Question 1 (25 points)
Compute $10^1^{480000023} \mod 35$. Show all your work. Do not use Chinese remainder theorem but other tricks. The simpler the computation the more credit you will get.

$$
\Phi(35) = (5-1)(7-1) = 24 \\
101 \equiv 31 \pmod{35} \quad 4800000023 \equiv 23 \pmod{24} \\
31^{4800000023} \equiv 31^{23} \pmod{35} = 26
$$

Question 2 (25 points)
Using the basic form of Euclid’s algorithm, compute the greatest common divisor of
a. 7469 and 2464,
b. 2689 and 4001,

a. $7469 = 2463 \times 3 + 77$ \\
 $2463 = 77 \times 32$ \\
 $\Rightarrow \text{gcd}(7469, 2463) = 77$

b. $4001 = 2689 \times 1 + 1312$ \\
 $2689 = 1312 \times 2 + 65$ \\
 $1312 = 65 \times 20 + 12$ \\
 $65 = 12 \times 5 + 5$ \\
 $12 = 5 \times 2 + 2$ \\
 $5 = 2 \times 2 + 1$ \\
 $2 = 1 \times 2 + 0$ \\
 $\Rightarrow \text{gcd}(4001, 2689) = 1$
Question 3 (25 points)
One important property which makes DES secure is that the S-boxes are non-linear. How would you verify (not prove of course) the non-linearity of S-box 1 of DES using the following input pairs?

a. \(x_1 = 000000;\) \(x_2 = 000001\)

b. \(x_1 = 111111;\) \(x_2 = 100000\)

S-box 1 of DES

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>1</td>
<td>14</td>
<td>8</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Non-linearity condition

\[S_1(x_1 + x_2) \neq S_1(x_1) + S_1(x_2) \]

a. \(S_1(000000) = 14\) and \(S_1(000001) = 0\)

\[S_1(000000 + 000001) = S_1(000001) = 0 \neq S_1(000000) + S_1(000001) = 14 \]

b. Similar
Question 4. (25 points)

a. Draw the LFSR (linear feedback shift register) corresponding binary polynomial x^5+x^2+1 and find the first period of the sequence generated by this LFSR with initialization vector (01011).

b. Is this sequence a maximum-length sequence? State the condition for generating maximum-length sequences.

c. Do the same for the following binary polynomials:
 x^5+x^3+1 and x^5+x+1

Do they generate maximum-length sequences?

d. Suppose that you are a cryptanalyst and you want to device an attack to break the encryption algorithm of your enemy. Your enemy is not knowledgeable in the area of cryptography (since s/he has not taken any crypto course) and you are almost sure that he is using an LFSR to encrypt her/his data. Please explain what kind of attack method would you employ in order to break her/his code. What kind of data and how much of it would it be needed to implement your attack. Please explain your assumptions.

Output sequence: 110100100010111100011111100 (maximum length)

Output sequence: 110101000010010110011110001101 (maximum length)

Output sequence: 110101001100010000111 (not maximum length)

d. First, I have to be able to apply known-plaintext attack. Using plaintext and ciphertext I obtain the key stream that must be sufficiently long. If the opponent is using an LFSR of length L then I have to obtain key stream of $2L$. Then I apply Berlekamp-Massey algorithm and construct the LFSR.
Question 5 (25 points)
Let \(X \equiv 7^{-1} \mod 15 \)

a. Compute \(X \) using the extended Euclidean algorithm.
b. Compute \(X \) utilizing the Euler’s theorem.
c. Compute \(X \) utilizing the Chinese remainder theorem.

Extended Euclidean algorithm (EEA)
INPUT : Two non-negative integers \(a \) and \(b \) with \(a \geq b \)
OUTPUT : \(d = \gcd(a, b) \) and integers \(x \) and \(y \) s.t. \(a \cdot x + b \cdot y = d \).

1. If \(b = 0 \) then \(d = a, x = 1, y = 0 \) and return \((d, x, y)\).
2. \(x_2 = 1, x_1 = 0, y_2 = 0, y_1 = 1 \).
3. While \(b > 0 \) do the following:
 4. \(q = \lfloor a / b \rfloor, r = a - qb, x = x_2 - qx_1, y = y_2 - qy_1 \)
 5. \(a = b, b = r, x_2 = x_1, x_1 = x, y_2 = y_1, y_1 = y \)
 6. Set \(d = a, x = x_2, y = y_2 \), and return \((d, x, y)\).

\[
\begin{array}{cccccccc}
 q & r & x & y & a & b & x_2 & x_1 & y_2 & y_1 \\
 - & - & - & - & 15 & 7 & 1 & 0 & 0 & 1 \\
 2 & 1 & 1 & -2 & 7 & 1 & 0 & 1 & 1 & -2 \\
 7 & 0 & -7 & 15 & 1 & 0 & 1 & -7 & -2 & 15 \\
\end{array}
\]

\(7^{-1} \mod 15 = -2 \equiv 13 \mod 15 \)

b. \(7^{-1} \mod 15 = 7^7 \mod 15 \equiv 13 \mod 15 \)

c. \(7^{-1} \equiv 3 \mod 5 \)
\(7^{-1} \equiv 1 \mod 3 \)

\(1 \times 15/3 \times 2 + 3 \times 15/5 \times 2 = 28 \equiv 13 \mod 15 \)