
An Efficient Hardware Architecture for Quarter-Pixel Accurate H.264 Motion
Estimation

Serkan Oktem and Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci University
 34956, Tuzla, Istanbul, Turkey

oktem@su.sabanciuniv.edu, hamzaoglu@sabanciuniv.edu

Abstract

 In this paper, we present an efficient hardware architecture
for real-time implementation of quarter-pixel accurate variable
block size motion estimation for H.264 / MPEG4 Part 10 video
coding. The proposed hardware performs quarter-pixel
interpolation dynamically, i.e. only the quarter pixels necessary
for performing quarter-pixel accurate search at the location
pointed by the half-pixel motion vector are calculated. This
reduces the amount of computation performed for quarter-pixel
interpolation, and therefore reduces the power consumption of
the quarter-pixel accurate motion estimation hardware. This
hardware is designed to be used as part of a complete H.264
video coding system for portable applications. The proposed
hardware architecture is implemented in Verilog HDL. The
Verilog RTL code is verified to work at 60 MHz in a Xilinx
Virtex II FPGA. The FPGA implementation can process 34 VGA
frames (640x480) per second.

1. Introduction

Video compression systems are used in many commercial
products, from consumer electronic devices such as digital
camcorders, cellular phones to video teleconferencing systems.
These applications make the video compression systems an
inevitable part of many commercial products. To improve the
performance of video compression systems, recently, H.264 /
MPEG4 Part 10 video compression standard, offering
significantly better video compression efficiency than previous
video compression standards, is developed with the
collobaration of ITU and ISO standardization organizations.
 The video compression efficiency achieved in H.264
standard is not a result of any single feature but rather a
combination of a number of encoding tools. As it is shown in
the top-level block diagram of an H.264 encoder in Figure 1,
one of these tools is the motion estimation algorithm used
in the baseline profile of H.264 standard [1, 2]. Motion
Estimation (ME) is the most computationally demanding part of
the encoders implementing the previous video compression
standards. Variable block size ME achieves better coding
results than the fixed block size ME used in the previous video
compression standards. However, the amount of computation
required by variable block size ME is even more than the
amount required by fixed block size ME.
 In order to increase the performance of integer-pel ME,
sub-pel (half-pel and quarter-pel) accurate variable block size

Figure 1. H.264 Encoder Block Diagram

ME is performed [1, 2]. However, the amount of computation
required by sub-pel ME is even more than the amount required
by integer-pel ME. It is shown that sub-pel ME accounts for
about 68% of CPU usage of a H.264 video encoder in fast
motion estimation mode which is already 65% faster than full
search mode [3]. Therefore, the coding gain obtained by sub-pel
ME comes with an increase in encoding complexity which
makes it an exciting challenge to have a real-time
implementation of sub-pel accurate variable block size ME for
H.264 video coding.
 In this paper, we present an efficient hardware architecture
for real-time implementation of quarter-pel accurate variable
block size ME for H.264 video coding. The proposed hardware
performs quarter-pixel interpolation dynamically, i.e. only the
quarter pixels necessary for performing quarter-pixel accurate
search at the location pointed by the best half-pixel motion
vector are calculated, for reducing the amount of computation
performed for quarter-pixel interpolation and therefore reducing
the power consumption.
 The proposed quarter-pel accurate ME hardware is designed
to be used as part of a complete H.264 video coding system for
portable applications together with the half-pel accurate ME
hardware presented in [4]. The proposed hardware architecture is
implemented in Verilog HDL. The Verilog RTL code is verified
to work at 60 MHz in a Xilinx Virtex II FPGA. The FPGA
implementation can process 34 VGA frames (640x480) per
second.

Several hardware architectures for real-time
implementation of sub-pel accurate variable block size ME for
H.264 video coding are presented in the literature [5, 6]. The
hardware architecture presented in [5] uses less hardware than
our hardware design and has lower performance than our

hardware design. The hardware architecture presented in [6]
achieves higher performance than our hardware design at the
expense of a much higher hardware cost. It uses much more
FIR filters (64 vs. 28) and processing elements (144 vs. 56) than
our hardware design in order to process 30 HDTV frames
(1280x720) per second. Our hardware design is a more cost-
effective solution for portable applications.

The rest of the paper is organized as follows. Section 2
explains the quarter-pel accurate motion estimation algorithm.
Section 3 describes the proposed architecture in detail. The
implementation results are given in section 4. Finally, section 5
presents the conclusions.

2. Overview of Quarter-Pel Accurate Motion
Estimation Algorithm

 The search locations for half-pel (HP) and quarter-pel (QP)
accurate ME are shown in Figure 2. First, integer-pel ME is
performed at the integer-pel search locations and the best
integer-pel motion vector (MV) is determined based on a
performance metric, e.g. minimum Sum of Absolute Difference
(SAD). Then, HP ME is performed at the HP search locations
around the location pointed by the best integer-pel MV with a
search range of [-1, 1], and the integer-pel MV is refined by the
best HP accurate MV. Finally, QP ME is performed at the QP
search locations around the location pointed by the best HP MV
with a search range of [-1, 1], and the HP MV is refined by the
best QP accurate MV.
 Before searching for the best HP accurate MV, half pixels in
the HP search window are interpolated from neighboring pixels
using a 6-tap FIR filter with weights 1/32, -5/32, 5/8, 5/8, -5/32,
1/32. First, the half pixels that are adjacent to two integer pixels
are interpolated from 6 integer pixels. Then, the remaining half
pixels are interpolated from 6 horizontal or 6 vertical half pixels.
A HP interpolation example is shown in Figure 3. First, the half
pixels a, b, c, d, e, f are interpolated from 6 corresponding
horizontal integer pixels. For example, half pixel c is
interpolated from the 6 horizontal integer pixels A, B, C, D, E, F
(c = round ((A-5B+20C+20D-5E+F) / 32)). Then, the half
pixels g, h, i, j, k, m are interpolated from 6 corresponding
vertical integer pixels. For example, half pixel i is interpolated
from the 6 vertical integer pixels M, N, C, I, O, P. Finally, HP n
can be interpolated from either horizontal half pixels g, h, i, j, k,
m or vertical half-pixels a, b, c, d, e, f.
 Before searching for the best QP accurate MV, quarter pixels
in the QP search window are interpolated from neighboring
pixels using a bilinear filter. A QP interpolation example is
shown in Figure 3. For example, quarter pixel cc is interpolated
from the integer pixel C and half pixel c (cc = (C+c+1)>>1),
quarter pixel cn is interpolated from the half pixels c and n (cn =
(c+n+1)>>1), and quarter pixel cj is interpolated from the half
pixels c and j (cj = (c+j +1)>>1).

3. Proposed Quarter-Pel Accurate Motion
Estimation Hardware

 The proposed QP accurate ME hardware for 4x4 block size
is shown in Figure 4. The QP ME hardwares for other block
sizes are similar to this hardware. For each 4x4 block in a MB,
first, HP ME hardware finds the best HP MV by performing

Figure 2. Half-Pel and Quarter-Pel Search Locations

Figure 3. Half-Pel and Quarter-Pel Interpolation Example

half-pel interpolation (HPI) and half-pel search (HPS) and sends
this HP MV to QP ME hardware. Then, QP ME hardware finds
the best QP MV for that 4x4 block by performing quarter-pel
search (QPS) around the location pointed by this HP MV with a
search range of [-1, 1].
 As the HP ME hardware is performing HPI and HPS, the
integer and half pixels necessary for QP accurate ME are send to
the search window register file (SWRF) by the HP ME
hardware. The proposed layout of the integer and half pixels in
the 4x4 SWRF, when the location pointed by the best integer-pel
MV is location 17, is shown Figure 5.
 Since the HP ME will be performed at the HPS locations 8,
9, 10, 16, 18, 24, 25 and 26, the best HP MV will point to one of
these locations and the QP ME will be performed at the eight
QPS locations around that location. For example, if the best HP
MV points to location 8, QP ME will be performed at the QPS
locations 8_1, 8_2, 8_3, 8_4, 8_5, 8_6, 8_7 and 8_8.
 The control unit sends the read addresses to SWRF based on
the best HP MV for accessing the necessary integer and half
pixels. Since there are eight HPS locations and there are eight

Figure 4. Proposed Quarter-Pel Accurate Motion Estimation Hardware

Figure 5. Search Window Register File

QPS locations for each HPS location, the control unit must be
able to generate read addresses for 64 QPS locations (8_1, 8_2,
8_3, … , 26_6, 26_7, 26_8). The QPI datapaths generate the
quarter pixels and send them to processing elements (PE). The
SAD values for QPS locations are calculated by the processing
elements PE0, PE1, PE2 and PE3. The quarter pixels necessary
for calculating the SAD value for the QPS location 8_1 are
shown in Figure 5.
 The proposed layout of the integer and half pixels in the 4x4
SWRF provide a good correlation between the read addresses of
64 QPS locations. The read address correlations of 64 QPS
locations are shown in Figure 6. For example, the read addresses
of the integer and half pixels used for generating the quarter
pixels necessary for QPS location 8_8 are 9 more than the read
addresses of the integer and half pixels used for generating the
quarter pixels necessary for QPS location 8_1. In Figure 6, this
read address correlation between QPS locations 8_1 and 8_8 is
shown by writing the read address for location 8_8 as 8_1 + 9.
The read address correlations of 64 QPS locations are similarly
shown in Figure 6. Therefore, the control unit generates the read
addresses of 64 QPS locations by using the read addresses of the
QPS locations 8_1, 8_2, 8_3, 8_4 and the read address
correlations of 64 QPS locations.
 The SAD value for a QPS location is calculated by a PE in
16 clock cycles. Since there are 8 QPS locations, QPS would

take 8*16=128 clock cycles using one PE. We used 4 PEs in
order to perform the QPS operation faster. Each PE calculates
the SAD for two QPS locations. The SADs calculated by PEs
are sent to a comparator, and the comparator determines the
minimum SAD and the corresponding best QP accurate MV.

The proposed QP interpolation and search flow for a 4x4
block is shown in Figure 7. The QP interpolation and search
flows for the other block sizes are similar to this flow. The
calculations done by each PE in this flow are organized to
reduce the number of read ports of the search window and
current block register files and to reduce the number of read
accesses to these register files.

Because of the proposed allocation of QPS locations to
PEs and the proposed flow, the SWRF has four 8-bit read ports
(s0, s1, s2 and s3), and the current block register file has two 8-
bit read ports (c0 and c1). PE0 and PE1 use s0, s1 and c0 ports,
PE2 and PE3 use s2, s3 and c1 ports. PE1 can reuse the current
block pixel accessed by PE0 in a previous clock cycle (c0’).
Similarly, PE3 can reuse the current block pixel accessed by
PE2 in a previous clock cycle (c1’). In addition, PE0 and PE1
can use the same search window pixels in the same clock cycle.
Similarly, PE2 and PE3 can use the same search window pixels
in the same clock cycle. In order to achieve these, PEs do not
perform any calculation in some clock cycles.

4. Implementation Results

 The proposed QP ME hardware is implemented in Verilog
HDL. QP interpolation and search take 44 clock cycles for a
4x4 block. Since there are 16 4x4 blocks in a MB, QP ME for a
MB for 4x4 block size takes 16*44 = 704 clock cycles. QP
interpolation and search for an 8x4 block size take 80 clock
cycles. Since there are 8 8x4 blocks in a MB, QP ME for a MB
for 8x4 block size takes 8*80 = 640 clock cycles. Similarly, QP
ME for a MB for 4x8, 8x8, 16x8, 8x16 and 16x16 block sizes
take 608, 576, 576, 560 and 544 clock cycles respectively.
Therefore, 4x4 block size is the bottleneck.

The HP interpolation and search take 48 clock cycles for a
4x4 block and 4x4 block size is the bottleneck for HP accurate
ME hardware as well [4]. Therefore, sub-pel ME for a 4x4
block takes 48+44 = 92 clock cycles and sub-pel ME for a MB
takes 16*92=1472 clock cycles.

Figure 6. Address Correlation of Quarter-Pel Search Locations

Figure 7. Quarter-Pel Interpolation and Search Flow

 The Verilog HDL implementation of the QP ME hardware is
verified with RTL simulations using Mentor Graphics
ModelSim. The Verilog RTL is then synthesized to a
2V8000ff1152 Xilinx Virtex II FPGA with speed grade 6 using
Mentor Graphics Leonardo Spectrum. The resulting netlist is

placed and routed to the same FPGA using Xilinx ISE Series
7.1. The FPGA implementation is verified to work at 60 MHz
under worst-case PVT conditions with post place and route
simulations. The FPGA implementation can process a VGA
frame in 29.32 msec (1200 MB * 1472 cycles per MB * 16.6 ns
clock cycle = 29.32 msec). Therefore, it can process 1000/29.32
= 34 VGA frames (640x480) per second.

The FPGA implementation uses the following FPGA
resources; 18566 CLB Slices, 37131 Function Generators and
21339 DFFs, i.e. %39 of CLB Slices, %39 of Function
Generators and %22 of DFFs.

5. Conclusion

 In this paper, we presented an efficient hardware architecture
for real-time implementation of quarter-pixel accurate variable
block size ME for H.264 video coding. This quarter-pixel
accurate ME hardware is designed to be used as part of a
complete H.264 video coding system for portable applications.
The proposed hardware architecture is implemented in Verilog
HDL. The Verilog RTL code is verified to work at 60 MHz in a
Xilinx Virtex II FPGA. The FPGA implementation can process
34 VGA frames (640x480) per second.

6. References

[1] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC Video Coding Standard”,
IEEE Trans. on Circuits and Systems for Video
Technology, vol. 13, no. 7, pp. 560–576, July 2003.

[2] I. G. Richardson, H.264 and MPEG-4 Video Compression,
Wiley, 2003.

[3] K. Minoo, T. Q. Nquyen, “Reverse, Sub-Pixel Block
Matching: Applications within H.264 and Analysis of
Limitations”, IEEE Int. Conf. on Image Processing, pp.
3161-3164, 2006.

[4] S. Yalcin, I. Hamzaoglu, “A High Performance Hardware
Architecture for Half-Pixel Accurate H.264 Motion
Estimation”, 14th Int. Conf. on VLSI-SoC, October 2006.

[5] AT.C.Chen, Y.W.Huang, L.G.Chen, “Fully untilized and
reusable architecture for fractional motion estimation of
H.264/AVC", IEEE ICASSP, pp. 9-12, 2004.

[6] C. Yang, S. Goto, T. Ikenaga, “High performance
architecture for fractional motion estimation in H.264 for
HDTV", IEEE ISCAS, 2006.

