Question 1 (25 points)
Compute $10^{148000023} \mod 35$. Show all your work. Do not use Chinese remainder theorem but other tricks. The simpler the computation the more credit you will get.

Question 2 (25 points)
Using the basic form of Euclid’s algorithm, compute the greatest common divisor of
a. 7469 and 2464,
b. 2689 and 4001,
Question 3 (25 points)

One important property which makes DES secure is that the S-boxes are non-linear. How would you verify (not prove of course) the non-linearity of S-box 1 of DES using the following input pairs?

a. \(x_1 = 000000; \ x_2 = 000001\)

b. \(x_1 = 111111; \ x_2 = 100000\)

S-box 1 of DES

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>4</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>15</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>5</td>
<td>9</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>15</td>
<td>7</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>13</td>
<td>1</td>
<td>10</td>
<td>6</td>
<td>12</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>15</td>
<td>8</td>
<td>13</td>
<td>6</td>
<td>2</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>7</td>
<td>5</td>
<td>11</td>
<td>3</td>
<td>14</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>13</td>
</tr>
</tbody>
</table>
Question 4. (25 points)

a. Draw the LFSR (linear feedback shift register) corresponding binary polynomial $x^5 + x^2 + 1$ and find the first period of the sequence generated by this LFSR with initialization vector (01011).

b. Is this sequence a maximum-length sequence? State the condition for generating maximum-length sequences.

c. Do the same for the following binary polynomials:

 $x^5 + x^3 + 1$ and $x^5 + x + 1$

 Do they generate maximum-length sequences?

d. Suppose that you are a cryptanalyst and you want to device an attack to break the encryption algorithm of your enemy. Your enemy is not knowledgeable in the area of cryptography (since s/he has not taken any crypto course) and you are almost sure that he is using an LFSR to encrypt her/his data. Please explain what kind of attack method would you employ in order to break her/his code. What kind of data and how much of it would it be needed to implement your attack. Please explain your assumptions.
Question 5 (25 points)

Let $X \equiv 7^{-1} \mod 15$

a. Compute X using the extended Euclidean algorithm.

b. Compute X utilizing the Euler’s theorem.

c. Compute X utilizing the Chinese remainder theorem.

Extended Euclidean algorithm (EEA)

INPUT : Two non-negative integers a and b with $a \geq b$

OUTPUT : $d = \gcd(a, b)$ and integers x and y s.t. $a \cdot x + b \cdot y = d$.

1. If $b = 0$ then $d = a$, $x = 1$, $y = 0$ and return (d, x, y).
2. $x_2 = 1$, $x_1 = 0$, $y_2 = 0$, $y_1 = 1$.
3. While $b > 0$ do the following:
4. $q = \lfloor a/b \rfloor$, $r = a - qb$, $x = x_2 - qx_1$, $y = y_2 - qy_1$
5. $a = b$, $b = r$, $x_2 = x_1$, $x_1 = x$, $y_2 = y_1$, and $y_1 = y$
6. Set $d = a$, $x = x_2$, $y = y_2$, and return (d, x, y).