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Abstract 

 In this paper, we present an efficient hardware architecture 
for real-time implementation of quarter-pixel accurate variable 
block size motion estimation for H.264 / MPEG4 Part 10 video 
coding. The proposed hardware performs quarter-pixel 
interpolation dynamically, i.e. only the quarter pixels necessary 
for performing quarter-pixel accurate search at the location 
pointed by the half-pixel motion vector are calculated. This 
reduces the amount of computation performed for quarter-pixel 
interpolation, and therefore reduces the power consumption of 
the quarter-pixel accurate motion estimation hardware. This 
hardware is designed to be used as part of a complete H.264 
video coding system for portable applications. The proposed 
hardware architecture is implemented in Verilog HDL. The 
Verilog RTL code is verified to work at 60 MHz in a Xilinx 
Virtex II FPGA. The FPGA implementation can process 34 VGA 
frames (640x480) per second. 

1. Introduction 

Video compression systems are used in many commercial 
products, from consumer electronic devices such as digital 
camcorders, cellular phones to video teleconferencing systems. 
These applications make the video compression systems an 
inevitable part of many commercial products. To improve the 
performance of video compression systems, recently, H.264 / 
MPEG4 Part 10 video compression standard, offering 
significantly better video compression efficiency than previous 
video compression standards, is developed with the 
collobaration of ITU and ISO standardization organizations.  
 The video compression efficiency achieved in H.264 
standard is not a result of any single feature but rather a 
combination of a number of encoding tools. As it is shown in 
the top-level block diagram of an H.264 encoder   in   Figure 1,   
one  of  these  tools  is   the  motion estimation algorithm used 
in the baseline profile of H.264 standard [1, 2]. Motion 
Estimation (ME) is the most computationally demanding part of 
the encoders implementing the previous video compression 
standards. Variable block size ME achieves better coding 
results than the fixed block size ME used in the previous video 
compression standards. However, the amount of computation 
required by variable block size ME is even more than the 
amount required by fixed block size ME.  
 In order to increase the performance of integer-pel ME, 
sub-pel  (half-pel  and  quarter-pel)  accurate variable block size 

 

 
 

Figure 1. H.264 Encoder Block Diagram 

ME is performed [1, 2]. However, the amount of computation 
required by sub-pel ME is even more than the amount required 
by integer-pel ME. It is shown that sub-pel ME accounts for 
about 68% of CPU usage of a H.264 video encoder in fast 
motion estimation mode which is already 65% faster than full 
search mode [3]. Therefore, the coding gain obtained by sub-pel 
ME comes with an increase in encoding complexity which 
makes it an exciting challenge to have a real-time 
implementation of sub-pel accurate variable block size ME for 
H.264 video coding. 
 In this paper, we present an efficient hardware architecture 
for real-time implementation of quarter-pel accurate variable 
block size ME for H.264 video coding. The proposed hardware 
performs quarter-pixel interpolation dynamically, i.e. only the 
quarter pixels necessary for performing quarter-pixel accurate 
search at the location pointed by the best half-pixel motion 
vector are calculated, for reducing the amount of computation 
performed for quarter-pixel interpolation and therefore reducing 
the power consumption.  
 The proposed quarter-pel accurate ME hardware is designed 
to be used as part of a complete H.264 video coding system for 
portable applications together with the half-pel accurate ME 
hardware presented in [4]. The proposed hardware architecture is 
implemented in Verilog HDL. The Verilog RTL code is verified 
to work at 60 MHz in a Xilinx Virtex II FPGA. The FPGA 
implementation can process 34 VGA frames (640x480) per 
second. 

Several hardware architectures for real-time 
implementation of sub-pel accurate variable block size ME for 
H.264 video coding are presented in the literature [5, 6]. The 
hardware architecture presented in [5] uses less hardware than 
our hardware design and has lower performance than our 



hardware design. The hardware architecture presented in [6] 
achieves higher performance than our hardware design at the 
expense of a much higher hardware cost. It uses much more 
FIR filters (64 vs. 28) and processing elements (144 vs. 56) than 
our hardware design in order to process 30 HDTV frames 
(1280x720) per second. Our hardware design is a more cost-
effective solution for portable applications.  

The rest of the paper is organized as follows. Section 2 
explains the quarter-pel accurate motion estimation algorithm. 
Section 3 describes the proposed architecture in detail. The 
implementation results are given in section 4. Finally, section 5 
presents the conclusions. 

2. Overview of Quarter-Pel Accurate Motion 
Estimation Algorithm 

 The search locations for half-pel (HP) and quarter-pel (QP) 
accurate ME are shown in Figure 2. First, integer-pel ME is 
performed at the integer-pel search locations and the best 
integer-pel motion vector (MV) is determined based on a 
performance metric, e.g. minimum Sum of Absolute Difference 
(SAD). Then, HP ME is performed at the HP search locations 
around the location pointed by the best integer-pel MV with a 
search range of [-1, 1], and the integer-pel MV is refined by the 
best HP accurate MV. Finally, QP ME is performed at the QP 
search locations around the location pointed by the best HP MV 
with a search range of [-1, 1], and the HP MV is refined by the 
best QP accurate MV. 
 Before searching for the best HP accurate MV, half pixels in 
the HP search window are interpolated from neighboring pixels 
using a 6-tap FIR filter with weights 1/32, -5/32, 5/8, 5/8, -5/32, 
1/32. First, the half pixels that are adjacent to two integer pixels 
are interpolated from 6 integer pixels. Then, the remaining half 
pixels are interpolated from 6 horizontal or 6 vertical half pixels. 
A HP interpolation example is shown in Figure 3. First, the half 
pixels a, b, c, d, e, f are interpolated from 6 corresponding 
horizontal integer pixels. For example, half pixel c is 
interpolated from the 6 horizontal integer pixels A, B, C, D, E, F 
( c = round ((A-5B+20C+20D-5E+F) / 32) ).  Then, the half 
pixels g, h, i, j, k, m are interpolated from 6 corresponding 
vertical integer pixels. For example, half pixel i is interpolated 
from the 6 vertical integer pixels M, N, C, I, O, P. Finally, HP n 
can be interpolated from either horizontal half pixels g, h, i, j, k, 
m or vertical half-pixels a, b, c, d, e, f. 
 Before searching for the best QP accurate MV, quarter pixels 
in the QP search window are interpolated from neighboring 
pixels using a bilinear filter. A QP interpolation example is 
shown in Figure 3. For example, quarter pixel cc is interpolated 
from the integer pixel C and half pixel c ( cc = (C+c+1)>>1 ),  
quarter pixel cn is interpolated from the half pixels c and n ( cn = 
(c+n+1)>>1 ), and quarter pixel cj  is interpolated  from the half 
pixels c and j ( cj = (c+j +1)>>1 ). 

3. Proposed Quarter-Pel Accurate Motion 
Estimation Hardware  

 The proposed QP accurate ME hardware for 4x4 block size 
is shown in Figure 4. The QP ME hardwares for other block 
sizes are similar to this hardware. For each 4x4 block in a MB, 
first,  HP ME  hardware  finds  the  best  HP MV  by  performing 

 
Figure 2. Half-Pel and Quarter-Pel Search Locations 

 

 
Figure 3. Half-Pel and Quarter-Pel Interpolation Example 

half-pel interpolation (HPI) and half-pel search (HPS) and sends 
this HP MV to QP ME hardware. Then, QP ME hardware finds 
the best QP MV for that 4x4 block by performing quarter-pel 
search (QPS) around the location pointed by this HP MV with a 
search range of [-1, 1]. 
 As the HP ME hardware is performing HPI and HPS, the 
integer and half pixels necessary for QP accurate ME are send to 
the search window register file (SWRF) by the HP ME 
hardware. The proposed layout of the integer and half pixels in 
the 4x4 SWRF, when the location pointed by the best integer-pel 
MV is location 17, is shown Figure 5.  
 Since the HP ME will be performed at the HPS locations 8, 
9, 10, 16, 18, 24, 25 and 26, the best HP MV will point to one of 
these locations and the QP ME will be performed at the eight 
QPS locations around that location. For example, if the best HP 
MV points to location 8, QP ME will be performed at the QPS 
locations 8_1, 8_2, 8_3, 8_4, 8_5, 8_6, 8_7 and 8_8. 
 The control unit sends the read addresses to SWRF based on 
the best HP MV for accessing the necessary integer and half 
pixels. Since there are eight HPS locations and there are eight



 
Figure 4. Proposed Quarter-Pel Accurate Motion Estimation Hardware 

 
 

 
Figure 5. Search Window Register File 

QPS locations for each HPS location, the control unit must be 
able to generate read addresses for 64 QPS locations (8_1, 8_2, 
8_3, … , 26_6, 26_7, 26_8). The QPI datapaths generate the 
quarter pixels and send them to processing elements (PE). The 
SAD values for QPS locations are calculated by the processing 
elements PE0, PE1, PE2 and PE3. The quarter pixels necessary 
for calculating the SAD value for the QPS location 8_1 are 
shown in Figure 5.  
 The proposed layout of the integer and half pixels in the 4x4 
SWRF provide a good correlation between the read addresses of 
64 QPS locations. The read address correlations of 64 QPS 
locations are shown in Figure 6. For example, the read addresses 
of the integer and half pixels used for generating the quarter 
pixels necessary for QPS location 8_8 are 9 more than the read 
addresses of the integer and half pixels used for generating the 
quarter pixels necessary for QPS location 8_1. In Figure 6, this 
read address correlation between QPS locations 8_1 and 8_8 is 
shown by writing the read address for location 8_8 as 8_1 + 9.  
The read address correlations of 64 QPS locations are similarly 
shown in Figure 6. Therefore, the control unit generates the read 
addresses of 64 QPS locations by using the read addresses of the 
QPS locations 8_1, 8_2, 8_3, 8_4 and the read address 
correlations of 64 QPS locations.  
 The SAD value for a QPS location is calculated by a PE in 
16 clock cycles. Since there are 8 QPS locations, QPS would 

take 8*16=128 clock cycles using one PE.  We used 4 PEs in 
order to perform the QPS operation faster. Each PE calculates 
the SAD for two QPS locations. The SADs calculated by PEs 
are sent to a comparator, and the comparator determines the 
minimum SAD and the corresponding best QP accurate MV. 

The proposed QP interpolation and search flow for a 4x4 
block is shown in Figure 7. The QP interpolation and search 
flows for the other block sizes are similar to this flow. The 
calculations done by each PE in this flow are organized to 
reduce the number of read ports of the search window and 
current block register files and to reduce the number of read 
accesses to these register files.  

Because of the proposed allocation of QPS locations to 
PEs and the proposed flow, the SWRF has four 8-bit read ports 
(s0, s1, s2 and s3), and the current block register file has two 8-
bit read ports (c0 and c1). PE0 and PE1 use s0, s1 and c0 ports, 
PE2 and PE3 use s2, s3 and c1 ports. PE1 can reuse the current 
block pixel accessed by PE0 in a previous clock cycle (c0’). 
Similarly, PE3 can reuse the current block pixel accessed by 
PE2 in a previous clock cycle (c1’). In addition, PE0 and PE1 
can use the same search window pixels in the same clock cycle. 
Similarly, PE2 and PE3 can use the same search window pixels 
in the same clock cycle. In order to achieve these, PEs do not 
perform any calculation in some clock cycles.  

4. Implementation Results 

 The proposed QP ME hardware is implemented in Verilog 
HDL. QP interpolation and search take 44 clock cycles for a 
4x4 block. Since there are 16 4x4 blocks in a MB, QP ME for a 
MB for 4x4 block size takes 16*44 = 704 clock cycles. QP 
interpolation and search for an 8x4 block size take 80 clock 
cycles. Since there are 8 8x4 blocks in a MB, QP ME for a MB 
for 8x4 block size takes 8*80 = 640 clock cycles. Similarly, QP 
ME for a MB for 4x8, 8x8, 16x8, 8x16 and 16x16 block sizes 
take 608, 576, 576, 560 and 544 clock cycles respectively. 
Therefore, 4x4 block size is the bottleneck.  

The HP interpolation and search take 48 clock cycles for a 
4x4 block and 4x4 block size is the bottleneck for HP accurate 
ME hardware as well [4]. Therefore, sub-pel ME for a 4x4 
block takes 48+44 = 92 clock cycles and sub-pel ME for a MB 
takes 16*92=1472 clock cycles.  



 
 

Figure 6. Address Correlation of Quarter-Pel Search Locations 

 

Figure 7. Quarter-Pel Interpolation and Search Flow 

 The Verilog HDL implementation of the QP ME hardware is 
verified with RTL simulations using Mentor Graphics 
ModelSim. The Verilog RTL is then synthesized to a 
2V8000ff1152 Xilinx Virtex II FPGA with speed grade 6 using 
Mentor Graphics Leonardo Spectrum. The resulting netlist is 

placed and routed to the same FPGA using Xilinx ISE Series 
7.1. The FPGA implementation is verified to work at 60 MHz 
under worst-case PVT conditions with post place and route 
simulations. The FPGA implementation can process a VGA 
frame in 29.32 msec (1200 MB * 1472 cycles per MB * 16.6 ns 
clock cycle = 29.32 msec). Therefore, it can process 1000/29.32 
= 34 VGA frames (640x480) per second.  

The FPGA implementation uses the following FPGA 
resources; 18566 CLB Slices, 37131 Function Generators and 
21339 DFFs, i.e. %39 of CLB Slices, %39 of Function 
Generators and %22 of DFFs.  

5. Conclusion 

 In this paper, we presented an efficient hardware architecture 
for real-time implementation of quarter-pixel accurate variable 
block size ME for H.264 video coding. This  quarter-pixel 
accurate ME hardware is designed to be used as part of a 
complete H.264 video coding system for portable applications. 
The proposed hardware architecture is implemented in Verilog 
HDL. The Verilog RTL code is verified to work at 60 MHz in a 
Xilinx Virtex II FPGA. The FPGA implementation can process 
34 VGA frames (640x480) per second. 
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