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ABSTRACT
Within the Landau-like approach we study anomalies of elastic moduli
at phase transitions in thin films on substrates. We consider the case
where, similar to many experimental cases, the first-order transition in
free crystal would convert into a second order in the film if the system
remained homogeneous. It is shown, however, that apart from its
questionable thermodynamic advantages, the homogeneous state of
low-symmetry phase may become absolutely unstable which is
signaled by changing of sign of its bulk modulus.

KEYWORDS
Films on substrates; phase
transition anomalies; elastic
moduli

I. Introduction

Ferroelectric thin films on substrates are actively studied during last two decades. At the
same time properties of these films near phase transition from paraelectric to ferroelectric
phase are not properly understood. This is unfortunate because this phase transition is con-
sidered since long ago as a key point to understand properties of ferroelectrics (see, e.g., [1]).
One of the experimental observations resisting reliable explanation is that continuous, seem-
ingly second order transitions are much “worse” in thin films and other nanosystems than
in bulk crystal: the anomalies are smeared, slow relaxations are frequently observed. These
specific features persist even in very high quality systems and that is why usual reference to
structural imperfections does not seem sufficient. To look for other explanations it is useful
to emphasize that a more adequate name of what is often called second order phase transi-
tions in thin films on substrates (e. g. paraelectric-ferroelectric phase transition in BaTiO3 or
PbTiO3 films on a SrTiO3 substrate) are first order transitions in partially constrained sys-
tems. Indeed, in bulk BaTiO3 and PbTiO3 the ferroelectric phase transition is of first order
and what happens because of clamping due to substrate is not immediately clear. Theoretical
conclusion that the transition in a fully clamped BaTiO3 would be of second order comes
back to Devonshire [2] who considered homogeneous states only. It was found that this con-
clusion holds also for partially clamped BaTiO3 (as well for PbTiO3) films the clamping
being due to the substrate [3] and the assumption about the homogeneity is once more
adopted. At the same time it was known since long ago that first order phase transitions in

CONTACT A. P. Levanyuk levanyuk@u.washington.edu

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/gfer.
© 2016 Taylor & Francis Group, LLC

FERROELECTRICS
2016, VOL. 500, 116–128
http://dx.doi.org/10.1080/00150193.2016.1236608

http://www.tandfonline.com/gfer
http://dx.doi.org/10.1080/00150193.2016.1236608


constrained or partially constrained systems occur often through inhomogeneous states
where two phase regions form. This makes the above mentioned assumption about homoge-
neity of the system at least questionable [4]. In what follows in the rest of the paper, when
mentioning tricritical or second order transition in thin films on substrates, we do not mean
phase transitions that actually are expected to occur but “virtual” transitions obtained theo-
retically under the assumption of homogeneity.

The present paper aims to clarify this situation. Let us explain first of all why it is not clear
until now. It was already mentioned that formation of two-phase regions at the phase transi-
tion is known since long ago. The simplest example is formation of meniscus at cooling of
an ampule with water vapor, i.e. formation of two-phase state of water. In solids, any inho-
mogeneity in mass density is accompanied by shear stresses both in the transforming mate-
rial and in the surrounding medium which makes the phenomenon far from being simple.
For crystalline films on substrates, formation of transversely modulated structures consisting
of regions of the two phases has been predicted by Roytburd [5]. Parameters of such a struc-
ture has been discussed in [6] for the case of sufficiently thick films. For the opposite case of
extremely thin films one can seemingly apply arguments of [7] where first order surface
phase transitions were considered and formation of two-phase periodic structures has been
also predicted. But in the latter paper it has been virtually supposed that the first order tran-
sition could take place also homogeneously in the constrained layer, e.g. in an academic case
of infinite surface energy of the interphase boundaries, rendering a two phase state impossi-
ble. This is, however, not our case, where, as it was mentioned, a first order phase transition
in a free crystal converts into a second order one if it would occur homogeneously [2], [3].
The arguments of Roytburd [4–6] are valid for any first order transition but only in suffi-
ciently thick films. At the same time it is very thin films which are of the main interest now.
It is important, of course, to reveal if the modulated structures predicted by Roytburd remain
in some form in films of any thickness on substrates or if they disappear at what film thick-
ness this occurs. But these questions are not treated in this paper.

Let us assume that the two-phase state indeed disappears at some thickness and consider
smaller thicknesses than this one. Or assume that it remains but the period of the modulated
structure becomes very large at small thicknesses similar to elastic domain structure consid-
ered in [8]. In this case we can seemingly have homogeneous state in very thin films with
finite (though, may be, quite realizable) lateral dimensions. Or, recalling that nucleation is
needed to form a two-phase state, we imagine that nucleation centers are absent and we
have homogeneous state which is metastable but quite observable. In other words, it may
seem that we can imagine realistic situations where, because of avoiding somehow two-phase
states, we obtain homogeneous states in the clamped system where the conclusions of [2], [3]
are applicable. In this paper we show that if the virtual homogeneous transition assumed by
[2], [3] is close to tricritical point this may be impossible. The homogeneous state may lose
its elastic stability before reaching the phase transition when the system is heated from low
temperatures. We estimate that width of the region where the homogeneous state is unstable
may be of several degrees so that it deals with potentially observable phenomenon. Even
before reaching the instability point the bulk elastic modulus of material of the film becomes
negative which also might be of interest.

Specifically, we shall show that, due to a peculiarity of phase transitions in thin films on
substrates, the positive definiteness of the quadratic form presenting the elastic energy can be
violated due to anomalies in the elastic moduli. In a non-restricted elastic body, this would be
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considered as leading to loss of elastic stability. For a restricted, i. e. partially or completely
clamped body, an additional analysis is needed, which is mainly beyond the scope of this
paper and, furthermore, this analysis can be rather different for differently restricted systems.
Thus, in this paper we intend rather to formulate a problem than to solve it.

A consequence of loss of elastic stability of the homogeneous state in a thin film on a sub-
strate is, most probably, formation of an inhomogeneous state. The character of this state is
unknown at the moment. It might be identical to the two-phase states mentioned above and
in this case the elastic instability is the spinodal point for two-phase state formation (never
mentioned before). But it might be also a completely new state competing with the above
described two-phase state. Only further studies can make it clear which of the two options is
realized.

It has been already mentioned that it is due to a peculiarity of phase transitions in films on
substrates that the anomalies of elastic moduli may lead to loss of positive definiteness of
elastic energy. This peculiarity consists in constancy, at the phase transition, of some compo-
nents of the strain tensor fixed by the substrate. This is unlike majority of “text-book” transi-
tions which occur at constant pressure. To treat the elastic anomalies at phase transitions in
films on substrates it is convenient to explicitly take into account the strains from the very
beginning. We illustrate this method in Sec. II where we apply it to a problem which was
solved long ago [9] by another method, more convenient for this particular problem but
inapplicable to phase transitions in films on substrates. It deals with the anomaly of bulk
elastic modulus at tricritical phase transition in a free isotropic body. The tricritical transi-
tion is mainly considered also for films on substrates because the temperature interval where
the elastic energy is not positive definite is the most broad just at such a transition. It
becomes narrower and finally disappears at moving off from the tricritical point. Recall that
the bulk modulus goes to zero at tricritical transition in a free body and since positiveness of
the bulk modulus is the condition of elastic stability in unrestricted systems, one can say that
the system is driven to the boundary of elastic stability at this transition but does not cross
the boundary. After reproducing the old result, we consider once more tricritical transition
but this time in a film on a substrate (Sec. III). Similar to the preceding case there is also an
elastic modulus which goes to zero at the phase transition but this time it is not the bulk but
longitudinal modulus. Since this modulus is larger than the bulk one the latter changes its
sign and the elastic energy stops being positive definite well before the transition. Unlike the
previous case, the boundary of stability may be crossed. In the proceeding section (Sec. IV)
the real symmetry of BaTiO3 and PbTiO3 on a (001) cubic substrate is taken into account
assuming that it is a tricritical phase transition in the thin film. It is also assumed that the
misfit strains which convert the cubic paraelectric phase into a tetragonal one impose the
polar axis to be perpendicular to the film plane, i.e. there is a one-component ferroelectric
order parameter as it takes place, e. g., for BaTiO3 on SrTiO3. Loss of positive definiteness of
the elastic energy is demonstrated once more and numerical values of material parameters
of these crystals are used to estimate the temperature width of the region where the elastic
energy is not positive definite. Ideal metallic electrodes are assumed to exclude the effects of
depolarizing field which are superposed with the elastic phenomena otherwise. In Sec. V we
give elementary illustrations of difference of the elastic stability conditions in restricted and
in unrestricted systems. In Sec. VI further possible studies of the problem outlined in this
paper are discussed.

118 A. P. LEVANYUK ET AL.



II. Tricritical transition in isotropic medium

As far as the effects of depolarizing field are not taken into account, our consideration is rele-
vant also for non-ferroelectric phase transitions and we designate the order parameter as h.
The Landau-like free energy has the form

FD a

2
h2 C b

4
h4 C g

6
h6C rh2 u11 C u22 C u33ð ÞC λC 2m

2
u211 C u222 C u233
� �

C λ u11u22 C u11u33 C u22u33ð ÞC 2m u212 C u213 C u223
� �

;
(1)

where λ and m are, correspondingly, the Lame coefficient [10] and the shear modulus of the
high-symmetry phase. This phase in absence of stresses and with temperature expansion
neglected is considered as the reference state for the strains. Differentiating F with respect to
u11 one obtains

s11 D λC 2mð Þ u11 C λ u22 C u33ð ÞC rh2D λuii C 2mu11 C rh2; (2)

where uii D u11 C u22 C u33. Equations for s22 and s33 are analogous. The s12 and other non-
diagonal components of sik tensor are of no interest for what follows. For the order parame-
ter in the low-symmetry phase we have:

aCbh2 C gh4 C 2ruii D 0 (3)

Consider first a free crystal, i. e. sik D 0 for any i; k. One finds that the non-diagonal com-
ponents of uik are zero and from three equations of type of Eq. 2:

u11 D u22 D u33 D ¡ rh2

3λC 2m
D ¡ rh2

3K
; (4)

where K is the bulk modulus. Substituting this into Eq. 3 we obtain:

aC b¡ 2r26 K� �
h2C gh4D 0 (5)

For simplicity we assume that the only coefficient which depends on temperature is a: If
the phase transition in the free crystal is of the first order then b< 2r2 6 K . For further dis-
cussion it makes sense to find the elastic moduli of the low-symmetry phase. We shall con-
sider the case where bD 2r2 6 K , i. e. the phase transition corresponds to tricritical point.
Then for values of the order parameter and the strain components in free crystal of the
low-symmetry phase, one has:

h2f D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡a 6 gp

; u11f D u22f D u33f D ¡ rh2f 6 3K (6)

If, e. g., a stress s11 is applied to a formerly free crystal, the value of h2 changes to h2 D h2f
C dh2 as well as the values of strains: u11 D u11f C du11 etc., where dh2 and du11 are changes
in h2 and u11 due to the stress. Assuming that the changes are small since we are interested
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in linear response we have from Eq. 3:

.bC 2gh2f / dh
2D ¡ 2rduii (7)

and Eq. 2 acquires the form

s11 D λduii C 2mdu11 C rdh2D λ¡ 2r2

bC 2gh2f

 !
duii C 2mdu11 (8)

From Eq. 8 and taking into account that bD 2r26 K , we find that the Lame coefficient of
the low-symmetry phase:

λ~D λ¡ K
1C .K6 r2/ ffiffiffiffiffiffiffiffiffiffiffi¡ag

p (9)

becomes temperature-dependent and decreases as the phase transition is approached. The
bulk modulus of the low-symmetry phase is

K~D λ~C 2m
3

DK
.K 6 r2/

ffiffiffiffiffiffiffiffiffiffiffi¡ag
p

1C .K 6 r2/
ffiffiffiffiffiffiffiffiffiffiffi¡ag

p ffi K2

r2
ffiffiffiffiffiffiffiffiffiffiffi¡ag

p
; (10)

where the approximate equality holds when one is sufficiently close to the tricritical point.
We see that the bulk modulus is zero at the tricritical point (Fig. 1). This is a very old result
obtained by another method by Landau in 1934 [9].

III. Tricritical transition in elastically isotropic thin film on substrate

Suppose now that we have an epitaxial film on an isotropic substrate whose plane contains
axes 1 and 2. We suppose that the substrate is of infinite thickness so that there is no

Figure 1. Plot of the bulk modulus near tricritical transition in a stress-free isotropic body. The axes are
normalized with respect to λ and the temperature of the tricritical transition, Ttc, λ D 2.5 m. Vertical
dashed line is to indicate Ttc. We do not consider the temperature dependence of the modulus in the HSP
region and assume it is constant. LSP: Low symmetry phase, HSP: High symmetry phase.
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homogeneous strain in the substrate and only the film is strained because of the misfit.
When defining the strains we shall consider the film in the symmetrical phase as the refer-
ence state, i. e. u11 D u22 D u33 D 0 in this phase. Because of perfect clamping of the film due
to the substrate the homogeneous strains u11; u22 are also zero in the low-symmetry phase
while the homogeneous u33 changes due to the stress free surface (s33 D 0). The stresses in
the film change also and when writing sik we shall mean not the whole stresses but only
those occurring on top of the misfit-induced stresses in the symmetrical phase. Considering
homogeneous states only one can calculate u33 from the condition of the free surface:

s33 D λC 2mð Þ u33 C rh2D 0 (11)

One can, of course, calculate also s11 and s22 but they are of no interest for what follows.
Substituting u33 D ¡ rh26 λC 2mð Þ; u11 D u22 D 0 into Eq. 3 one obtains:

aC b¡ 2r26 λC 2mð Þ� �
h2C gh4D 0 (12)

If the phase transition in the film is of second order then b> 2r26 λC 2mð ÞD 2r26 K ,
where K is the longitudinal modulus of symmetrical phase. Since K >K it is quite possible
that 2r26 K >b> 2r26 K , i. e. the phase transition which is of first order in a free crystal
becomes of second order in the film on a substrate (if it remains homogeneous) which was
observed in [3] for BaTiO3 and PbTiO3. To calculate the Lame coefficient in the low-symme-
try phase we should once more find the dependence of h2 on strains. Note that we are inter-
ested in strains and stresses which are local so that all the components of the strain tensor
are allowed. Eq. 7 remains valid and in Eq. 8 we only have to substitute s11 by ds11 and s22

by ds22 (“test stresses”) given that non-zero stresses s11 and s22 exist in the homogeneous
state of low-symmetry phase starting from the phase transition onwards. Also, we should
replace h2f by h2s where the subscript s stands for “substrate.” Once more we shall consider
the tricritical transition, this time in the film, i. e. we put bD 2r26 K: Then we obtain

λ~D λ¡ K

1C .K6 r2/ ffiffiffiffiffiffiffiffiffiffiffi¡ag
p (13)

K
’ D λ~C 2mDK

.K=r2/
ffiffiffiffiffiffiffiffiffiffiffi¡ag

p
1C .K=r2/

ffiffiffiffiffiffiffiffiffiffiffi¡ag
p ffi K

2

r2
ffiffiffiffiffiffiffiffiffiffiffi¡ag

p
(14)

cf. Eqs. 9, 10. For the bulk modulus of low-symmetry phase we have now

K~D λ~C 2m
3

D K ¡K C .KK6 r2/ ffiffiffiffiffiffiffiffiffiffiffi¡ag
p

1C .K6 r2/ ffiffiffiffiffiffiffiffiffiffiffi¡ag
p D ¡ 4m 6 3C .KK6 r2/ ffiffiffiffiffiffiffiffiffiffiffi¡ag

p
1C .K6 r2/ ffiffiffiffiffiffiffiffiffiffiffi¡ag

p

ffi ¡ 4m
3

C KK
r2

ffiffiffiffiffiffiffiffiffiffiffi¡ag
p

(15)

We see here now that the longitudinal modulus is zero but the bulk modulus is
negative (~K D ¡ 4m 6 3) at the transition. This means that the elastic energy in the film is
not positive definite at the phase transition and, in fact, loss of the positive definiteness
occurs well before the transition. (Fig. 2). To estimate the possible importance of this
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finding for real materials we consider in the next Section a virtual tricritical phase transi-
tion in cubic films on (001) cubic substrates using some of BaTiO3 and PbTiO3 parameters
which allows us to make numerical estimates for a system, which is close to real ones.

IV. Tricritical transition in cubic crystalline films

As it has already been mentioned above, the order parameter will be identified with the
polarization component perpendicular to the film plane (hD P3). Since the misfit strain is
usually fairly small (2.2% for BaTiO3 and 1.2% for PbTiO3 on SrTiO3) the influence of the
misfit-induced tetragonality on the elastic moduli of the paraelectric phase can be neglected
and what is usually called the Landau-Ginzburg-Devonshire free energy has the form:

FD a

2
h2 C b

4
h4C g

6
h6C r1h

2u33 C r2h
2 u11 C u22ð Þ

C 1
2
c11 u211 C u222 C u233
� �C c12 u11u22 C u11u33 C u22u33ð ÞC 2m u212 C u213 C u223

� �
(16)

The last term is not important for the rest of the Section and shall not be used below since
the uniaxial polarization is coupled to diagonal strain components only. The governing
equations for the ferroelectric state are:

s11 D c11u11 C c12 u22 C u33ð ÞC r2h
2; (17)

s22 D c11u22 C c12 u11 C u33ð ÞC r2h
2 (18)

s33 D c11u33 C c12 u11 C u22ð ÞC r1h
2 (19)

aCbh2 C gh4C 2r1u33 C 2r2 u11 C u22ð ÞD 0 (20)

Figure 2. Plot of the normalized bulk modulus (red line) and the longitudinal modulus (blue line) of the
isotropic film laterally restricted near the tricritical transition under the assumption of the homogeneous
state. The axes are normalized with respect to λ and the temperature of the tricritical transition, Ttc, λ D
2.5 m.Vertical dashed line is to indicate Ttc. The shaded region is the range of temperature where bulk
modulus of the film is negative. We do not consider the temperature dependence of the moduli in the
HSP region and assume it is constant. LSP: Low symmetry phase, HSP: High symmetry phase.
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in homogeneous state and we have once more u11 D u22 D 0 due to clamping and s33 D 0
(stress free surface), so that

u33 D ¡ r1h
26 c11 (21)

and value of the order parameter in homogeneous state is defined by the equation

aC b¡ 2r216 c11
� �

h2C gh4D 0 (22)

from which one can obtain for h in homogeneous state (hh)

h2h D
¡ b

_C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
_2¡ 4ag

p
2g

(23)

where b
_Db¡ 2r21 6 c11. To calculate the moduli in the low-symmetry phase we have now

instead of Eq. 7:

.bC 2gh2h/dh
2D 2r21

�
c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
_2¡ 4ag

q� �
dh2D ¡ 2r1du33 ¡ 2r2.u11 C u22/: (24)

Similar to the isotropic case we obtain

ds11 D c~11u11 C c~12u22 C c~13du33; (25)

ds22 D c~11u22 C c~12u11 C c~13du33; (26)
s33 D c~33du33 C c~13.u11 C u22/; (27)

where

c~11 D c11 ¡ 2r22

�
2r21
�
c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
_2¡ 4ag

q� �
; (28)

c~12 D c12 ¡ 2r22

�
2r21
�
c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
_2¡ 4ag

q� �
(29)

c~13 D c12 ¡ 2r2r1

�
2r21
�
c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
_2¡ 4ag

q� �
(30)

c~33 D c11 ¡ 2r21

�
2r21
�
c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
_2¡ 4ag

q� �
(31)

One sees that despite our simplification of the elastic energy of the paraelectric phase, the
set of elastic moduli of the ferroelectric phase becomes more similar to that of a tetragonal
crystal.
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According to Sylvester’s criterion, the conditions for the elastic energy to be positive defi-
nite as a function of u11; u22; u33 are:

c~33 > 0; c~11 > j c~12 j ; c~33 > 2 c~213 6 .c~11 C c~12/: (32)

For the sake of illustration consider tricritical transition (b
_D 0) and assume that r2D 0.

The latter is fairly similar to BaTiO3 where, according to some authors, see e. g. [11], one has
r2 6 r1D 5£ 10¡ 2. Then we have:

c~11 D c11; c~12 D c~13 D c12 (33)

and

c~33 D c11 ¡ 2r21
�
2r216 c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡ 4ag
p	 


(34)

Since c~11 and c~12 are no more dependent on temperature and the first inequality in Eq. 32
is surely satisfied when the third one is satisfied, we have to take into account the latter
inequality only. The condition of loss of the positive definiteness reads:

c11 ¡ 2r21

�
2r21 6 c11 C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi¡ 4ag
p	 


D 2c212 6 .c11 C c12/ (35)

or writing for a, at

¡aD r41
gc211

2ξ2

1C ξ ¡ 2ξ2

� �2

ffi r41
gc211

; (36)

where ξ D c12 6 c11 and it is taken into account that for BaTiO3 the expression in the paren-
theses is about unity [12]. Using the coefficient a for BaTiO3 [12] we find that the positive
definiteness of elastic energy is lost at

Ttc ¡T ffi 15�C (37)

Though no experimental example of exactly tricritical transition in thin films on sub-
strates is known, the region of lack of the positive definiteness of elastic energy proves to be
fairly wide and it might be sufficiently wide to reveal it experimentally also for second order
transitions close to tricritical point.

V. Second order phase transition in crystalline films

If the second order phase transition does not coincide with tricritical point the width of
region where the elastic energy is not positive definite will be less, of course. To have an idea
about how this interval diminishes with b̂ attaining larger values it makes sense to consider
once more the case r2D 0 abandoning the assumption that b̂D 0. Then for condition of the

124 A. P. LEVANYUK ET AL.



positive definiteness loss we have instead of Eq. 35:

c11 ¡ 2r21= 2r21=c11 C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂2¡ 4ag

q� �
D 2c212=.c11 C c12/: (38)

Let us find the maximal value of b̂ for which the loss of the positive definiteness still takes
place, i.e. for which this loss coincides with the phase transition. Putting aD 0 in Eq. 38 we
obtain:

b̂D 2
r21
c11

2ξ2

1C ξ¡ 2ξ2
ffi 2

r21
c11

(39)

i. e. the loss occurs before the phase transition if

b<
4r21
c11

D 29:2£ 108 Jm5C¡ 4; (40)

where the numerical values of the constants of BaTiO3 reported in [12] have been used. It is
difficult to conclude if this condition is fulfilled for BaTiO3 since values of b are different
according to different authors. It seems that the latest discussion of this question is given in
[13] where the values of b according to different authors can be found. The authors them-
selves propose for a free crystal that bfree D ¡ 7:3£ 109C 16£ 106T Jm5C¡ 4. We calculate
b for a clamped crystal using the value bfree given in [13]. This calculation has been made
several times beginning with Devonshire [2] (see also [11], [14]). In the notations of this
paper it reads:

bfree Db¡ 2
3

r1 C 2r2ð Þ2
c11 C 2c12

C r1 ¡ r2ð Þ2
c11 ¡ c12

� �
: (41)

Using the values of the constants of [12] one obtains:

bD ¡ 5:56£ 109 C 16£ 106T Jm5C¡ 4 (42)

From Eqs. 42 and 40 one finds that if the phase transition occurs at 383 K<T < 575 K it
is accompanied by the loss of positive definiteness of the elastic energy. For another set of
the material constants of BaTiO3 [15] bfreeD ¡ 8:4£ 108 Jm5C¡ 4 and does not depend on
temperature. Finding bD 9£ 108 Jm5C¡ 4 we see that the inequality 40 is always fulfilled,
i.e. the loss of positive definiteness of the elastic energy occurs for any temperature of the
phase transition. In the third set of the constants [16] bfree D ¡ 1:34£ 106 T ¡ 381Kð Þ Jm5

C¡ 4; i. e. bD 1:23£ 109 ¡ 1:34£ 106T the loss takes place also at any temperature of the
phase transition.

VI. Lack of positive definiteness of elastic energy and instability

Positive definiteness of the elastic energy is usually mentioned in books as the condition
which puts restrictions on possible values of elastic constants of a material. The argument is
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that if this energy is not positive definite, the system can lower its energy by developing
strain without any stress, i.e. the reference state for the strains is not stable. It is tacitly
assumed that any strain is possible in the system. This is true, of course, for unrestricted
systems, but not necessarily for thin films on substrates which belong to partially restricted
systems. In this case the analysis should be performed anew. To illustrate this let us consider
stability with respect to strains u11 and u33 only supposing that all other strains are somehow
prohibited (a very severe restriction). The body is supposed to be made from isotropic elastic
material. For stability of the system we should demand the quadratic form in the variables
u11; u33 :

λC 2m
2

u211 C u233
� �C λu11u33 (43)

to be positive definite. The conditions of positive definiteness of this quadratic form are:

λC 2m; m λCmð Þ> 0 (44)

or, supposing the positiveness of m,

λCm> 0 (45)or

K C m

3
> 0: (46)

If we allow also u22; i.e. the quadratic form in question is

λC 2m
2

u211 C u233 C u222
� �C λ u11u33 C u11u22 C u22u33ð Þ (47)

and a third condition should be added to Eq. 42 according to Sylvester’s criterion

λC 2m
3

> 0: (48)or

K > 0 (49)

Now the two other conditions are automatically satisfied together with this condition
if m> 0: Comparing with Eq. 46 we see that now there is less space for elastic stability than
in the previous case where for

0>K > ¡ m

3
(50)

the system remains elastically stable despite K < 0: Of course, the both above examples
are of pure illustrative character. In real systems it is not possible to impose such severe
restrictions on the strain components. For films on substrates, for example, it is homoge-
neous strains u11 and u22 which are surely prohibited while other restrictions come from the
boundary conditions at the film-substrate interface and reveal themselves in the process of
solution of the full elasticity problem, which considers both homogeneous and inhomoge-
neous strains. This implies a far more involved but still quite doable analysis which is beyond
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the scope of this paper. Preliminary calculations for a slab of isotropic material with free
upper and low surfaces show that Eq. 45 gives the correct condition of elastic stability of this
system. Since λ~C 2mD 0 at the tricritical transition temperature, the interval where not only
positive definiteness of elastic energy but also the elastic stability is lost correspond to about
half of the interval of negative bulk modulus (Fig. 3). In this interval we have:

¡m> λ~> ¡ 2m (51)or

¡ m

3
> K

~
> ¡ 4m

3
(52)

In a film on an infinitely rigid substrate the loss of stability also occurs but at a lower tem-
perature. As we have already mentioned, we do not know what the loss of elastic stability
leads to. This also has to be studied.

VII. Conclusion

We have shown that theoretical results for anomalies of elastic moduli near phase transitions
in films on substrates may be fairly peculiar if the system is assumed to be homogeneous and
the considered phase transition is near the tricritical point. The bulk modulus may become
negative before the transition and the question about elastic stability of the system naturally
arises. These peculiarities are due to that the constancy of certain strains is maintained at the
transitions while the “classical” situation is when constancy of the stresses (or pressure) takes

Figure 3. Plot of the normalized bulk modulus (red line) and the longitudinal modulus (blue line) of the
isotropic film laterally restricted near the tricritical transition under the assumption of the homogeneous
state. The axes are normalized with respect to λ and the temperature of the tricritical transition, Ttc, λ D
2.5 m. The shaded region is the range of temperature where bulk modulus of the film is negative. The hor-
izontal dashed line indicates KD¡m/3 and the temperature at which bulk modulus intersects this dashed
line (denoted by the green dashed line) is loss of elastic stability of the homogeneous phase in film with
upper and lower free surfaces (obtained from preliminary calculations not shown in the current paper).
We do not consider the temperature dependence of the moduli in the HSP region and assume it is
constant. LSP: Low symmetry phase, HSP: High symmetry phase.
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place. Note that if a phase transition is tricritical in a film on a substrate, it is of first order in
a free sample with the same Curie temperature. As aforementioned in the introduction, a tri-
critical transition in a constrained system considered here is a theoretical expectation based
on a simplifying assumption of behavior under constraints of materials with first order tran-
sitions. Specifically it is assumed that the system remains homogeneous under constraints
throughout the entire temperature range. In this paper we have shown that this expectation
might be wrong and the assumption about homogeneity invalid since the elastic stability of
homogeneous state might be lost before the transition. How this loss of elastic stability can
be observed is another question because in real life a two-phase state may arise before the
stability loss as the two-phase state may become thermodynamically more advantageous
than the homogeneous one irrespective of the stability aspect. This may make observation of
the stability loss not an easy task. One has to somehow avoid or hamper nucleation of the
new phase. This is similar to the difficulty of observing spinodal points of many phase transi-
tions. One may hope, however, that study of very thin films on substrates may be promising
in this aspect because the thinner is the film the less is “the driving force” for formation of
two-phase state according to the Roytburd’s mechanism while the condition of loss of elastic
stability remains intact.
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