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ABSTRACT

Previous Landau-type models of two-phase state formation in clamped systems whose material exhibits first-order phase transitions in
free state neglects the existence of interphase boundaries. Here, we take them into account in the framework of a Ginzburg–Landau one-
dimensional model to study the dependence of characteristics of the two-phase state on system size. Unlike earlier works, we find that the
transition to the two-phase state from both the symmetrical and nonsymmetrical phases is not continuous but abrupt. For a one-dimen-
sional system with length L studied in this work, we show that the formation of two-phase state begins with a region whose size is propor-
tional to

ffiffiffi
L

p
. The latent heat of the transition is also proportional to

ffiffiffi
L

p
so that the specific latent heat goes to zero as L ! 1, recovering

the earlier result for infinite systems. The temperature width of the two-phase region decreases with decreasing of L, but we are unable to
answer the question about the critical length for two-phase state formation because the approximation used in analytical calculations is
valid for sufficiently large L. A region of small values of L was studied partially to reveal the limits of validity of the analytical calculations.
The main physical results are also obtainable within a simple approximation that considers the energy of interphase boundary as a fixed
value, neglecting its temperature dependence and the thickness of the boundary. A more involved but consistent treatment provides the
same results within the accepted approximation and sheds light on the reason of validity of the simplified approach.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0029144

I. INTRODUCTION

Theory of first-order phase transitions in clamped solid
systems which was mostly of conceptual interest several decades
ago is now of experimental relevance. This is due to the advent of
systems such as films on substrates or structures like nanobeams
that can be partially clamped by the substrate or fixed at their ends.
If the material exhibits first-order phase transition in the bulk free
crystal, a natural question arises: what occurs for such transitions
in the above systems? The most well-known effect is the formation
of domain structures due to several elastic variants of the new
phase(s) that was studied many years ago, see Roitburd (1978).

There are, however, effects of clamping even when only one elastic
variant of the new phase is present and the only strain effect of
transition is dilatation, i.e., a change in the system density. This is
the most general feature of any transition, but we are discussing
here only those that occur without material transfer between differ-
ent parts of the system, ferroelectric and ferroelastic phase transi-
tions exemplify this type of transitions, where change in density
here is solely due to a change in the unit cell volume or, more gen-
erally, due to the change of space occupied by the same structural
unit in the two phases. A general feature of clamping is that it puts
some external limits on the system either by fixing its volume or
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some sizes or by hampering displacements of the material at some
boundaries such as at the interfaces between the film and the sub-
strate, but it cannot prevent displacements of the material at every
point of the system which occur if such displacements result in a
decrease in the system’s energy. In other words, if the system
“wants” to change its density at every point but is prevented from
doing so by external conditions, it does it to an extent that is possi-
ble: it might do this locally and inhomogeneously given that the
global homogeneous option is excluded. If a first-order phase tran-
sition occurs in the system, the abrupt change in the system density
naturally exhibited in a free system cannot take place in all of the
system homogeneously because of fixing of the volume or the sizes,
but it will occur inhomogeneously if it decreases the system energy.
If it occurs, it strongly influences the phase transition in the
clamped system. One can, for example, speculate that the smearing
of ferroelectric phase transitions, which is more pronounced exper-
imentally in thin films than in the bulk material, is connected, at
least to some extent, with this phenomenon whose theoretical
understanding is still insufficient to provide even rough estimations
relevant to experiments. The aim of the paper is to contribute to
the development of the corresponding theory. The naturally
expected form of the inhomogeneity is some form of coexistence of
the two phases in a temperature interval close to the temperature of
what would be the first-order phase transition without clamping.
This is what the term “two-phase state” in the title refers to. They
were directly observed in nanobeams (Wu et al., 2006; Wei et al.,
2009), and there is little doubt that this tendency may reveal itself
in some form in other clamped or partially clamped systems such
as perovskite films on substrates given that, in bulk perovskite crys-
tals, ferroelectric and other phase transitions are mainly of the first
order. The coexisting phases are, naturally, not the only possible
form of the inhomogeneities, see Levanyuk et al. (2018), but we
believe that a consistent development of the theory implies an
exhaustive study of the simplest cases first and that is the approach
followed in this paper.

The natural starting point to present the state of the arts is a
paper by Devonshire (1951) who claimed to show that the first-
order paraelectric-ferroelectric phase transition in BaTiO3 would
convert into a second-order one if the crystal volume were fixed.
The reason was the change of sign of a coefficient of the
Landau-like thermodynamic potential due to clamping. A weak
point of this claim was a tacit assumption that the constrained
system remained homogeneous. This became clear much later, but
in a widely cited paper (Pertsev et al., 1998), a similar conclusion
was made about partially clamped BaTiO3 and PbTiO3 in the form
of thin films on thick substrates once again because of a similar
reason and due to the same assumption. Later this assumption was
abandoned in Pertsev et al. (2000) and Koukhar et al. (2001)
where, with the help of a numerical procedure, multidomain and
heterophase states were revealed but no two-phase states (TPSs)
consisting of the paraelectric and ferroelectric phases so that the
above-mentioned conclusion about paraelectric-ferroelectric transi-
tion in BaTiO3 and PbTiO3 remained unquestioned. However,
several years later, Onuki and Minami (2007), considering the
compressible Ising system within the Ginzburg–Landau model,
explicitly showed that the clamping of an elastically isotropic
system with first-order phase transition leads to the formation of

TPS instead of second-order transition as it was claimed in the
above papers for real, i.e. anisotropic, systems. The situation with
the two-phase formation is, indeed, trickier for anisotropic systems
(Onuki et al., 2007), but it is legitimate to be surprised by the
numerical results of Pertsev et al. (2000) and Koukhar et al. (2001)
about the paraelectric-ferroelectric transitions in BaTiO3 and
PbTiO3. If the results published in Pertsev et al. (2000) and Koukhar
et al. (2001) for the paraelectric-ferroelectric transition with no
two-phase existence are a consequence of the phenomenological con-
stants they used, it may well be not the case for other reported mate-
rial constants (see Hlinka et al., 2006) or other compositions
undergoing first-order phase transitions. This question certainly
deserves attention, but it is beyond the scope of this paper. We think
that, before studying the effects of crystal anisotropy, the simplest
elastically isotropic case should be carefully studied.

We build upon the work of Onuki et al. (2007) and another
work by Tselev et al. (2010) that provided a simplified derivation of
some of the results given by Onuki et al. (2007). The matter is that
when defining the parameters of the TPS, interphase boundaries
(IBs) have been neglected in both works. This may seem reasonable
for large samples since the relative contribution of the IB energy
(IBE) goes to zero when the sample size tends to infinity. However,
the observable values are not necessarily relative. Our initial inten-
tion was to study dependence of characteristics of the TPS on the
system size expecting the most interesting results for small sizes
where an explicit consideration of the IBs is obligatory. To our sur-
prise, the results proved to be of relevance not only for small
systems but also for arbitrary large ones. Indeed, our 1D analysis
reveals that, at the formation of TPS both from symmetrical and
from homogeneous nonsymmetrical phases, the length of the
region of the new phase depends on the system length L as L1/2,
i.e., the transitions into TPS are discontinuous. The total latent
heat of the sample at both transitions depends on L in the same
way. Evidently, the specific latent heats tend to zero when the
system size goes to infinity. The L dependence of boundaries of the
temperature region of TPS is also power-like, i.e., it is essential even
at large L unlike our initial expectation that it will start to be visible
at L comparable with the order parameter correlation radius which
is the only material characteristic length of the theory. The empha-
sis of this paper is on the lengths larger than the correlation radius
despite some preliminary results on the smaller lengths have been
already reported (Levanyuk et al., 2020). The profiles of the order
parameter are different from what is conventionally understood as
TPS, this case clearly deserves a separate discussion and we left it
beyond this paper not to overload it.

The paper is organized as follows. In Sec. II, we reproduce, for
the reader’s convenience and for further use of the formulas, the
method to define the temperature width of the two-phase region
neglecting the boundaries. Here, we follow Tselev et al. (2010)
while providing more details than can be found in the original
work. In Sec. III, we present a simple though temporarily unsub-
stantiated method to obtain the main physical results of the paper.
It consists of adding to the free energy of TPS of Sec. II the energy
of IB at the phase equilibrium in the free system which is known
from literature (Larkin et al., 1969; Lajzerowicz, 1981). The results
of Sec. III are also obtained in Sec. IV by consistent analytical
calculations, thus justifying (for large L) the method presented in
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Sec. III to obtain the results. In Sec. V, we present numerical results
to demonstrate the expected deviations of the analytical results
from the numerical ones at low values of L. In Sec. VI, we summa-
rize the results of the paper. To avoid excessively complicated for-
mulas, we consider explicitly only the case where the virtual
homogeneous transition in the clamped system coincides with the
tricritical point. More general results are presented in the supple-
mentary material without derivation but only providing formulas.

II. SIMPLIFIED LANDAU-TYPE ONE-DIMENSIONAL
MODEL OF TWO-PHASE STATE FORMATION

In the paper as well as in Tselev et al. (2010), which we follow
in this section, only the simplest case of one-component order
parameter is considered, which has the symmetry transformation
properties neither of a component of a polar vector nor a compo-
nent of a symmetrical tensor of second rank, i.e., the phase
transition is neither ferroelectric nor ferroelastic. This is to avoid
complications associated with the effects of long-range electric
fields, in the case of ferroelectrics, or elastic fields associated with
symmetry-breaking strains, in the case of ferroelastics, and concen-
trate, at this stage, on the long-range elastic effects of clamping
which are common for any type of phase transition and are associ-
ated with fixing the volume, area, or length of the system. As well
in Tselev et al., only 1D system is considered so that the linear
density of the Ginzburg–Landau free energy can be written as

f ¼ α

2
η2 þ β

4
η4 þ γ

6
η6 þ qη2uþ Q

2
u2 þ δ

2
dη
dx

� �2

, (1)

where η is the order parameter, u is the strain tensor component
along the only direction (x), and Q is the longitudinal elastic
modulus. As usual α ¼ α0(T � Tc), and all other coefficients are
supposed to be independent of temperature. The condition of
lateral clamping is that the average strain hui ¼ 0 . Since we explic-
itly consider only the case of tricritical transition in the clamped
homogeneous system, we put β ¼ 0. In this section, only piecewise
constant distributions of η and u are considered (homogeneous
symmetrical and nonsymmetrical phases) and the contributions of
discontinuities (interphase boundaries) are neglected. Therefore, we
can omit the gradient term in Eq. (1) and call the theory
Landau-type one-dimensional model. The total free energy F of the
system is then

F ¼
ðL
0

α

2
η2 þ γ

6
η6 þ qη2uþ Q

2
u2

� �
dx: (2)

The equilibrium piecewise distributions of η and u are to be
found from the condition of minimum of F given that for the dis-
tribution of u the condition hui ¼ 0 is fulfilled. In the case of a
system that is nonclamped but is subjected to an external stress σ,
the full energy includes that of the stress source that is equal to
�Lσexthui, where hui is no more fixed. For a free (σext ¼ 0) and
homogeneous (hui ¼ u) case, the integration in Eq. (2) is reduced
to multiplication of the integrand by L. To consider the behavior of
the unclamped system (which is known to be homogeneous), it is

convenient first to minimize over u to obtain

F ¼ L
α

2
η2 � q2

2Q
η4 þ γ

6
η6

� �
: (3)

This form of free energy is well known in the Landau theory of
first-order phase transitions, see Strukov et al. (1998). According to
this theory, the transition occurs at

α ¼ αt ¼ 3q4/(4γQ2) (4)

and with two possible discontinuities of η: from zero to +ηt ,
where

η2t ¼ 3q2/(2γQ): (5)

Going back to a clamped system we suppose that it consists of two-
phases: one part with η = 0 , u ¼ u1, and length l1, and the other
part with η ¼ 0, u ¼ u2, and length l2. Then,

F ¼ α

2
η2 þ γ

6
η6 þ qη2u1 þ Q

2
u21

� �
l1 þ Q

2
u22l2: (6)

The condition of clamping of the system reads

u1l1 þ u2l2 ¼ 0 or u2 ¼ �u1l1/l2: (7)

Introducing a new variable ξ ¼ l1/L and noting that l2 ¼ (1� ξ)L,
we obtain

F
L
(η, u1, ξ) ¼ α

2
η2 þ γ

6
η6 þ qη2u1 þ Q

2(1� ξ)
u21

� �
ξ: (8)

To determine the equilibrium state of the system, one must
minimize F/L over all the three variables. One obtains (for ξ = 0
and ηe = 0)

u1e ¼ � qη2e
Q

(1� ξe), (9)

α ¼ �γη4e þ 2
q2η2e
Q

(1� ξe), (10)

αη2e þ
γ

3
η6e þ 2qη2eu1e þ

Q

(1� ξe)
2 u

2
1e ¼ 0: (11)

From these three equations, the dependence of ηe, u1e, and ξe
on α, i.e., on temperature can be found. One obtains

η2e ¼
3q2

2Qγ
¼ η2t , (12)

i.e., in all temperature range of existence of the two-phase state, the
value of η does not change with temperature and is equal to dis-
continuity in η at phase transition in free sample. The relation

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 044102 (2021); doi: 10.1063/5.0029144 129, 044102-3

Published under license by AIP Publishing.

https://www.scitation.org/doi/suppl/10.1063/5.0029144
https://www.scitation.org/doi/suppl/10.1063/5.0029144
https://aip.scitation.org/journal/jap


between ξe and α is given by

ξe ¼
αt � α

4αt
: (13)

High temperature limit (HTL) (ξe ¼ 0) is at α ¼ α1 ¼ αt , i.e., at
the same temperature as the first-order transition in free crystal,
and low temperature limit (LTL) (ξe ¼ 1) takes place at
α ¼ α2 ¼ �3αt . To find equilibrium free energy of TPS, we use
Eqs. (8), (9), (12), and (13) to get

Fetp ¼ �Lαtη
2
t ξ

2
e : (14)

The lower limit of the two-phase state coincides with equality
of equilibrium free energies of TPS given by Eq. (14) and of the
homogeneous, clamped state of the nonsymmetrical phase at the
same temperature. From Eq. (2) with u ¼ 0, it follows that this
energy is

Fenhc ¼ �L(� α)3/2/3γ1/2: (15)

Substituting α ¼ �3αt into Eqs. (14) and (15) and having in mind
Eqs. (4) and (5), one can check that these two energies are equal.

Let us discuss more about the obtained results. From Eq. (1),
we find that the local longitudinal stress (σ) is given by σ ¼ @f

@u, i.e.,

σ ¼ Quþ qη2: (16)

The equilibrium stresses in the symmetrical and nonsymmetrical
regions are as follows:

σsym ¼ Qu2e ¼ qη2t ξe, (17)

σnsym ¼ Qu1e þ qη2e ¼ qη2t ξe, (18)

where Eqs. (7), (9), and (12) were used. We see that σsym ¼ σnsym,
i.e., the condition of the mechanical equilibrium

d σ
dx

¼ 0 (19)

is satisfied.
Let us now ask ourselves why the value of η remains equal to

ηt through all the temperature region of TPS despite the changes in
temperature? To answer this question, consider the region of the
nonsymmetrical phase at a given temperature as the system of our
interest and the region of the symmetrical phase as a source of
stress that is exerted on our system. We fix this stress as given by
Eq. (17) and find equilibrium η and u in our region by minimizing
the free energy

F ¼ α

2
η2 þ γ

6
η6 þ qη2u1 þ Q

2
u21 � σextu1

� �
l1: (20)

Minimizing first with respect to u1, we find

u1 ¼ σext

Q
� q
Q
η2: (21)

Substituting Eq. (21) into Eq. (20), we obtain

F ¼ α*
2
η2 � q2

2Q
η4 þ γ

6
η6 � σ2

ext

2Q

� �
l1, (22)

where

α*¼α þ 2q
Q
σext : (23)

Comparing Eqs. (22) and (3), we see that the η-dependent
terms in both parentheses are the same with the only difference
that instead of α in Eq. (3) we have α

*
in Eq. (22), which, according

to Eq. (23), reflects the difference between a free and a stressed
system. Using Eq. (17) or (18) and Eq. (13), we find that

α*¼αt , (24)

i.e., is independent of temperature. That is why the value of ηe is
constant within the TPS: the stress from the region of the symmet-
rical phase keeps the region of the nonsymmetrical phase in the
conditions of the first-order phase transition in free system.

III. IMPROVED LANDAU-TYPE ONE-DIMENSIONAL
MODEL: ADDING ENERGY OF INTERPHASE
BOUNDARY

Trying to amend the complete neglection of interphase
boundaries in Sec. II, we note that the simplest amendment is to
consider the energy of the boundary and not its width. This may
be called as the approximation of infinitely thin boundaries. In
Sec. IV, it will be shown that, for not very small L, it gives the same
results as the consistent analytical theory so that for large L the
finiteness of IBE is more important than finiteness of the boundary
width. When a TPS system is in equilibrium, it has as few
interphase boundaries as possible. Depending on the boundary
conditions, there will be just one or two boundaries in the whole
system. In Sec. IV, we consider the case of a single boundary as the
equilibrium case, and here, we will consider the same. From the
discussion in the final part of Sec. II, it is clear that of our interest
is the IBE at the first-order transition in free sample. As far as we
know, within the Ginzburg–Landau model, this energy was calcu-
lated for the first time in Larkin et al. (1969); see also Lajzerowicz
(1981). We add it to the energy of TPS (in our notions and correct-
ing a misprint and a calculational error) first to Eq. (8) to mention
that, being a number, it disappears after minimization so that
Eqs. (9)–(13) remain valid for this section also. Then, we go to
Eq. (14), and the full equilibrium free energy of the system is now

Fetp ¼ �Lαtη
2
t ξ

2
e þ

αtη2t
4

rct , (25)

where rct ¼
ffiffiffiffiffiffiffiffiffi
δ/αt

p
, i.e., is the order parameter correlation radius at

temperature of the first-order phase transition. We see that the full
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energy becomes zero, i.e., it is equal to energy of the symmetrical
phase not at ξ ¼ 0 (see also Fig. 1) but at

ξein ¼
ffiffiffiffiffi
rct
4L

r
(26)

or at

l1ein ¼
ffiffiffiffiffiffiffi
rctL

p
2

: (27)

This means that the initial size of region of the non-symmetrical
phase is large and increases with increasing size of the system.
Using Eq. (13), we find for HTL as

α1 ¼ αt 1� 2

ffiffiffiffiffi
rct
L

r� �
: (28)

Expectably, due to IBE, α1 , αt , i.e., account for IBE leads to
a decreasing HTL. Note that α1 cannot be negative because at α ¼
0 the symmetrical phase loses its stability with respect to the for-
mation of a homogeneous nonsymmetrical phase, so that Eq. (28) is
meaningless for L , 4rct .

The finiteness of the region of the nonsymmetrical phase at
HTL means that the transition TPS $ symmetrical phase is dis-
continuous, i.e., there is an entropy jump (latent heat) at the transi-
tion. According to Eqs. (25) and (13), the value of the latent heat is

TΔS ¼ �T
dFetp
dT

¼ �TL
α0η2t
2

ξein ¼ �T
α0η2t
4

ffiffiffiffiffiffiffi
rctL

p
, (29)

i.e., the entropy of TPS is less than that of the symmetrical phase,
and there is a release of heat at phase transition from the symmetri-
cal phase to TPS.

To consider the appearance of the region of the symmetrical
phase, we have to equate the equilibrium energies of TPS [Eq. (25)]
and homogeneous state [Eq. (14)], so that the condition of LTL
(see also Fig. 1) reads

�Lαtη
2
t ξ

2
e þ

αtη2t
4

rct ¼ �L(� α)3/2/3γ1/2: (30)

Using Eq. (13), we express α through ξe and introduce a new varia-
ble defined as ξe ¼ 1� ζe in terms of which we have

�η2t (1� ζein)
2 þ η2t

4L
rct ¼ �α1/2

t (3� 4ζein)
3/2/3γ1/2: (31)

Near the LTL, ζe � 1, and one can expand the r.h.s. in series of
powers of ζein up to ζ2ein and use Eqs. (4) and (5) to obtain

ζein ¼
ffiffiffiffiffiffiffi
3rct
4L

r
(32)

or

l2ein ¼
ffiffiffiffiffiffiffiffiffiffi
3rctL
4

r
: (33)

We see that the dependence lin / L1/2 remains for LTL also,
although the numerical coefficient is different. Rewriting Eq. (13)
in terms of ζe, we find

α2 ¼ αt �3þ 2

ffiffiffiffiffiffiffi
3rct
L

r !
: (34)

Now we calculate the latent heat at transition between TPS
and the homogeneous nonsymmetrical phase,

TΔS ¼ �T
d(Fenhc � Fetp)

dT
¼ �T

α0η2t
12

ffiffiffiffiffiffiffiffiffiffi
3rctL

p
, (35)

i.e., the entropy of the homogeneous nonsymmetrical phase is less
than that of TPS, and there is a release of heat at phase transition
from TPS to the homogeneous nonsymmetrical phase.

FIG. 1. Plot of equilibrium energies of two-phase state (with and without a finite
value for IBE), Fetp, along with nonsymmetrical homogeneous clamped, Fenhc ,
and symmetrical clamped, Fesc , states as a function of α/αt . The value of α/αt

at which Fetp curves intersect F ¼ 0, i.e., the energy of the symmetric clamped
phase, marks the transition temperature between the symmetric clamped phase
and TPS. For the case of IBE ¼ 0, this transition takes place at α/αt ¼ 1, i.e.,
at the same temperature as in unclamped system. The nonsymmetric homoge-
neous phase becomes possible, though metastable, in clamped system at
α/αt ¼ 0. The difference between Fenhc and Fetp(IBE ¼ 0) is given in the inset
(green solid line), and it is seen that two energies become equal to each other
at α/αt ¼ �3. Although for the case of IBE = 0, the phase transition between
the symmetric clamped phase and TPS occurs at α , αt . The nonsymmetrical
homogeneous phase in the clamped system remains metastable until its curve
(magenta) crosses the curve of Fetp (IBE = 0, blue). This happens at
α . �3αt , i.e., a finite value of IBE shrinks the temperature interval in which
TPS is the equilibrium phase. The difference between energies of nonsymmetri-
cal homogeneous clamped and TPS (IBE = 0) phases is shown in the inset
(blue line), and the blue solid line indicates the temperature interval in which
TPS (IBE = 0) is the equilibrium state for α/αt , 0.
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The phase map according to Eqs. (28) and (34) is presented in
Fig. 2 for material constants of BaTiO3 close to those given in
Pertsev et al. (1998) and Hlinka et al. (2006) excluding the value of
β that, as is noted above, is put to zero for the sake of illustration.
Specifically, we employed α ¼ 6:6� 105(T � Tc) JmC�2,
γ¼ 4�1010 Jm9C�6, q¼ 1:2�1010 JmC�2, δ¼ 5�10�11 Jm3C�2,
and Q ¼ 2:4� 1011 Jm�3. The value of TC does not matter in our
analysis. In the region where L is comparable with rct , this map is
contradictory: between the points A and B, the phase transition
from the symmetrical phase occurs at α ¼ 0, i.e., with the loss of
stability of the symmetrical phase with respect to homogeneous
order parameter, while for the same interval of L, the transition
from the homogeneous nonsymmetrical phase is into an inhomoge-
neous state (TPS). This means that somewhere below the line
segment AB there should be a line of phase transitions between a
newborn homogeneous nonsymmetrical phase and TPS, which is
absent at the map. This failure of the approximation of infinitely
thin boundary is natural when the boundary thickness (rct)
becomes comparable with L. The region of such small Ls is of
interest, and some preliminary results were reported by us in
Levanyuk et al. (2020), but we left them beyond the paper not to
overload it and because of the preliminary nature of the results.

IV. GINZBURG–LANDAU ONE-DIMENSIONAL MODEL

A. Governing equations

From Eq. (1) with β ¼ 0 and the condition of mechanical
equilibrium, we obtain equations for equilibrium distributions of η
and u. They are

αηe þ γη5e � δ
d2ηe
dx2

þ 2qηeue ¼ 0, (36)

dσ/dx ¼ 0 or σ ¼ const, (37)

where σ is given by Eq. (16). Therefore,

Que þ qη2e ¼ C: (38)

The constant C can be found from the condition of clamping
(Onuki et al., 2007). Averaging Eq. (16) over the sample and taking
into account that, because of the clamping the average of ue, i.e.,
huei ¼ 0, one finds C ¼ qhη2ei and

ue ¼ q
hη2ei � η2e

Q
: (39)

Substituting this into Eq. (36), one has

αþηe �
2q2

Q
η3e þ γη5e � δ

d2ηe
dx2

¼ 0, (40)

where

αþ¼αþ 2q2hη2ei/Q: (41)

B. Large length approximation

A solution of Eq. (36) is known for an infinite system, for
0 , αþ , αt , and the condition that both η and dη/dx tend to
zero as x ! +1 (Falk, 1983). We will present the η profile in our
finite system truncating this solution. We will argue that this pro-
vides a good approximation for the η profile in the case of suffi-
ciently large L. To show this, let us discuss the form of this
solution. It reads

η ¼ η0
1

1þ p(sinh(gx))2

� �1/2

, (42)

where

η0 ¼ ηt 1�
ffiffiffi
Δ

p� �
, (43)

p ¼ 2

ffiffiffi
Δ

p

1þ ffiffiffi
Δ

p , (44)

g ¼
ffiffiffiffiffiffiffiffiffiffi
αþ/δ

p
¼

ffiffiffiffiffiffiffiffiffi
αt/δ

p ffiffiffiffiffiffiffiffiffiffiffi
1� Δ

p
, (45)

Δ ¼ αt � αþ

αt
: (46)

Solution [Eq. (42)] is presented in Fig. 3 for β ¼ 0 and other
material constants close to those of BaTiO3 (Pertsev et al., 1998;
Hlinka et al., 2006). For very small values of Δ, it can be interpreted
as a region of the nonsymmetrical phase surrounded by the infinite
symmetrical one. Pay attention that the values of Δ which

FIG. 2. T - L phase map showing theoretical HTL and LTL (solid lines), accord-
ing to Eqs. (28) and (34), for material constants close to those of BaTiO3 (see
the text) along with their numerically computed counterparts (blue dots, see
Sec. V).
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correspond to macroscopic widths of this region are extremely
small. This is not completely unexpected: recall that α* of Eqs. (22)
and (23) which plays the same role in defining the value of η in
Sec. II as αþ in this section [cf. Eqs. (40) and (22)] was found to be
exactly equal to αt in all temperature region of TPS. But this
“exactly” refers to an approximate treatment. Naturally, in a more
precise treatment where no assumptions are made, the difference
between αt and an analog of α*, i.e., αþ, is no more zero but is
very small. Let us discuss Eq. (42) more formally considering the
case p = 0. Because of extreme smallness of Δ, we can put:
g ¼ r�1

ct , η(0) ¼ ηt , and p ¼ 2
ffiffiffiffiffi
Δ

p
. It is seen from Eq. (42) that,

starting from η0 at x ¼ 0 , the value of η almost does not change
with x until p(sinh(gx))2 term becomes comparable with unity. The
point x ¼ x0 where p(sinh (gx0))

2 ¼ 1 can be considered as corre-
sponding to the half-width of the maximum. Since p � 1, this
occurs when sinh (gx) � 1, i.e., sinh (gx) ≃ exp(gx)/2 so that

x0 ¼ rct ln 2/
ffiffiffi
Δ

p� �
/2: (47)

This explains extremely small values of Δ corresponding to macro-
scopic values of x0. When x � x0 is larger than several rct , the value
of η decays exponentially,

η ffi 21/2η0
Δ1/4 exp(�x/rct): (48)

Thus, for Δ � 1, the profile of η can be presented as a very
flat plateau with a steep decent to practically zero. The width of the
decent (the “boundary”) being equal to several rct (see Fig. 3) is
much less than the plateau width. We see, therefore, that at Δ � 1
one can interpret 2x0 as approximate width of nucleus or, rather, a

region of the non-symmetrical phase with the thickness of inter-
phase boundary of the order of rct , which is much smaller than the
nucleus width.

We propose to truncate the solution for infinite space to rep-
resent TPS in a finite system. This is very good approximation if,
e.g., we present TPS where the region of the nonsymmetrical phase
occupies the center of the sample, and there are two regions of the
symmetrical phase, to the left and to the right from the center. Any
homogeneous boundary condition will be fulfilled in this case with
exponentially small error if the borders of the system are not too
close to the interphase boundaries. Another possibility is to trun-
cate the solution at points x ¼ 0 at Fig. 3 and at some other point
(x ¼ L) and fix the boundary conditions as

dη
dx

(0, L) ¼ 0: (49)

Equation (49) is evidently satisfied at x ¼ 0 and is approximately
satisfied at x ¼ L if this point is not close to the interphase boun-
dary. This is easy to accomplish at HTL where the nonsymmetrical
phase occupies the minor part of the system but is also possible at
LTL though here the nonsymmetrical phase occupies the main part
of the system. Indeed, according to Eq. (33), the width of the
region of the symmetrical phase at LTL is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rctL/4

p
. This is more

than the boundary width (rct) and the point x ¼ L is located in
the region of exponential “tail” of η distribution if

L � rct: (50)

Figure 3 illustrates why the approximation of infinitely thin boun-
dary works very well. Indeed, the width of the region of the non-
symmetrical phase is extremely sensitive to the value of Δ: to pass
from the infinite width at Δ ¼ 0 to a width of 0.5 μ, the change in
Δ of only 10−320 (!) is needed while the width of the interphase
boundary is practically independent of Δ down to L comparable
with rct ¼ 2:7 nm for our material constants (Fig. 3). That is why
the condition of the large length approximation given by Eq. (50)
is also the condition of approximation of infinitely thin boundary
used in Sec. III.

C. Method to find the high- and low-temperature
limits of two-phase state

We begin by calculating (Gradshtein et al., 1996)

hη2ei ¼
1
L
η2t

ðL
0

1

1þ 2
ffiffiffi
Δ

p
(sinh (gx))2

dx

¼ η2t

2gL
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffi
Δ

pp ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffi
Δ

pp
tanh gL

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ffiffiffi
Δ

pp
tanh gL

: (51)

Since Δ is expressed through α and hη2ei [see Eq. (46)], we have
now a transcendental equation for function hη2ei ¼ hη2ei(α) or
α hη2ei
� �

. It may seem that the minimum of the first or maximum
of the second function corresponds to the beginning of the
region of the two-phase state. This is not necessarily so.
The corresponding solution for η(x) may well correspond also to
an unstable metastable state. A reliable way to find the temperature
of formation of the two-phase state is to calculate its energy and to

FIG. 3. η profiles, according to Eq. (42), for various values of Δ. Note almost
300 orders of magnitude of change in Δ when the width of the region of non-
symmetrical phase changes about five times. This agrees with Eq. (47) and is
commented in the text.
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find the temperature where this energy is zero, i.e., it is equal to the
energy of the symmetrical phase. We shall do this later and now we
try to simplify Eq. (51). Since Δ is extremely small, we neglect it in
the nominator of the logarithm’s argument and expand the square
root in the denominator. Also, we use an approximate formula
tanh x ≃ 1� 2exp(�2x) that is valid for x � 1 or for L � rct ,
which, as we argued in Sec. IV B, is the condition of our approxi-
mation. As a result, we obtain

hη2ei ¼
η2t rct
2 L

ln
2ffiffiffi

Δ
p þ 2 exp(�2 L/rct)

, (52)

where the exponential term is neglected in the nominator and is
conserved in the denominator since both this term and

ffiffiffi
Δ

p
tend to

zero at L ! 1: For what follows, it is convenient to present
Eq. (52) as

α ¼ αt � 2q2hη2ei/Q
� 4αt exp �hη2ei2 L/(η2t rct)

� �� exp(�2 L/rct)
� �2

: (53)

To calculate the energy of TPS, we first substitute Eq. (39)
into Eq. (1) with β ¼ 0; and by replacing in this equation η by ηe
and integrating over x, we obtain

Fe ¼
ðL
0

1
2
αþη2e �

q2

2Q
η4e þ

γ

6
η6e þ

δ

2
dηe
dx

� �2

� q2

2Q
η2e
	 


η2e

 !
dx:

(54)

Note now that

ðL
0

δ

2
dηe
dx

� �2

dx ¼ �
ðL
0

δ

2
ηe
d2ηe
dx2

dx þ δ

2
ηe(L)

dηe
dx

(L), (55)

where the last term does not disappear because of the violation of
the boundary condition at x ¼ L within our approximation. Being
exponentially small for large L, this term does not influence the
results and will be omitted in what follows. Using Eqs. (40)
and (55), one can eliminate from the integrand in Eq. (54) the
terms with αþ and δ to obtain

Fe ¼ L
q2

2Q
η4e
	 
� η6e

	 

η2t

� hη2ei2
� �

: (56)

It is straightforward to calculate hη4ei and hη6ei with the help of
Gradshtein et al. (1996). Within the same approximation as for
Eq. (52), we obtain

Fe ¼αtη2t rct
4

 
Δþ4

ffiffiffi
Δ

p
exp(�2L/rct)ffiffiffi

Δ
p þ2exp(�2L/rct)
� �2
�rct

L
ln2

2ffiffiffi
Δ

p þ2exp(�2L/rct)

!
: (57)

D. High-temperature limit of two-phase state (HTL)

Here, within our approximation, the width of the region of the
non-symmetrical phase (x0) is much less than L which, according
to Eq. (47), means that

ffiffiffiffiffiffiffiffi
Δ1 in

p � 2 exp(�2 L/rct). Then, Eq. (57)
simplifies to

Fe ¼ q2rctη4t
4Q

1� rct
L
ln2

2ffiffiffi
Δ

p
� �

: (58)

The free energy is zero if

ffiffiffiffiffiffiffiffi
Δ1 in

p
¼ 2 exp(�L1/2/r1/2ct ) (59)

and

hη2e1 ini ¼ η2t

ffiffiffiffiffi
rct
4L

r
(60)

[see Eq. (52)]. All the exponential terms in Eq. (53) can be
neglected, and with the help of Eq. (60), we recover Eq. (28).

E. Low-temperature limit of two-phase state (LTL)

It is seen from Fig. 3 that Δ2 in � Δ1 in. So that it could very
well be erroneous to neglect from the beginning the exponent in
Eqs. (52) and (57). That is why we introduce a new variable (ψ)
instead of Δ,

ffiffiffi
Δ

p
¼ 2ψ exp(�2 L/rct): (61)

Then, Eq. (52) acquires a form convenient near LTL,

hη2ei ¼ η2t 1� rct
2 L

ln (1þ ψ)
� �

: (62)

The free energy of the two-phase state [Eq. (57)] can be now pre-
sented in the following form:

Fetph/L¼�q2η4t
2Q

1� ψ2�2ψ

4(1þψ)2
rct
L
� rct
2L

ln(1þψ)þ r2ct
4L2

ln2(1þψ)

� �
:

(63)

Transition to the two-phase state occurs when its free energy given
by Eq. (63) is equal to the energy of the single-domain state in the
clamped system [Eq. (15)]. To express this energy in terms of Δ or
ψ, we first express α in these terms. Using Eqs. (41) and (62), we
obtain after some algebra,

α ¼ �3αt � αtΔþ 2αt
rct
L
ln (1þ ψ)

≃ �3αt þ 2αt
rct
L
ln (1þ ψ): (64)

The possibility to neglect the term with Δ is evident after inspecting
Fig. 3 but will be also justified later. The equilibrium free energy of
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the homogeneous state can now be written as

Fenhc/L ¼ �(�α)3/2/3γ1/2

¼ � q2η4t
2Q

1� rct
L
ln (1þ ψ)þ r2ct

6L2
ln2(1þ ψ)

� �
, (65)

where it is taken into account that rct
L ln (1þ ψ) � 1 will be shown

after finding ψ. From Fenhc ¼ Fetph, we obtain for ψ ¼ ψ2 in using
Eqs. (63) and (65),

ln (1þ ψ2in) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ2
2in � 2ψ2in

(1þ ψ2in)
2

3L
rct

s
: (66)

This equation has no solution at ψ2in , 2, but supposing that
ψ2 in � 1, we find

ψ2in ¼ exp

ffiffiffiffiffiffi
3 L
rct

r� �
(67)

justifying the assumption. Also,

Δ2 in ¼ 4 exp 2
3 L
rct

� �1/2

� 4 L/rct

 !
: (68)

We also see that the neglection of the term with Δ in Eq. (64) was
justified and rct

L ln (1þ ψ) ¼ 3rct
L

� �1/2
, i.e., is indeed small for very

large L though, because of the square root, the condition of L
being large is more restrictive here than for HTL. From Eq. (64) we
obtain Eq. (34).

V. NUMERICAL SIMULATIONS

The condition of applicability of our long-length approxima-
tion [Eq. (50)] is rough. We can acquire a realistic idea about the
level of precision of our approximation by performing numerical
solutions for the same problem with different Ls. The coefficients
in the Landau free energy are chosen to be the same or close to
those for BaTiO3 in Pertsev et al. (1998) and Hlinka et al. (2006)
with the exclusion of the coefficient of η4 that is put to be equal to
zero in order to have a tricritical transition in the clamped system
if the homogeneity is imposed as we supposed in the analytical
part. In the numerical calculations, the distribution of η and the
displacement U have been obtained on a grid consisting of 0.05 nm
(0.02 nm if L � 50 nm) cells by solving the governing equations
using an iterative scheme, namely, Newton’s method (Quarteroni
et al., 2014). We solve Eqs. (36) and (37) for η and the longitudinal
displacement U given that u ¼ dU/dx. Specifically, we have

αηe þ γη5e þ 2qηe
dUe

dx
� δ

d2ηe
dx2

� �
¼ 0 (69)

and the mechanical equilibrium equation given as

d2Ue

dx2
þ 2q

Q
ηe
dηe
dx

¼ 0: (70)

Taking into account the boundary conditions on Ue and ηe,
Ue ¼ 0 and dηe/dx ¼ 0 at x ¼ 0 and x ¼ L, one obtains the com-
plete set of equations to solve ηe(x) and Ue(x) for various system
sizes and temperatures. Computations were initiated from a low
enough temperature, e.g., Ts ¼ 90 �C, at which the homogeneous
nonsymmetrical phase is the equilibrium solution, starting from
the zero vector for U and a vector of uniformly distributed
random numbers between 0.12 and 0.15 for η as the initial guess.
Equations (69) and (70) are solved sequentially until a pre-set
convergence criterion, e.g., a maximum of 10�12 in the infinity
norm of the difference of η profiles obtained in consecutive itera-
tions, is reached. Following that, the thus obtained solution is
then provided as the initial guess for the next temperature Ts þ
dT where dT ¼ 0:1 �C. The calculations were performed up to the
temperature, Tmax , at which the homogeneous symmetric phase is
the only solution. The temperature interval from Ts to Tmax con-
stitutes the heating cycle of the computations. After reaching the
peak temperature Tmax , temperature was decreased all the way
down to Ts in steps of dT ¼ 0:1 �C, and this run constitutes
the cooling cycle. At each temperature, the energy of the system
is calculated by inserting the solutions for ηe(x) and Ue(x) into
Eq. (71),

F ¼
ðL
0

α

2
η2 þ γ

6
η6 þ qη2uþ Q

2
u2 þ δ

2
dη
dx

� �2
 !

dx: (71)

HTL was determined from the heating cycle as the first,
i.e., lowest, temperature at which the energy of the system
becomes equal to zero. Meanwhile, the LTL was determined as
the temperature at which the energy of the homogeneous non-
symmetric phase obtained in the heating cycle is equal to that
of the TPS obtained in the cooling cycle. The main difficulty of
the numerical simulations is that the equations provide solutions
for both equilibrium and metastable states. For comparison with
the theory, the latter presents no interest and thus such solutions,
e.g., η profiles with several IBs, were discarded. Additionally, since
the presence of a single boundary is a necessary but not a suffi-
cient condition for equilibrium, for a temperature inside the inter-
val of existence of TPS, we consider the η profile as equilibrium if
the same profile is reproduced both at heating and at cooling
cycles. Profiles of η corresponding to equilibrium solutions are
provided in Figs. 4(a)–4(f) for various T and L. The transition
from the non-symmetrical phase to the two-phase state is consis-
tent with the solution form given by Eq. (42) down to the lengths
comparable with rct , see Fig. 3.

We see from Fig. 4 that the profiles of η assumed in
the approximation of infinitely thin boundaries in the
analytical treatment are reproduced well for fairly large L only
[see Fig. 4(f )], while the temperatures of HTL and LTL are in
good agreement with this approximation down to much smaller
lengths (Fig. 2). This might be explained by the fact that it is

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 129, 044102 (2021); doi: 10.1063/5.0029144 129, 044102-9

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


FIG. 4. The computed η profiles at HTL (blue line), LTL (orange line), and at the midway of these two limiting temperatures (green line) for L values of (a) 25 nm, (b)
50 nm, (c) 75 nm, (d) 100 nm, (e) 125 nm, and (f ) 6500 nm. In (a)–(f ), dotted black line displays ηt . In (f ), the inset shows the details of the η profile at LTL where the
width of the region of the symmetrical phase determined from Eq. (33) as 115 nm is shown to emphasize accordance of the large length approximation [Eq. (33)] with the
numerical result.
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the energy corresponding to a η profile and not its exact form
that influences the HTL and LTL. We intentionally do not
present the data for the smallest lengths of order of rct . The
reason we do so is that the character of the non-symmetrical
phase dramatically changes at small lengths where our analytical
theory becomes inapplicable. After some preliminary analysis,
we noticed that the study of what the non-symmetrical phase
transforms to at small lengths deserves a separate investigation
whose results would overload the content of the current paper
and will be presented elsewhere.

VI. CONCLUSIONS

In summary, we analyzed the formation of the two-phase state
taking into account the existence of interphase boundaries within
Ginzburg–Landau or Landau-type models of the two-phase state
arising in clamped systems with the material exhibiting first-order
phase transition in a free state. We restricted ourselves to the one-
dimensional case where available analytical formulas for space dis-
tribution of the order parameter can be used to a very good
approximation for systems whose length is much larger than the
order parameter correlation radius at the temperature of first-order
transition in the corresponding free system. The main result of the
paper is that the initial size of new phase at phase transitions to
two-phase state from both the symmetrical and homogeneous non-
symmetrical phases is proportional to L1/2, where L is the system
size. The analogy with the Landau–Lifshitz–Kittel law for depen-
dence of domain width on the slab thickness is evident. Both phase
transitions prove to be discontinuous, unlike in the earlier works,
with the latent heat proportional to L1/2 as well. The high- and low-
temperature limits of the two-phase state shift with respect to the
results of the Landau-type model which neglect energy of the inter-
phase boundaries. These shifts increase with the diminishing of L
and go to zero for infinite lengths (L) but relatively slowly, propor-
tionally to L�1/2 that makes this shift observable even for not very
small lengths, e.g., for micrometer lengths in the system with struc-
tural phase transitions. These results were obtained analytically
using the Landau-type approach in the simplified form when the
thickness of the interphase boundary is neglected and a more con-
sistent Ginzburg–Landau model considering gradients of the order
parameter. In the latter case, the analytical results were possible to
obtain analytically within an approximation valid for sufficiently
large L. The results coincide with those obtained within the simpli-
fied approach. The deviations from the analytical results for the
high- and low-temperature limits of the two-phase state obtained
with the use of simplified approach or the large L approximation
were found in numerical simulations at L about 10 nm if the mate-
rial constants close to those of BaTiO3 are used. A more detailed
study of systems with small lengths, including finding the expected
“critical length” below which no two-phase state forms, is left out
of the paper so as not to overload it.

Of course, in real systems, non-equilibrium (metastable)
two-phase states may exist for a very long time, not only longer
than the experiment times but often longer than historical
epochs. Theoretical understanding of these states in martensites
is quite advanced, see, e.g., Roitburd (1978), Khachaturyan
(1983), and Onuki (2002), but not, e.g., in ferroelectric systems.

A clear understanding of equilibrium two-phase states in ideal
finite systems with weak first-order phase transitions seems to
be a necessary precondition for successful attacks on many
unsolved problems.

SUPPLEMENTARY MATERIAL

See the supplementary material for more general results for
the case of β = 0 without derivation but only providing formulas.
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