'2 is the “between-writer” variance, an
estimate of which is given by (30).

The number of examples per writer n,, can be expressed
asa function of the ratio y of the “between-writer” variance
o and the “within-writer” variance p(1 — p)/n,,. For small
error rates, the “within-writer” variance can be approxi-
mated by p/n,,. We define a new parameter:

_no’  no’
"Tha-p) P
The number of examples per writer as a function of vy is
given by:

(44)

(45)

From (36) and (45), the total number of examples given
by n”=mn,, is:

n’=yn (46)

where n is the number of examples calculated for i.i.d. er-
rors (24). Notice that the case vy = 1 corresponds to having
all writers identical. Testing whether v is significantly dif-
ferent from 1 is the basis of the ANOVA test [1].

4.2.4 Numerical Application

In Table 4, we give the values of the number of examples
per writer n when yvaries, for p = 6= 0.01.

» For y=1, we find again the number of characters per
writer which assumes all writers are identical (see
Section 4.2.2).

» For y= 100, we get approximately the number of char-
acters per writer which ensures that, with risk o = 0.05,
the error rate of each writer p; is no more than 1.25 f;,
which corresponds to §=0.2. (see Section 4.2.1).

» Experts in character recognition suggest to take a
number of characters per writer around:

n,, = 1,000 characters/writer 47)

which corresponds to y= 10. For 100 writers, a test set
size of n” = mn,, = 100,000 characters would be ob-
tained. Note that, with such a value of yand with risk
o = 0.05, the error rate p; of each writer individually
has a larger error bar (8= 0.5).

In practice, the number of examples per writer n, may
be given. In this case, the humber n of examples using the
i.i.d. assumption is first determined. From n,, and estimates
of p and o, yis calculated. The total number of examples is
then calculated from (46). From the experimental data
shown in Fig. 4, if ois unknown, ycan be approximated by:

Y= NyP. (48)

Since ycannot be smaller than one, by definition, we will use:

¥ = max(1, n,p) (49)

4.3 Generalization to Multiple Factors of Correlation
Between Errors

Variations in writers is only one of many possible factors of
error correlation. Other factors ¢ may include variations in
recording conditions, variations in linguistic material, etc.
(see Fig. 5). Various coefficients y, may be calculated to
take these various factors into account. From (33) and (34),
and using the approximation z, = v~Ine , for each corre-
lation factor taken separately, one should satisfy:

o
Prob p—f)zw/—lna\/m_JSa.
[

If n” is the total number of examples and m, is the number

(50)

of values taken by the correlation factor considered (e.g.,
¢ = writer, m, = number of writers), then n, = n’/mlp is the

number of examples for each value (e.g., n, = number of
examples per writer).
By introducing Yo = nq)az/p,we obtain:

Prob[ p\/—ap >.J=1In awfj;]‘f ] <a.

Let us call N, the total number of factors. In principle, a
problem of N, factors of correlation between errorsisa N,

dimensional problem. We first assume that all the factors
are independent. We further simplify the problem to N,

(51)

one-dimensional problems and require that the conditions
(51) to be satisfied simultaneously for all factors. Let us call

Yo the largest value of y,, for the factors considered,

A max
Prob[p\/ap >J-Ina %J <

> Prob( p\/%ﬁ > m\/?“’] <N, (52)
¢
and, therefore, substituting o/ = N, ayields:
Prob[ pJ_Bﬁ > JW\/YQE] <o, (53)
We obtain the total number of examples n’ satisfying a

given relative error bar = (p — p)/p, with risk o of being
wrong, by solving:
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Fig. 5. Factors affecting error correlations: Errors may be correlated
because of a number of factors, including (a) writing style, (b) recording
conditions, (c) shape similarities within a given category, and (d) use of
a language model.

(54)

max
Yo
[Bﬁ > I—In(a/N(p) e
From the value of n given by (24) with z, = y-Inoa and
noticing that, for small values of o (o< 0.3), - In (&/N,,) <

-1 +In N(p) In o, we obtain that with risk « of being wrong,

n = y(';ax(1+ InN,)n (55)
training examples guarantee that the expected value of the
error rate p is not worse than p/(1 — ). Consequently, hav-
ing multiple factors of error correlation increases the num-
ber of examples only with the logarithm of the number of
factors, according to (55). We do not have at this point ex-
perimental data that allows us to justify our simplifying
assumptions and validate this formula.

5 TEST SET S1zES WHICH ALLOW COMPARING THE
PERFORMANCE OF TWO RECOGNIZERS

In this section, we address the problem of determining
which test set size ensures that a given difference between
the error rates of two recognizers is statistically significant.

We first revert to the assumption that errors are i.i.d. The
method used is very simple. Since the number of common
errors of the two recognizers is not known before testing, we
cannot use more sophisticated methods such as the McNe-
mar’s test [9] or the method proposed in [10] which account
for correlated errors. We will, however, introduce these
methods in Section 7 to do a posteriori hypothesis testing.

We then address the problem of correlation between errors
which is treated in a similar way as in the previous section.

5.1 The Case of i.i.d. Errors

Using similar notation as in previous sections, we call X;
and X, the random variables indicating failure or success of

recognition for recognizer 1 or 2 on randomly drawn ex-
amples. We call p, and p, their empirical error rates calcu-
lated on a test set of size n, and p; and p, the expected val-
ues of the error rates. We assume that the number of errors
of both recognizers are distributed according to the bino-
mial law, which we approximate by the Normal law. The
variances of X; and X, are var(X;) = p;(1 - p))/n, i € {1, 2}.

Our goal is to find the smallest number of test examples
n needed to assert, with a certain confidence, that recog-
nizer 1 is better than recognizer 2, for a given difference in
their error rates p, — p; > 0. This can be formalized as de-
termining the smallest number of examples n such that,
with risk o of being wrong, we can reject the hypothesis H,
that p; = p, for a given value of p, — p; > 0. The alternative
hypothesis H; that p, > p; is then accepted, with risk o of
being wrong.

If the two random variable X; and X, are independent,
var(X, — X;) = var(X,) + var(Xy). If we further make the hy-
pothesis H, that p; = p,=p, then

1-—
Val’(X2 - Xl) = Zu (56)
For small values of p, we have:
2
var(X, — Xl)sz. (57)

Under our approximations, if the hypothesis Hy is true,
then the random variable
X, - X
z=_2 "1 (58)
J2p/n
obeys the standardized Normal law (of mean 0 and vari-
ance 1). Therefore:

Prob( P Py >
where z,, can be determined from tables of the Normal law

J2p/n
(see Table 1). Thus, if
P, — B, = z,./2p/n,

we will reject Hy, with risk o of being wrong, and declare
that recognizer 1 is significantly better than recognizer 2.
Conversely, if we impose a given relative difference:
_ f)z - f’l
B=—5—
where p = (p; + p,)/2, then to determine whether recognizer

1 is significantly better than recognizer 2, we need a mini-
mum number of test examples of:

_(zajz 2
n= ? B

It is interesting to compare this formula to (24) for which g
isa bound on (p— p )/p.

(59)

(60)

(61)

(62)

5.1.1 Numerical Application

Assuming that the best recognizer has an error rate of p, , if
the second best recognizer has an error rate of p, + Sp which
is only slightly worse, what size test set would allow us to
conclude that #1 is better than #2? In Table 5, we vary the
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TABLE 5
TEST SET SizES NEEDED TO DIFFERENTIATE
Two RECOGNIZERS

p 0.01 0.03 0.1

P 0.01 0.05 0.10 0.01 0.05 0.10 0.01 0.05 0.10
050 | 4343 | 2178 | 1311 1448 726 437 434 218 131
030 || 12064 | 6050 | 3641 4021| 2017| 1214 12086 605 364
0.10 || 108578 | 54450 | 32,768 | 36,103 | 18150 | 10,923 | 10858 | 5445| 3277
0.05 || 434,312 | 217,800 | 131,072 || 144771 | 72,600 | 43691 | 43431 | 21,780 | 13,107
0.03 || 1.2110° | 605,000 | 364,089 | 402,141 | 201,667 | 121,363 | 120,642 | 60,500 | 36,409
001 | 1.0910" | 5.4410° | 3.2810° | 3.6210° | 1.8210° | 1.1010° | 1.0010° | 544,500 | 327,680

It is assumed that the average error rate of the two recognizers considered are p = 1 percent, 3 percent, or 10 percent. The number
in the table indicates the minimum size test set which guarantees the significance of the relative difference g = (f)2 - f)l)/p , with
risk o of being wrong. i.i.d. errors are assumed and the binomial law is approximated by the Normal law.

confidence threshold o for various values of p = (p; + p,)/2
and = (p, - p;)/p.

For a typical value of o (o = 0.05), using the notation
Ap = p, — p;, we obtain the following simplified formula:

10p
n=—sj. (€3)
Ap
Therefore, assuming i.i.d. errors and p = 0.01, using
n = 10,000 characters (64)

guarantees the statistical significance of a difference of 0.3 per-
cent character error (Ap = 0.003), with 95 percent confidence

(e =0.05). This corresponds to a relative difference §=0.3.

5.2 Correlated Errors

When errors are correlated, it is possible to proceed like in
Section 4 and introduce y factors. The corresponding hy-
pothesis test is called a “matched-pair” test [9]. Matched-
pair tests were derived for the particular case when the cor-
relation factor is “linguistic material”: the average differ-
ence in error rates between the two recognizers are calcu-
lated on each “segment” individually, where a “segment” is
typically a sentence. But the test can be generalized to other
correlation factors, where a “segment” can represent all the
data from one writer.

5.3 Number of “Segments”

The test data is divided into m “segments” which are
homogeneous with respect to a particular correlation
factor (e.g., m writers or m sentences). We are seeking the
minimum value of m which guarantees that, if the error
rate of recognizer 2 is larger than the error rate of recog-
nizer 1 by a certain margin, we can assert with a certain
probability that recognizer 1 is better than recognizer 2.
Our hypothesis Hy that we wish to reject is again that
P1=P2=p.

The derivation follows steps that are similar to those in
Section 4. Let us call X; and X, the errors of recognizers 1
and 2 on the same segment i. We introduce two random
variables X; and X, which are the averages of X;' and X,
over n examples. Realizations of these variables are empiri-
cal error rates, p; and f,, for segment i. We also introduce

the means X; and X, over all segments.

If the two recognizers perform equivalently (H, is true),
they have the same expected error rate p and between-

segment variance o’ If X, and X, are independent, the

variance of X, — X, is 26°/m. Under such set of hypotheses,
the random variable:

)_(2 B )_(l
«/EO'—/«/H (65)
obeys approximately the standardized Normal law.
If Hy is true,
Prob(\/pizd;/f/)lm > za] <a (66)
In other words, with risk o of being wrong, if:
f, — b, = v2z,0/vm (67)

we can reject Hy and assert that recognizer 1 is better than
recognizer 2.

Therefore, the number of segments that guarantees the
statistical significance of Ap = p, — p, with probability o of
being wrong, is:

m = 2(2“—6) (68)
Ap
Introducing the parameter 8 = Ap/p, we have:
m = 2( Z“GJZ. (69)
Bp

It is interesting to compare this formula with (36).

5.4 Number of Examples Per Segment

Let us call ng the number of examples per segment. If Hy is
true, the within-segment variance is p(1 — p)/ny = p/n..
Similarly, as in Section 3.2.3, we define a coefficient v, ratio

R 2 R .
of the between-segment variance ¢ over the within-
segment variance:

- (70)
"o,
The total number of examples is then given by:
n=mng=7yn (71)

where n is given by (62).
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5.5 Generalization to Multiple Factors of Correlation

Similarly, as in Section 4.3, one can generalize to the case of
max

multiple factors or correlation. Let us call y,,~ = max, y,, and
N¢ the total number of factors of error correlation, one has:
n = y;‘ja"(1+ InN,)n. (72)

6 SUMMARY AND DISCUSSION

6.1 Test Set Size Determination

In Table 6, we summarize the various steps of our method.
In practice, it is relatively easy to obtain values for p, 4,

Bs. n,, N,, and o, but the values of ¢, might be hard to

guess. We can consider our method as a bootstrap method:
As more results of benchmarks are available, it becomes
easier to obtain a reasonable estimates of o, and the calcu-

lation of the size of the test set for future benchmarks be-
comes more accurate. If nothing is known about o, one

canassume o, =p and use Y7, = Mmax (1, n, p).

It is important to remember when designing a writer-
independent test that if data from one writer is present in
the test set, no data from that same writer should go into
the training set. The same applies to other correlation fac-
tors ¢ when designing an ¢ -independent test.

In our numerical examples, we found that, if errors are
i.i.d., for an error rate of p = 0.01 (a typical character error
rate), n = 10,000 examples suffice, and for an error rate of
p = 0.03 (a typical word error rate), n = 3,000 examples suf-
fice. At the 95 percent confidence level (o = 0.05), this corre-
sponds to a relative difference 8, = 0.2. The expected value
of the error rate should not exceed 1/(1 — Ba)p = 1.25¢,
where f is the error rate on the test set. This also corresponds
to a relative error 35 = 0.3. A difference in error rate between
two recognizers of Ap = 0.3p is statistically significant.

To account for correlations between errors, we estimated

that %, (¢ = writer) is of the order of 10. If we assume that
yf;ax:yw and that N, = 4, then, the corrected number of

examples needed is: n” = y7™ (1 + InN,) n = 10(1 + In4)
10,000 == 200,000.

6.2 Literature Overview

We investigated in various papers and technical reports the
test set sizes that are used by pattern recognition research-
ers and are believed to be reasonable:

e In [5], the U.S. National Institute of Standards and
Technology (NIST) organized a benchmark for Opti-
cal Character Recognition (OCR) of isolated hand-
written characters. Three test sets were used, each one
having 500 writers. The “digit” test set (10 classes or
shape categories) had a total of 60,000 characters, the
“uppercase letter” test set (26 classes) had 12,000
characters and the “lowercase letter” test set (26
classes) had also 12,000 characters. Therefore, the two
letter test sets had approximately one let-
ter/writer/class whereas the digit test set had 12 dig-
its/writer/class. The authors mention that the first

TABLE 6
SUMMARY OF THE STEPS TAKEN TO DETERMINE THE
TEST SET SIZE

p: Expected error rate of the best recognizer (e.g., 1 percent error
gives p = 0.01).

[0x Factor of correlation between recognizer errors (e.g., ¢ = writer,
¢ = recording conditions, ¢ = linguistic constrains, ¢ = shape
category).

2, . . ) _

o, Errorrate variance for a given ¢, when g varies (e.g., Oyriter = P)-

n,: Number of examples per ¢ (e.g., 100 examples per writer).

N,: Number of factors of correlation (e.g., N, = 4).

o Risk of predicting too few examples (e.g., o = 0.05).

Ba:  Guaranteed bound on the relative difference (p - ﬁ)/p be-
tween the expected error rate and the empirical error rate (e.g.,

Ba=0.2).
Bg: Minimum relative difference (ﬁz - ﬁl)/p between the empirical
error rates of two recognizers to be compared that guarantees 1

is better that 2 (e.g., fg=0.3).
ny: Number of test examples needed assuming i.i.d. errors for

method A.

ng:  Number of test examples needed assuming i.i.d. errors for
method B.

. Number of test examples needed, taking correlations into ac-

count for method A.

ng: Number of test examples needed, taking correlations into ac-
count for method B.
n’:  Total number of test examples needed, combining methods A

and B.
(@)

2
Prepare: p, G, Ny, Ny, 0 y,™ = max, p/—;’; (¥ = max (1, nyp))
o

Method A Method B

P Baz(p-p 5 5
repare: Ba 2 (p - p)/p Prepare: g = (pz B pl)/p

—Ino -2Inx
n, = n, =
A 2 5 2
B 4P BgP
n, = ynq;ax(1+ InN, )n,, ny = yzax(l+ InN(p)nB

Pick: n’ = max(n;‘, n;)

(b)
(a) Notations and typical values of the parameters. (b) Number of examples
needed such that, with risk o of being wrong, (1) the expected value p of the
error rate of the best recognizer is not worse than 1/(1 — ) times its empiri-
cal value p computed on the test set; (2) a relative difference of g between
the error rates of two recognizers is significant.

10,000 digits were typical of the full digit test set, sug-
gesting that this one was oversized.

These figures are related to our predictions in the following
way:

» For the two letter test sets, assuming an error rate of 1
percent (p = 0.01), we predict that n = 10,000 characters
are needed if i.i.d. errors are assumed. The i.i.d. as-
sumption is reasonable here since the test sets contain
one letter/writer/class. NIST chose test sets of n = 12,000
characters. Our prediction corroborate this choice.
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» For the digit test set, it is not possible to gather 10,000
i.i.d. examples because 500 writers times 10 classes
make only 5,000 reasonably independent examples.
Therefore we need to estimate the corrective factors.
Having n,, = 120 characters per writer, we estimate
Yu = PNy, = 1.2. Only N,, = 2 factors of correlation are
involved (writer and shape category). We verify that
the ¥ corresponding to the shape category correla-
tions is smaller than ¥,. The total correlation factor is
therefore: %, (1 + InN) = 1.2 (1 + In2) = 2. Therefore,
we predict that only n” = 20,000 examples would be
needed for this test. The test set of 60,000 digits used
by NIST is oversized, according to this prediction.

* In [6], NIST organized an OCR benchmark for Census
Bureau forms. Each answer field was handprinted in
uppercase letters (26 classes) and contained a few
words. The test database consisted of 9,000 answer
fields. Since each writer had to answer approximately
30 questions, we estimated that the database con-
tained 300 different writers. Since each field had ap-
proximately 15 characters, we estimated that the total
number of characters must have been approximately
135,000. Therefore, there was an average of 17 let-
ters/writer/class.

» According to our prediction, assuming again a char-
acter error rate of 1 percent (p = 0.01), we predict that
n = 10,000 characters are needed if i.i.d. errors are as-
sumed. We identified N, = 3 obvious sources of error
correlations: writer, class (or shape category) and lin-
guistic constraints (within a given field). We estimate
that the number of examples per writer is approxi-
mately n,, = 450. We have, ¥, = pn,, = 4.5. We verify
that the y, corresponding to the shape category and
the 9 corresponding to linguistic constraints are both
smaller than ¥,. Therefore, the corrective coefficient is:
% (1 +InNg) = 4.5 (1 + In3) = 9. We predict that only
n” = 90,000 examples would be needed for this test.
This is smaller than, but of the same order of magni-
tude as the NIST test set.

7 HYPOTHESIS TESTING

In this section, we summarize a number of hypothesis tests
described in the literature. These tests can be used, after the
benchmark, to verify the statistical significance of the results.

7.1 Precision of the Error Rate

In this section we assume that errors are i.i.d. and that a
number n of test examples was chosen, according to (24).
The best recognizer obtained an error rate § on those test
examples. We first want to test the hypothesis Hy:

P—P <pp (73)
Equation (19) for small values of p becomes:
N p
p-p< za\/;. 74)
We can further rewrite it as:
2 2
A Z A Z A
(P=B) <<= (p—B)+-=p (75)

Solving for p— f , we obtain:

R zi 4np
p-Pp<o5-|1+ |[1+— | (76)
2n 7
o
Therefore, if we pass the following test:
2 ~
z 4n
—“[l+ fl+—2pJ< Bp (77)
2n 2

we accept Hy with risk o of being wrong. Otherwise, the
number of examples n is too small to guarantee a relative
error bar of S.

7.2 Comparison of Two Recognizers

In this section we assume that errors are i.i.d. and that a
number n of test examples was chosen according to (62).
Two recognizers have obtained error rates p, and f,,
B, < P,. We first want to test the hypothesis Hy: p; = p,. The
test that we describe is analogous to the formulation of the
McNemar test found in [9] and bears strong similarities
with the method proposed in [10]. We present it here for
clarity with notations consistent with the rest of the paper.

It is enough to compare the two recognizers on those ex-
amples where only one of the recognizers has an error. We
call v; and v, the number of errors that each classifier makes
and the other does not make. We call 7; and m, = 1 — m; the
conditional probabilities of error of each recognizer, given
that one recognizer only gives the wrong answer.

The number v, is distributed according to the Binomial law
of expected value (v, + v,)m; and variance (v, + vp)my(1 — my)
= (v, + vy)mm,. Similarly, v, is distributed according to the
binomial law of expected value (v, + v,)m, and variance
(Vi + v)my(1 = ) = (Vo + Vo) 7.

Let us introduce the random variable IT,, of which # , =
w/ (v + V,) is a realization. TI, has expected value 7, and
variance mm/(vy + v,). For large values of v, and v,, the
random variable:

o Mm -

T/ (Ve +V,)

obeys approximately the standardized Normal law. In the
particular case of m, = m, = 1/2 (i.e., if Hy is true), Z becomes:

I,-1/2

z=—2 "
w 4(v11+v2)

Therefore, if Hy is true, with probability (1 — o), the follow-
ing inequality holds:

(79)

. 1z, 1 80
T, =+ <o —F——om,
2272 Jv,+v, (80)
or,since &, =1-7:
ZOC
ft, =7t < —. 81
2o v+, (81)

Let us call n the total size of the test set, v;, the number of
common mistakes of the two recognizers, p, the error rate of
the first recognizer and §, that of the second one. We have:

(vi+ Vz)(ﬁ'z _ﬁl) =V, =V =V v, — (Vi) - n(ﬁz - 51) (82)
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Therefore, from (81) and (82), if

A A Za

B, =By 2V + v, (83)
then, with risk o of being wrong, we can accept that recog-
nizer 1 is better than recognizer 2.

7.3 Analysis of Variance

Finally, we may want to recalculate the coefficients y,, in light
of the results of the benchmark. A description of the ANOVA
test of equality of the expected values can be found in [1]. We
can use ANOVA to test the equality of the error rates for dif-

ferent values of the same factor ¢ (e.g., different writers). This

test can be run for the various factors of correlation ¢ by de-
termining whether ¢ is significantly different from one. If

max,, 7, is smaller than max, v, that we used in our calcula-

tions of the number of test examples, our results will be
known with less accuracy than we anticipated.

8 CONCLUSION

The number of examples in a test set should be inversely
proportional to the error rate of the best recognizer. For
errors independently and identically distributed (i.i.d), a
rule of thumb is to use n = 100/p, where n is the test set size
and p is the error rate of the best recognizer, as estimated,
for instance, by the human error rate. This ensures that with
95 percent confidence the probability of error is not worse
than 1.25 p . For instance, for p = 1 percent character error
rate, n = 10,000 characters are needed; for p = 3 percent
word error rate, n = 3,000 words are needed.

In reality, errors are not i.i.d. because large chunks of
data come from the same data collection device or from
the same writer and because recognizers might make
correlated errors, in particular if they use contextual
information to perform recognition (e.g., language mod-
els). We examined particularly the case of correlations
introduced by data coming from the same writer. If the
between-writer variance is the same as the error rate p,
using 100 writers ensures that with 95 percent confidence
the true error rate is no more than 1.25 p, where f is the

empirical error rate, calculated on the test set. The number

of examples per writer can be determined if the ratio ¥, of
the between-writer variance to the within-writer variance is

known. The size of the test set is then given by n” = y,n,
where n is the test set size determined with the assumption

that the errors are i.i.d. If N, factors of correlations must be
taken into account, the size of the test set increases to

n = y?ax(1+ InN,)n examples. Typical values are 1 < Vo <10

and 1<N,<4.

We examined the number of examples needed to be able
to discriminate between two recognizers with very close
error rates. To ensure that with 95 percent confidence a dif-
ference AP in error rate is significant, the test set size must
exceed n = 10p/Ap Ziid. examples. For a difference Ap =
0.3 percent, approximately n = 10,000 examples are needed
if this rule is followed. If data or errors are not i.i.d., correc-

tions can be performed with multiplicative coefficients
taking into account correlations, as explained above.

These guidelines should provide some insight for
benchmark organizers. Of course, this simplified frame-
work might not be strictly applicable in all situations. For
instance, the number of examples per writer might vary
substantially from writer to writer in a given database. In
such a case, a specific data splitting algorithm must be de-
rived, keeping in mind the general principle:

1) maximize data diversity in the test set, with respect to
data source, shape categories and linguistic material,

2) in a writer/speaker independent task, forbid data
from the same writer/speaker to be both in the train-
ing and test sets;

3) impose a minimum number of 100 writers/speakers;

4) reach the minimum number of examples prescribed.

Finally, we should emphasize that nowhere did we make
the hypothesis that our test set sizes were for
writer/speaker independent tasks only. They apply as well
to writer/speaker dependent tasks, in which data from the
same writer is both in the training and the test set.
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