EGGS IN PG\((4n - 1, q), q\) EVEN, CONTAINING A
PSEUDO-CONIC

MATTHEW R. BROWN AND MICHEL LAVRAUW

ABSTRACT

An ovoid of PG\((3, q)\) can be defined as a set of \(q^2 + 1\) points with the property that every three points span a plane and at every point there is a unique tangent plane. In 2000 M. R. Brown ([7]) proved that if an ovoid of PG\((3, q), q\) even, contains a conic, then the ovoid is an elliptic quadric. Generalising the definition of an ovoid to a set of \((n - 1)\)-spaces of PG\((4n - 1, q)\) J. A. Thas [21] introduced the notion of pseudo-ovoids of eggs; a set of \(q^{2n} + 1\ (n - 1)\)-spaces in PG\((4n - 1, q)\), with the property that any three egg elements span a \((3n - 1)\)-space and at every egg element there is a unique tangent \((3n - 1)\)-space. We prove that an egg in PG\((4n - 1, q), q\) even, contains a pseudo-conic, that is, a pseudo-oval arising from a conic of PG\((2, q^n)\), if and only if the egg is classical, that is, arising from an elliptic quadric in PG\((3, q^n)\).

1. Introduction and preliminaries

An oval of PG\((2, q)\) is a set of \(q + 1\) points no three collinear. In 1954 it was shown by B. Segre [20] that if \(q\) is odd then an oval in PG\((2, q)\) is a conic. For \(q\) even, many ovals are known which are not conics (see [6] for a recent survey). An ovoid of PG\((3, q)\) is a set of \(q^2 + 1\) points such that every three points span a plane. If we exclude PG\((3, 2)\), that is, assuming \(q > 2\), then \(q^2 + 1\) is the maximal cardinality of a set of points satisfying this property. Moreover all the tangent lines to an ovoid at a certain point lie in a plane ([2], [17]); the tangent plane at that point. In 1955 A. Barlotti [2] and G. Panella [17] independently proved that an ovoid in PG\((3, q)\), \(q\) odd, is an elliptic quadric. For \(q\) even, one other example of an ovoid is known; called the Tits ovoid, which exists for \(q = 2^{2e + 1}, e \geq 1\). For results characterising the elliptic quadric and the Tits ovoid we refer to the survey [6]. A result fundamental to the proof of the main result of this paper is the following characterisation of the elliptic quadric ovoid.

Theorem 1 (M. R. Brown [7]). Let \(\mathcal{O}\) be an ovoid of PG\((3, q), q\) even, and \(\pi\) a plane of PG\((3, q)\) such that \(\pi \cap \mathcal{O}\) is a conic. Then \(\mathcal{O}\) is an elliptic quadric.

An \((n - 1)\)-spread (partial \((n - 1)\)-spread) \(S\) of PG\((rn - 1, q)\) is a set of \((n - 1)\)-spaces such that any point of PG\((rn - 1, q)\) is contained in exactly (at most) one element of \(S\) (also called a spread if the dimension of the elements of \(S\) is understood). A spread \(S\) is called Desarguesian if the incidence geometry defined by taking the elements of \(S\) as points, the subspaces spanned by two different elements of \(S\) as

2000 Mathematics Subject Classification 51E20.

Matthew R. Brown: This research has been supported by the Australian Research Council.
Michel Lavrauw: This research has been supported by a Marie Curie Fellowship of the European Community programme "Improving the Human Research Potential and the Socio-Economic knowledge Base" under the contract number HMPF-CT-2001-00386.
lines, and the natural incidence relation (symmetric containment), is isomorphic to a Desarguesian projective space.

An egg \(E \) in \(\text{PG}(4n - 1, q) \) (or pseudo-ovoid) is a partial \((n - 1)\)-spread of size \(q^{2n} + 1 \), such that every three egg elements span a \((3n - 1)\)-space and for every egg element \(E \) there exists a \((3n - 1)\)-space \(T_E \) (called the tangent space of \(E \) at \(E \)) which contains \(E \) and is skew from the other egg elements. A pseudo-ovoid (or an egg in \(\text{PG}(3n - 1, q) \)) is a partial \((n - 1)\)-spread of size \(q^n + 1 \), such that every three elements of the pseudo-ovoid span \(\text{PG}(3n - 1, q) \). The notion of eggs was introduced by J. A. Thas in 1971 ([21]). An egg \(E \) in \(\text{PG}(4n - 1, q) \) is called a good egg if there exists an egg element \(E \) such that every \((3n - 1)\)-space containing \(E \) and two other egg elements contains exactly \(q^n + 1 \) egg elements. In that case \(E \) is called a good element of \(E \). If the elements of a pseudo-ovoid, respectively pseudo-oval, belong to a Desarguesian \((n - 1)\)-spread of \(\text{PG}(4n - 1, q) \), respectively \(\text{PG}(3n - 1, q) \), then the pseudo-ovoid, respectively pseudo-oval, is called elementary.

It follows that an elementary pseudo-oval arises from an oval of \(\text{PG}(2, q^n) \) and an elementary pseudo-ovoid arises from an ovoid of \(\text{PG}(3, q^n) \). If the oval is a conic we say that the elementary pseudo-oval is a pseudo-conic or a classical pseudo-oval, if the ovoid is an elliptic quadric then we call the pseudo-ovoid a classical pseudo-ovoid. In 1974 J. A. Thas proved that if every four egg elements span \(\text{PG}(4n - 1, q) \) or are contained in a \((3n - 1)\)-dimensional space, then the egg is elementary ([22]).

The only known examples of pseudo-ovals are elementary and pseudo-ovals have been classified by computer for \(q^n \leq 16 \) ([19]). More examples are known for pseudo-ovoids, all of them over a field of odd characteristic and they are connected to certain semifields (see Chapter 3 of [12] for a survey and [13] for recent results for the case when \(q \) is odd).

In this article we are concerned about pseudo-ovoids in the case when \(q \) is even. All known examples of eggs in \(\text{PG}(4n - 1, q) \), \(q \) even, are elementary. Pseudo-ovoids have been classified by computer for \(q^n \leq 4 \) ([14]). In 2002 J. A. Thas published the following two theorems.

Theorem 2 (J. A. Thas [25]). An egg \(E \) of \(\text{PG}(4n - 1, q) \), with \(q \) even, is classical if and only if \(E \) is good at some element and contains at least one pseudo-conic.

Theorem 3 (J. A. Thas [25]). An egg \(E \) of \(\text{PG}(4n - 1, q) \), with \(q \) even, is classical if and only if \(E \) contains at least two intersecting pseudo-conics.

In this article we prove that the only assumption one needs to conclude that an egg in \(\text{PG}(4n - 1, q) \), \(q \) even, is classical, is that it contains a pseudo-conic.

2. Eggs and translation generalized quadrangles

A (finite) generalized quadrangle (GQ) (see [18] for a comprehensive introduction) is an incidence structure \(S = (\mathcal{P}, \mathcal{B}, I) \) in which \(\mathcal{P} \) and \(\mathcal{B} \) are disjoint (non-empty) sets of objects called points and lines, respectively, and for which \(I \subseteq (\mathcal{P} \times \mathcal{B}) \cup (\mathcal{B} \times \mathcal{P}) \).
is a symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with $1 + t$ lines ($t \geq 1$) and two distinct points are incident with at most one line;

(ii) Each line is incident with $1 + s$ points ($s \geq 1$) and two distinct lines are incident with at most one point;

(iii) If X is a point and ℓ is a line not incident with X, then there is a unique pair $(Y, m) \in \mathcal{P} \times \mathcal{B}$ for which $X I m I Y I \ell$.

The integers s and t are the parameters of the GQ and \mathcal{S} is said to have order (s, t). If $s = t$, then \mathcal{S} is said to have order s. If \mathcal{S} has order (s, t), then it follows that $|\mathcal{P}| = (s + 1)(st + 1)$ and $|\mathcal{B}| = (t + 1)(st + 1)$ ([18, 1.2.1]). A subquadrangle $\mathcal{S}' = (\mathcal{P}', \mathcal{B}', \mathcal{I}')$ of \mathcal{S} is a GQ such that $\mathcal{P}' \subseteq \mathcal{P}$, $\mathcal{B}' \subseteq \mathcal{B}$ and \mathcal{I}' is the restriction of \mathcal{I} to $(\mathcal{P}' \times \mathcal{B}') \cup (\mathcal{B}' \times \mathcal{P}')$. Let $\mathcal{S} = (\mathcal{P}, \mathcal{B}, \mathcal{I})$ be a GQ of order (s, t), $s \neq 1$, $t \neq 1$. A collineation θ of \mathcal{S} is an elation about the point P if $\theta = id$ or if θ fixes all lines incident with P and fixes no point of $\mathcal{P} \setminus P'$. If there is a group G of elations about P acting regularly on $\mathcal{P} \setminus P'$, then we say that \mathcal{S} is an elation generalized quadrangle (EGQ) with elation group G and base point P. Briefly we say that $(\mathcal{S}^{(P)}', G)$ or $\mathcal{S}^{(P)}$ is an EGQ. If the group G is abelian, then we say that the EGQ $(\mathcal{S}^{(P)}', G)$ is a translation generalized quadrangle (TQG) and G is the translation group.

In PG$(2n + m - 1, q)$ consider a set $\mathcal{E}(n, m, q)$ of $q^m + 1$ $(n - 1)$-dimensional subspaces, every three of which generate a PG$(3n - 1, q)$ and such that each element E of $\mathcal{E}(n, m, q)$ is contained in an $(n + m - 1)$-dimensional subspace T_E having no point in common with any element of $\mathcal{E}(n, m, q) \setminus \{E\}$. It is easy to check that T_E is uniquely determined for any element E of $\mathcal{E}(n, m, q)$. The space T_E is called the tangent space of $\mathcal{E}(n, m, q)$ at E. For $n = m = 1$ such a set $\mathcal{E}(1, 1, q)$ is an oval in PG$(2, q)$ and more generally for $n = m$ such a set $\mathcal{E}(n, n, q)$ is a pseudo-oval of PG$(3n - 1, q)$. For $m = 2n = 2$ such a set $\mathcal{E}(1, 2, q)$ is an ovoid of PG$(3, q)$ and more generally for $m = 2n$ such a set $\mathcal{E}(n, 2n, q)$ is a pseudo-ovoid. In general we call the sets $\mathcal{E}(n, m, q)$ eggs.

Now embed PG$(2n + m - 1, q)$ in a PG$(2n + m, q)$, and construct a point-line geometry $T(n, m, q)$ as follows. Points are of three types:

(i) the points of PG$(2n + m, q) \setminus$ PG$(2n + m - 1, q)$, called the affine points;

(ii) the $(n + m)$-dimensional subspaces of PG$(2n + m, q)$ which intersect PG$(2n + m - 1, q)$ in a tangent space of $\mathcal{E}(n, m, q)$;

(iii) the symbol ∞.

Lines are of two types:

(a) the n-dimensional subspaces of PG$(2n + m, q)$ which intersect PG$(2n + m - 1, q)$ in an element of $\mathcal{E}(n, m, q)$;

(b) the elements of $\mathcal{E}(n, m, q)$.

Incidence in $T(n, m, q)$ is defined as follows. A point of type (i) is incident only with lines of type (a); here the incidence is that of PG$(2n + m, q)$. A point of type (ii)
is incident with all lines of type (a) contained in it and with the unique element of $E(n, m, q)$ contained in it. The point (∞) is incident with no line of type (a) and with all lines of type (b).

Theorem 4 (8.7.1 of Payne and Thas [18]). The incidence geometry $T(n, m, q)$ is a TGQ of order (q^n, q^m) with base point (∞). Conversely, every TGQ is isomorphic to a $T(n, m, q)$. It follows that the theory of TGQ is equivalent to the theory of the sets $E(n, m, q)$.

In the case where $n = m = 1$ and $E(1, 1, q)$ is the oval O the GQ $T(1, 1, q)$ is the Tits GQ $T_2(O)$. When $m = 2n = 2$ and $E(1, 2, q)$ is the ovoid Ω, the GQ $T(1, 2, q)$ is the Tits GQ $T_3(\Omega)$. Note that $T_2(O) \cong Q(4, q)$ if and only if O is a conic and non-classical otherwise, while $T_3(\Omega) \cong Q(5, q)$ if and only if Ω is an elliptic quadric (see [18, Chapter 3]). The kernel of $\mathcal{S} = T(n, m, q)$ is the maximum cardinality field $GF(q')$ for which there exists an $O(n', m', q')$ representing \mathcal{S} and \mathcal{S} may be represented by an $E(n'', m'', q'')$ if and only if $GF(q'') \subseteq GF(q)$ (see [18, Chapter 8]). Let \mathcal{E} be an egg in $PG(4n - 1, q)$ and $T(\mathcal{E})$ the corresponding TGQ. If O is a pseudo-oval of E contained in $PG(3n - 1, q)$ and $PG(3n, q)$ any subspace containing $PG(3n - 1, q)$ not contained in $PG(4n - 1, q)$, then $PG(3n, q)$ induces a subquadrangle of $T(\mathcal{E})$ isomorphic to $T(O)$.

3. **Eggs in $PG(4n - 1, q)$, q even, containing a pseudo-conic**

In this section we characterise the classical GQ $Q(5, q)$ as a TGQ with a single classical subquadrangle on the translation point. As a corollary we have the analogue of Theorem 1 for eggs.

We begin with a statement and sketch proof of an important lemma. The proof is a combination of results of [10], [23], [11], [24] and [15], and already noted in [25].

Lemma 5. Every $(2n - 1)$-dimensional space in $PG(3n - 1, q)$, q even, skew from a pseudo-conic is the span of two elements of the Desarguesian spread induced by the pseudo-conic.

Proof. Let U be a $(2n - 1)$-space skew from a pseudo-conic in $PG(3n - 1, q)$. Dualising in $PG(3n - 1, q)$ we obtain an $(n - 1)$-space U' disjoint from a dual pseudo-conic, i.e. the set of $q^n + 1$ $(2n - 1)$-spaces corresponding to the $q^n + 1$ lines of a dual conic in $PG(2, q^n)$. By embedding $PG(2, q^n)$ in $PG(3, q^n)$ and dualising in $PG(3, q^n)$ one sees that the set of affine points of any n-space intersecting $PG(2, q^n)$ in U' becomes a set of planes forming a semifield flock of a quadratic cone in $PG(3, q^n)$ and since q is even the corresponding semifield is a field, which implies that U corresponds to a line in $PG(2, q^n)$.

Lemma 6. Let S be a TGQ of order (s, s^2) with a translation point (∞) and a subquadrangle $S' = (\mathcal{P}', \mathcal{B}', \mathcal{I}')$ of order s containing the point (∞). Then the egg corresponding to S contains a pseudo-oval O and S' is a TGQ isomorphic to $T(O)$.

Proof. Suppose that the kernel of S contains $GF(q)$ and $s = q^n$. Then let \mathcal{E} be the corresponding egg in $PG(4n - 1, q)$ and represent S as $T(\mathcal{E})$. The $q^n + 1$ lines of S' incident with the point (∞) determine a set \mathcal{O} of $q^n + 1$ egg elements.
$\{E_0, E_1, \ldots, E_{q^n}\}$. Let A denote the set of affine points of S'. Let $Q \in A$ and consider the line $\langle E_0, Q \rangle$ in S'. It follows that every affine point of $\langle E_0, Q \rangle$ is contained in A. Let P be an affine point in $\langle E_0, Q, E_1 \rangle \setminus \langle E_0, Q \rangle$. Then $\langle E_1, P \rangle$ intersects $\langle E_0, Q \rangle$ in an affine point $R \in A$, and hence $P \in A$. Hence all affine points of $\langle E_0, Q, E_1 \rangle$ are contained in A. Now consider any affine point P in $\langle E_0, E_1, E_2, Q \rangle \setminus \langle E_0, Q, E_1 \rangle$. Then $\langle E_2, P \rangle$ intersects $\langle E_0, E_1, Q \rangle$ in a point $R \in A$. It follows that A is the set of affine points of $\langle E_0, E_1, E_2, Q \rangle$ and O is contained in $\langle E_0, E_1, E_2 \rangle$. This implies that O is a pseudo-oval contained in E and S' is a TGQ isomorphic to $T(O)$.

Theorem 7. Let $S = \langle P, B, I \rangle$ be a TGQ of order (s, s^2), s even, with a translation point (∞) and a subquadrangle $S' = \langle P', B', I' \rangle$ isomorphic to $Q(4, s)$ containing (∞). Then $S \cong Q(5, s)$.

Proof. Suppose that the kernel of S contains $GF(q)$ and $s = q^n$. Then let E be the corresponding egg in $PG(4n - 1, q)$ and represent S as $T(E)$. Now S' is a (classical) subquadrangle of order q^n containing (∞). By Lemma 6 E contains a pseudo-conic in $PG(3n - 1, q)$ and S' is constructed from a $PG(3n, q)$ containing $PG(3n - 1, q)$.

If X is a point of $P \setminus P'$, then the lines incident with X intersect S' in a set O_X of $q^{2n} + 1$ points of S', no two collinear, called an ovoid of S' ([18, 2.2.1]). The ovoid O_X is said to be **subtended** by X. Suppose that X is a point of type (ii) of S', that is, a subspace of dimension $3n$ meeting $PG(4n - 1, q)$ in the tangent space at an egg element. Then O_X consists of the point (∞) plus the q^{2n} points $(X \cap PG(3n, q)) \setminus PG(3n - 1, q)$. The subspace $X \cap PG(3n - 1, q)$ is a $(2n - 1)$-dimensional subspace skew from the pseudo-conic C. From Lemma 5 we have that this is the span of two elements of the Desarguesian spread induced by the pseudo-conic. Representing S' over $GF(q^n)$, that is, as $T_2(C)$ where C is a conic in $PG(2, q^n)$, we see that O_X consists of (∞) and the affine points of a plane of $PG(3n, q)$ skew from C. By the isomorphism from $Q(4, q^n)$ to $T_2(C)$ ([18]) it is clear that the ovoids of $T_2(C)$ consisting of (∞) and the affine points of a plane skew to C correspond to the elliptic quadric ovoids of $Q(4, q^n)$ containing a fixed point. By a result of Bose and Shrikhande ([4]) any triad of S has $q^n + 1$ centres and so a subtended ovoid of S' may be subtended by at most two points of $S \setminus S'$, in which case the ovoid is said to be **doubly subtended**. Counting reveals that there are $q^{2n}(q^n - 1)/2$ elliptic quadric ovoids of S' containing (∞) and $q^{2n}(q^n - 1)$ points of $P \setminus P'$ collinear with (∞) and hence subtending an ovoid of S' containing (∞). Thus each such ovoid is doubly subtended.

Now let Y be a point of $P \setminus P'$ not collinear with (∞) and O_Y the ovoid it subtends in S'. We will consider this ovoid in the $T_2(C)$ model of S'. Since $Y \neq (\infty)$ it follows that $O_Y = A \cup \{p : P \in C\}$, where A is a set of $q^{2n} - q^n$ affine points of $T_2(C)$ and p is a point of type (ii) of $T_2(C)$ which is a plane containing $P \in C$. We now investigate the intersections of a plane π of $PG(3, q^n)$ with A. If p contains no point of C, then $\pi \cup (\infty)$ is an elliptic quadric subtended by two points, X and X' of $S \setminus S'$. If Y is collinear with X or X', then $\pi \cap A$ is a single point. If Y is not collinear with X nor with X', then $\{X, X', Y\}$ is a triad of S and hence has $q^n + 1$ centres. Hence $|\pi \cap A| = q^n + 1$. Next suppose that π contains a unique point $P = \pi_P \subset O_Y$, then p contains no point of A. If $\pi \neq \pi_P$, then the q^n lines of π incident with P and not in the plane of C are lines of the $T_2(C)$ and so contain precisely one point of A. Hence $|\pi \cap A| = q^n$. Next suppose that π contains
two points, P and Q, of C. Of the $q^n + 1$ projective lines in π incident with P one is contained in π_P and $q^n - 1$ are lines of $T_2(C)$ containing a unique point of A. Hence $|\pi \cap A| = q^n - 1$. Finally, if $\pi = \PG(2, q^n)$, then π contains no point of A.

Consider the set of points of $\PG(3, q^n)$ defined by $\overline{O_Y} = A \cup C$. By the above the plane intersections with $\overline{O_Y}$ have size 1 or $q^n + 1$ and a straightforward count shows that $\overline{O_Y}$ is an ovoid of $\PG(3, q^n)$.

Further, since $\overline{O_Y}$ contains the conic C it is an elliptic quadric by Theorem 1. Hence the ovoid $\overline{O_Y}$ is an elliptic quadric ovoid of \mathcal{S}' in the $Q(4, q^n)$ model. Thus we have that every ovoid of $\mathcal{S}' \cong Q(4, q^n)$ subtended by a point of $\mathcal{P} \setminus \mathcal{P}'$ is an elliptic quadric ovoid. By a theorem due independently to Brown ([8]) and Brouns, Thas and Van Maldeghem ([5]) it now follows that \mathcal{S} is the classical GQ $Q(5, q^n)$.

\begin{remark}
In general, suppose that \mathcal{S} is a TGQ of order (s, s^2), s even, represented by an egg \mathcal{E} in $\PG(4n - 1, q)$. Suppose that \mathcal{S}' is a subquadangle of \mathcal{S} of order s, containing the base point (∞) of \mathcal{S}. Then the argument at the start of the proof of Theorem 7 proves that \mathcal{S}' is isomorphic to $T(O)$ for O a pseudo-oval contained in \mathcal{E}. This solves an open case in [9].
\end{remark}

As a corollary we now have the main result of the paper.

\begin{theorem}
An egg \mathcal{E} in $\PG(4n - 1, q)$, q even, contains a pseudo-conic if and only if the egg is classical, that is arising from an elliptic quadric in $\PG(3, q^n)$.
\end{theorem}

\begin{proof}
Since an elliptic quadric contains conics, any egg arising from an elliptic quadric contains pseudo-conics. Now suppose \mathcal{E} is an egg of $\PG(4n - 1, q)$ containing a pseudo-conic. Then $T(\mathcal{E})$ is a TGQ of order (q^n, q^{2n}) containing a classical subquadangle of order q^n containing (∞). By Theorem 7 $T(\mathcal{E})$ is the classical GQ $Q(5, q^n)$ and so by [1, Lemma 1] \mathcal{E} arises from an elliptic quadric in $\PG(3, q^n)$.
\end{proof}

\section*{Acknowledgements}

The first author would like to thank the Dipartimento di Matematica e Applicazioni, Universita degli studi di Napoli Federico II for its support during the course of this research.

\section*{References}

4. R. C. BOSCH AND S. S. SHREINER; Geometric and pseudo-geometric graphs ($q^2 + 1, q + 1, q$). J. Geom. 2/1 (1973) 75–94.
9. Matthew R. Brown, J. A. Thas; Subquadrangles of order s of generalized quadrangles of order (s, s^2). Part II. Submitted. J. Combin. Theory Ser. A.
13. Michel Lavrauw; Characterizations and properties of good eggs in PG(4n – 1, q), q odd. Submitted.
21. J. A. Thas; The m-dimensional projective space S_m(M_n(GF(q))) over the total matrix algebra M_n (GF(q)) of the n x n-matrices with elements in the Galois field GF(q). Rend. Mat. (6) 4 (1971), 499–532.
22. J. A. Thas; Geometric characterization of the [n – 1]-ovaloids of the projective space PG(4n – 1, q). Simon Stevin 47 (1973/74), 97–106.

Matthew R. Brown
School of Pure Mathematics
University of Adelaide
S.A. 5005
AUSTRALIA
mbrown@maths.adelaide.edu.au

Michel Lavrauw
Università di Napoli Federico II
Dip. di Mat. e Appl.
"R. Caccioppoli"
Via Cintia
Complesso Monte S. Angelo
80126 Napoli
ITALY
lavrauw@unina.it