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Within the Landau-like approach we study stability of homogeneous states near phase 

transitions in thin films on substrates. The order parameter is electrically neutral in order to exclude 

the effects of the depolarizing fields and concentrate on the elasticity effects. We consider the case 

where the first-order transition in free crystal would convert into a second order when in the film on 

a substrate if the system remained homogeneous. Limit of stability of the homogeneous state is 

found analytically, though approximately. Numerical simulations provide qualitatively similar 

results and reveal temperature evolution of the arising inhomogeneities 
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1. Introduction 
 

All the known ferroelectric phase transitions in perovskite crystals are of the first order, i.e. 

discontinuous. However, in thin perovskite films on substrates the same phase transitions look 

continuous and fairly smeared. There is no consensus about the reason of this difference. Most of 

the researchers seem to agree with the conclusion of Pertsev et al. [1] that partial clamping of the 

film material by the substrate converts the first order transition in BaTiO3 and PbTiO3 crystals into a 

second order one similar to the prediction of Devonshire [2] for a clamped BaTiO3 crystal. Then the 

smearing of the phase transitions could be ascribed to different defects just as for bulk transitions. A 

disagreement with this conclusion has been voiced by Roytburd earlier [3] who pointed out that first 

order phase transitions in constrained systems procced normally through inhomogeneous two-phase 

states while only the homogeneous states were supposed by the above authors. However, Roytburd’s 

specific arguments [4,5] were relevant for sufficiently thick films with strong first order transitions 

while thin films of perovskites whose first order transitions in the bulk are mainly relatively weak [6] 

are of the main current interest. These thin films are the focus of our attention. 

We demonstrate that apart from the two-phase state formation because of possibility of the 

energy gain there is another mechanism leading to the inhomogeneity: loss of elastic stability due to 

specific anomalies of elastic moduli [7] which exist in homogeneous state of the low symmetry 

phase (LSP) in clamped films. These anomalies are especially pronounced if the continuous phase 

transition expected according to the theory [2,1] coincides with the tricritical point. Here we shall 

consider this case only, i.e. tricritical phase transitions. We shall use continuous medium 

Landau-like approach. A somewhat similar approach has been already used for treating two-phase 

states in partially clamped systems with weak first order transitions in bulk crystals [8] but presence 

of a substrate was not taken into account, i.e. virtually it was considered a slab clamped laterally but 

with free upper and lower surfaces. We shall show that the account for substrate changes the results 

qualitatively. 

 Moreover, we shall show that there are other inhomogeneous states which cannot be 

classified as two-phase ones. An exhaustive study of macroscopic inhomogeneities in thin films on 

substrates seems to be well ahead. In this paper we try to single out the effects of the stability loss. 

The limit of stability of homogeneous state with respect to any, including infinitesimal perturbations 

can be, in principle, found analytically. This is the only analytical part of the work. The further 

evolution of the inhomogeneous state as well as its detailed maps was studied by numerical 

simulations. Finding the limits of stability of the homogeneous state involves a lot of quite 

cumbersome algebra even if one makes reasonable approximations and is aimed to obtain qualitative 

results first of all as we do in this work. That is why we concentrate here on the simplest case of a 

one-component electrically neutral order parameter, isotropy of the elastic properties, not very thin 

films, and an infinitely rigid substrate. 

 The paper is organized as follows. In Sec.2 we describe the anomaly of the bulk elastic 

moduli near a tricritical phase transition in a thin film on a substrate supposing that the film remains 

homogeneous. This is to show that this supposition is dubious since conditions of elastic stability 

seem to be violated due to the anomaly. In Sec 3 we discuss qualitatively the meaning of this finding. 

In Sec.4 we report results obtained from our analytical study of conditions of elastic stability for a 

thin film on a substrate with the above mentioned restrictions. In Sec.5 we report the results of the 

numerical simulations aimed to define the appearance and the nature of the inhomogeneous state 

whose inevitability under certain conditions has been shown in Sec.3. In Sec.6 we discuss the 

obtained results and outline further studies in this field. 
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2. Anomaly of the bulk modulus at virtual tricritical transition in thin films on 

substrates. Violation of conditions of the elastic stability 
 

The system, which we consider, is characterized by the Landau-like free energy: 
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where   is the order parameter,   and   are, correspondingly, the Lame coefficient [9] and the 

shear modulus of the high-symmetry phase (HSP). This phase in absence of stresses is considered as 

the reference state for the strains. Only the coefficient α is supposed to depend on temperature 

changing its sign at the limit of stability of HSP ( cT ). 

 Let us start with a free crystal. It is natural to assume that the equilibrium state of LSP is 

homogeneous, allowing us to easily find the equilibrium values of   and the strains as well as 

material parameters LSP. For a detailed explanation see [7]. The phase transition is of the first order 

if  Kr /2 2
, where K  is the bulk modulus of the high-symmetry phase given as K =λ+2μ/3. 

For a tricritical transition ( Kr /2 2 ) and for the bulk modulus of the low-symmetry phase we 

have in this case:  
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i.e. that the bulk modulus is zero at the tricritical point (Fig. 1). This is a very old result obtained by 

Landau in 1935 [10]. 

Consider now an epitaxial film on an isotropic substrate. The film plane contains axes 1  

and 2. Assume (for a moment only!) that the phase transition is into homogeneous state. To 

calculate the equilibrium value of   and the strains we put all the strain components in Eq.1 to 

zero but 33u . The second order transitions are realized now if    Krr /22/2 22   , where 

K  is the longitudinal modulus of LSP. Since KK   it is possible that Kr /2 2 Kr /2 2 , i. e. 

the phase transition which is of first order in a free crystal becomes second order in the film on a 

substrate (if the film remains homogeneous) which was concluded in [1] for BaTiO 3  and PbTiO 3 . 

Tricritical transition mentioned in the title of this Section corresponds to ./2 2 Kr   

 To calculate the elastic moduli of LSP we should take into account all the components of the 

strain tensor since we are now interested in strains and stresses which are local. By the same method 

as for the free crystal we find [7]: 
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i.e. at the tricritical transition in a thin film on a substrate the longitudinal modulus behaves in the 

same way as the bulk modulus in a free crystal. For the bulk modulus of LSP we have now: 
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i.e., the bulk modulus is negative ( 3/4
~

K ) at the transition and, naturally, in some vicinity of it 

(Fig. 2). What this means is discussed in the next Section.  

 

3. Stability with respect to homogeneous and inhomogeneous perturbations 
                      

For a free body the negativeness of the bulk modulus means loss of stability with respect to 

homogeneous change of the volume. But for a film on substrate this is not possible and because of 

the clamping the only homogeneous strain which is possible here is changing of the thickness due to 

displacements perpendicular to the film plane. However this strain is controlled not by the bulk but 

by the longitunal modulus which is never negative and becomes zero just at the tricritical point 

(Eq.3). As a result for a tricritical transition (and, of course, for transitions which are not far from it) 

there is a temperature interval wherein the bulk modulus is negative but the elastic stability with 

respect to homogeneous strains is not lost. 

This does not mean, however, that stability with respect to inhomogeneous perturbations is not 

lost either. Indeed, in inhomogeneous states any component of the strain tensor can be present, in 

principle though there are some restrictions for these components. For example, for a sinusoidal 

elastic inhomogeneity along axis 1 only one can easily see by different ways (including the Saint 

Venant conditions) that the strain components 131222 ,, uuu  are absent here. Looking for positive 

definiteness of the quadratic form 
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which is obtained from Eq.1 after exclusion of   and putting to zero the three above mentioned 

strain components. The condition of positiveness of this quadratic form are μ>0 and  

 0
~

  .                                        (6) 

We have singled out the last condition because in our case  2
~

 at the phase transition meaning 

that the condition (6) can actually be violated well before the phase transition. In our recent paper [7] 

we stated that the condition (6) defines the limit of the elastic stability with respect to 

inhomogeneous states. This was an error. In fact, it gives the limit of stability for extremely thick 

films only. Otherwise, one should take into account the boundary conditions as well as nonlocality 

of the elastic properties due to the term with gradient of   which has been omitted in Eq.1. Some 

results of the more consistent treatment are presented in the next Section. 

 

4. Limit of elastic stability for thin films on infinitely rigid substrate 

 

  The method to find the limit of elastic stability is to find the value of a material constant (
~

 in 

our case) of the system of linearized governing equations for η along with the relevant 

displacements. In isotropic case all the directions are equivalent so we can limit ourselves to the 

x1-axis so that the relevant displacements would be
31 ,uu . The equations are obtained from Eq.1 

(with addition of the gradient energy term,   2/
2

 grad ) and the conditions of elastic equilibrium. 

Linearizing these equations close to equilibrium homogeneous values of  and the strains ( ee u33, ), 

i.e. putting ,/  e 33u =
/

3333 uu e   etc. ( 011 eu ) and using the Fourrier expansion for the 

1x -dependence:      
k

k ikxxxx 1331 exp,   etc. we obtain: 
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The boundary conditions for Eqs (7-9) we write supposing that free surface of the film is 

at 03 x and the film/substrate interface is at lx 3 . We have chosen     00
3

/

3

/

 l
dx

d

dx

d kk 
, i.e. 

both surfaces are “neutral” with respect to ,     0/

31  lulu kk
, meaning that the substrate is 

infinitely rigid while the standard free surface conditions for the strain tensor components are used.  

Even for this simplified formulation the analytical treatment is quite laborious. The general 

solution of the system (7-9) has six arbitrary constants which should satisfy six boundary conditions. 

The resulting system of six homogeneous equations can have non-trivial solutions if the 66 

determinant of the coefficients is zero which signals loss of stability for the given value of k . Since 

the only temperature-dependent coefficient is   the solutions of the transcendental equation which 

results from equating to zero the determinant give a function  kls , where the subscript “ls” means 

“loss of stability” so that the function provides the value of   corresponding to the stability loss 

with respect to perturbations with the given k . Minimizing this function with respect to k  we 

obtain the temperature of the real stability loss as well as the value of k  for the “most dangerous” 

perturbation. This procedure is fairly standard and was repeatedly reviewed (see, e.g., [11]). 

At the moment we have only preliminary results of the above described procedure. The main 

conclusion is that they are qualitatively similar to the results of even a more simplified treatment 

when the last term in Eq. (7) is omitted and / can be excluded from Eqs.(8,9). The determinant 

becomes 44 and its analysis is relatively simple. The main findings are: 

1. For the “most dangerous” perturbations the value of k is somewhat (not strongly) larger 

than 
1l , i.e. the sinusoidal inhomogeneity which arises after the stability loss has the period 

not very different from the film thickness. 

2. Temperature of the stability loss ( lsT ) increases when the film thickness decreases so 

that   2 allTTTT lsclsc
, where a  is a constant. 

3. The value of a  is very sensitive to the value of r , approximately 
4ra  .  

4. There is a “critical thickness” below which the stability loss does not occur.  

 

5. Numerical simulations 

 

We solved numerically the same equations of state as in the analytical treatment but with 

only difference that they were non-linearized. The non-linear part put limits to the effects of the 

stability loss allowing to obtain the amplitude of the arising modulation and not only to reveal the 

fact of the loss of stability as the linear theory does. In addition, their account allows revealing 

situations where inhomogeneous states are more energetically profitable than the homogeneous state 

despite the latter are stable with respect to small perturbations, i.e. metastable. Appearance of such 

states prevents from observing the loss of stability and to observe the latter one has to hamper the 

nucleation, which is necessary to a transformation of a metastable state into the stable one. One of 
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the ways of hampering the nucleation was to consider the inhomogeneities along one axis only 

which is also convenient technically since allows us to consider a 2D system. Being unsure that this 

excludes the nucleation completely we also tried different initial states for the simulations both 

homogeneous and randomly inhomogeneous ones. No difference in the temperatures of appearance 

of inhomogeneous state beyond the error margin of the simulations has been detected (±0.25°C). 

This allows us to hope that the formation of inhomogeneous states in the simulations was due to the 

stability loss. 

In the numerical simulations we used Gauss-Seidel iterative scheme. substrate. The number 

of iterations was kept to 20K after which we did not observe any significant evolution of the system. 

All the differential equations were discretized to fit into a finite difference form and the equations 

for the stresses were expressed in terms of displacements 31 ,uu , which were then found 

simultaneously with η for a given temperature. The boundary conditions were taken as the same as 

for the analytical treatment mentioned in the previous sections. The numerical values of the material 

constants where chosen to be close to those of BaTiO3.  

The results for temperature of arising of inhomogeneous states are presented in Fig.3 

together with the theoretical curve for the loss of stability of homogeneous states obtained from the 

simplified approach described above. The transcendental equations which appear in the analytical 

treatment were solved numerically. Despite of approximate character of the theoretical curve it has 

the same shape as the experimental one. 

The most remarkable result of the numerical simulations is, probably, the maps of the order 

parameter and the strains. (Fig. 4). They are qualitatively different from what was considered both 

by Roytburd [4,5] and by Tselev et al. [8] where piece-wise homogeneous states were supposed to 

exist when the system consists of regions of symmetrical or non-symmetrical phases with 

boundaries of negligible thickness between them. Unlike these structures we observe fairly smooth 

distributions of the order parameter which are more like sinusoidal modulations of the homogeneous 

state rather than composite structures consisting of one of the two phases elements. Also interesting 

is evolution of the inhomogeneous structure with temperature (Fig.5). We see that the period of the 

sinusoidal distribution increases and its form changes becoming similar to periodically situated 

small inclusions of the low-symmetry phase. Remarkably, the inhomogeneous structure exists also 

in the region of stability of the high-symmetry phase this time similarly to what was found in [8] 

though the periodicity did not appear in their treatment. 

 

6. Conclusions 

 
We hope that we have convincingly demonstrated that the so-called second order phase 

transitions in thin films on substrates obtained from “weak” first order transitions due to the 

clamping may well be, in fact, much more complicated phenomena involving two phase transitions, 

one of them with the limit of overheating (loss of stability) and the other (to the symmetrical phase) 

whose nature has to be revealed. Formation of heterophase structures at the considered transitions   

has been suspected before this work [3] but we started a systematic study of the topic revealing both 

the perspectives and the difficulties. Now we are just in the beginning of a long way which, 

hopefully, will lead us to a better understanding of reasons of apparent smearing of ferroelectric 

phase transitions in the perovskite thin films. Taking into account a realistic substrate, the crystalline 

anisotropic elasticity, the depolarizing electric fields including interaction between the elastic 

inhomogeneities and the ferroelectric ones (domains) should give an idea about challenges which 

should be met before being in position to discuss quantitatively the experiment. We think, however, 

it does not seem impossible to meet these challenges with modern computational analysis tools.  
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Figure Captions 

 

Figure 1. [7] Plot of the bulk modulus near tricritical transition in a stress-free isotropic body. The 

axes are normalized with respect to λ and the temperature of the tricritical transition, Ttc, λ = 2.5 µ. 

Vertical dashed line indicates Ttc. We do not consider the temperature dependence of the modulus in 

the HSP region and assume it is constant. LSP: Low symmetry phase, HSP: High symmetry phase. 

 

Figure 2. [7] Plot of the normalized bulk modulus (red line) and the longitudinal modulus (blue line) 

of the isotropic film laterally restricted near the tricritical transition under the assumption of the 

homogeneous state. The axes are normalized with respect to λ and the temperature of the tricritical 

transition, Ttc, λ = 2.5 µ.Vertical dashed line is to indicate Ttc. The shaded region is the range of 

temperature where bulk modulus of the film is negative. We do not consider the temperature 

dependence of the moduli in the HSP region and assume it is constant. LSP: Low symmetry phase, 

HSP: High symmetry phase. 

 

Figure 3. Thickness dependence of temperature of the transition from the homogeneous to 

inhomogeneous state (during heating). Both theoretical approximate curve and the numerical results 

are given.  

 

Figure 4. Maps of η and the strains, u11 and u33 for the 8 nm (left) and 20 nm (right) films near the 

homogeneous-inhomogeneous transition temperature.  

   

Figure 5. Maps to reveal the dependence of the period of the inhomogeneity on temperature in the 8 

nm film on a rigid substrate, r=1.5 x 1010. Note that we have 131°C for the last map which is about a 

degree below the upper limit of existence of the inhomogeneous state (order parameter slowly 

relaxes to zero at 132°C) Also note that this is well below the temperature of thermodynamic first 

order transition in a free crystal (140°C) which is expected to signal appearance of the two-phase 

state according to [5,8]. 
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