An empty interval in the spectrum of small weight codewords in the code from points and \(k \)-spaces of \(\text{PG}(n, q) \)

M. Lavrauw L. Storme P. Sziklai\(^*\) G. Van de Voorde \(^†\)

July 9, 2008

Abstract

Let \(C_k(n, q) \) be the \(p \)-ary linear code defined by the incidence matrix of points and \(k \)-spaces in \(\text{PG}(n, q) \), \(q = p^h \), \(p \) prime, \(h \geq 1 \). In this paper, we show that there are no codewords of weight in \(\lceil \frac{2^{k+1}-1}{q-1} \rceil 2q^k \) in \(C_k(n, q) \setminus C_{n-k}(n, q)^\perp \) which implies that there are no codewords with this weight in \(C_k(n, q) \setminus C_{n-k}(n, q)^\perp \) if \(k \geq n/2 \). In particular, for the code \(C_{n-1}(n, q) \) of points and hyperplanes of \(\text{PG}(n, q) \), we exclude all codewords in \(C_{n-1}(n, q) \) with weight in \(\lceil \frac{q^{n-1}}{q-1} \rceil 2q^{n-1} \). This latter result implies a sharp bound on the weight of small weight codewords of \(C_{n-1}(n, q) \), a result which was previously only known for general dimension for \(q \) prime and \(q = p^2 \), with \(p \) prime, \(p > 11 \), and in the case \(n = 2 \), for \(q = p^3 \), \(p \geq 7 \).

1 Introduction

Let \(\text{PG}(n, q) \) denote the \(n \)-dimensional projective space over the finite field \(\mathbb{F}_q \) with \(q \) elements, where \(q = p^h \), \(p \) prime, \(h \geq 1 \), and let \(V(n+1, q) \) denote the underlying vector space. Let \(\theta_n \) denote the number of points in \(\text{PG}(n, q) \), i.e., \(\theta_n = (q^{n+1} - 1)/(q - 1) \).

We define the incidence matrix \(A = (a_{ij}) \) of points and \(k \)-spaces in the projective space \(\text{PG}(n, q) \), \(q = p^h \), \(p \) prime, \(h \geq 1 \), as the matrix whose rows are indexed by the \(k \)-spaces of \(\text{PG}(n, q) \) and whose columns are indexed by the points of \(\text{PG}(n, q) \), and with entry

\[
a_{ij} = \begin{cases}
1 & \text{if point } j \text{ belongs to } k\text{-space } i, \\
0 & \text{otherwise}.
\end{cases}
\]

The \(p \)-ary linear code of points and \(k \)-spaces of \(\text{PG}(n, q) \), \(q = p^h \), \(p \) prime, \(h \geq 1 \), is the \(\mathbb{F}_p \)-span of the rows of the incidence matrix \(A \). We denote this code by \(C_k(n, q) \). The support of a codeword \(c \), denoted by \(\text{supp}(c) \), is the set of all non-zero positions of \(c \). The weight of \(c \) is the number of non-zero positions of

\(^*\)This author was partially supported by OTKA T-049662, T-067867 and Bolyai grants.

\(^†\)This author’s research was supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen).
c and is denoted by $wt(c)$. Often we identify the support of a codeword with the corresponding set of points of $PG(n,q)$. We let (c_1, c_2) denote the scalar product in \mathbb{F}_q^n of two codewords c_1, c_2 of $C_k(n,q)$. Furthermore, if T is a set of points of $PG(n,q)$, then the incidence vector of this set is also denoted by \mathbf{T}. The dual code $C^\perp_k(n,q)$ is the set of all vectors orthogonal to all codewords of $C_k(n,q)$, hence

$$C_k(n,q)^\perp = \{ v \in V(\theta_n, p) | \langle v, c \rangle = 0, \forall c \in C_k(n,q) \}.$$

It is easy to see that $c \in C_k(n,q)^\perp$ if and only if $(c, K) = 0$ for all k-spaces K of $PG(n,q)$.

In [4] and [5], we excluded codewords of small weight in $C_{n-1}(n,q)$, resp. $C_k(n,q) \setminus C_k(n,q)^\perp$, corresponding to linear small minimal blocking sets, which implied Result 1 and Result 2.

Result 1. [4] The only possible codewords c of $C_{n-1}(n,q)$ of weight in $[\theta_{n-1}, 2q^{n-1}]$ are the scalar multiples of non-linear minimal blocking sets, intersecting every line in $1 \pmod{p}$ points.

Result 2. [5] For $k \geq n/2$, the only possible codewords c of $C_k(n,q) \setminus C_k(n,q)^\perp$ of weight in $[\theta_k, 2q^k]$ are scalar multiples of non-linear minimal k-blocking sets of $PG(n,q)$, intersecting every line in $1 \pmod{p}$ or zero points.

Remark 3. It is believed (and conjectured, see [7]) that all small minimal blocking sets are linear. If that conjecture is true, then Result 1 eliminates all possible codewords of $C_{n-1}(n,q)$ of weight in $[\theta_{n-1}, 2q^{n-1}]$, and Result 2 eliminates all codewords of $C_k(n,q) \setminus C_k(n,q)^\perp$ of weight in $[\theta_k, 2q^k]$ if $k \geq n/2$.

In this article, we improve on Result 1 and Result 2 by showing that there are no codewords in $C_k(n,q) \setminus C_{n-k}(n,q)^\perp$, $q = p^h$, p prime, $p > 5$, $h \geq 1$, in the interval $[\theta_k, 2q^k]$, which implies that there are no codewords in the interval $[\theta_k, 2q^k]$ in $C_k(n,q) \setminus C_k(n,q)^\perp$ if $k \geq n/2$. Using the results of [5], we show that there are no codewords in $C_k(n,q)$, $q = p^h$, p prime, $h \geq 1$, $p > 7$, with weight in $[\theta_k, (12\theta_k + 6)/7]$.

In the case that $k = n-1$, we show that there are no codewords in $C_{n-1}(n,q)$ in the interval $[\theta_{n-1}, 2q^{n-1}]$. This interval is sharp: codewords of minimum weight in $C_{n-1}(n,q)$ have been characterized as scalar multiples of incidence vectors of hyperplanes (see [1, Proposition 5.7.3]), and codewords of weight $2q^{n-1}$ can be obtained by taking the difference of the incidence vectors of two hyperplanes.

2 Blocking sets

A blocking set of $PG(n,q)$ is a set K of points such that each hyperplane of $PG(n,q)$ contains at least one point of K. A blocking set K is called trivial if it contains a line of $PG(n,q)$. These blocking sets are also called 1-blocking sets in [2]. In general, a k-blocking set K in $PG(n,q)$ is a set of points such that any $(n-k)$-dimensional subspace intersects K. A k-blocking set K is called trivial if there is a k-dimensional subspace contained in K. If an $(n-k)$-dimensional space contains exactly one point of a k-blocking set K in $PG(n,q)$, it is called a tangent $(n-k)$-space to K, and a point P of K is called essential when it belongs
to a tangent \((n - k)\)-space of \(K\). A \(k\)-blocking set \(K\) is called minimal when no proper subset of \(K\) is also a \(k\)-blocking set, i.e., when each point of \(K\) is essential. A \(k\)-blocking set is called small if it contains less than \(3(q^k + 1)/2\) points.

In order to define a linear \(k\)-blocking set, we introduce the notion of a Desarguesian spread.

By field reduction, the points of \(\text{PG}(n, q), q = p^h, p\) prime, \(h \geq 1\), correspond to \((h - 1)\)-dimensional subspaces of \(\text{PG}((n + 1)h - 1, p)\), since a point of \(\text{PG}(n, q)\) is a 1-dimensional vector space over \(\mathbb{F}_q\), and so an \(h\)-dimensional vector space over \(\mathbb{F}_p\). In this way, we obtain a partition \(\mathcal{D}\) of the point set of \(\text{PG}((n + 1)h - 1, p)\) by \((h - 1)\)-dimensional subspaces. In general, a partition of the point set of a projective space by subspaces of a given dimension \(k\) is called a spread, or a \(k\)-spread if we want to specify the dimension. The spread we have obtained here is called a Desarguesian spread. Note that the Desarguesian spread satisfies the property that each subspace spanned by two spread elements is again partitioned by spread elements. In fact, it can be shown that if \(n \geq 2\), this property characterises a Desarguesian spread [6].

Definition 4. Let \(U\) be a subset of \(\text{PG}((n + 1)h - 1, p)\) and let \(\mathcal{D}\) be a Desarguesian \((h - 1)\)-spread of \(\text{PG}((n + 1)h - 1, p)\), then \(\mathcal{B}(U) = \{R \in \mathcal{D} \mid U \cap R \neq \emptyset\}\).

Analogously to the correspondence between the points of \(\text{PG}(n, q)\) and the elements of a Desarguesian spread \(\mathcal{D}\) in \(\text{PG}((n + 1)h - 1, p)\), we obtain the correspondence between the lines of \(\text{PG}(n, q)\) and the \((2h - 1)\)-dimensional subspaces of \(\text{PG}((n + 1)h - 1, p)\) spanned by two elements of \(\mathcal{D}\), and in general, we obtain the correspondence between the \((n - k)\)-spaces of \(\text{PG}(n, q)\) and the \(((n - k + 1)h - 1)\)-dimensional subspaces of \(\text{PG}((n + 1)h - 1, p)\) spanned by \(n - k + 1\) elements of \(\mathcal{D}\). With this in mind, it is clear that any \(hk\)-dimensional subspace \(U\) of \(\text{PG}(h(n + 1)h - 1, p)\) defines a \(k\)-blocking set \(\mathcal{B}(U)\) in \(\text{PG}(n, q)\).

A blocking set constructed in this way is called a linear \(k\)-blocking set. Linear \(k\)-blocking sets were first introduced by Lunardon [6], although there a different approach is used. For more on the approach explained here, we refer to [3].

3 Results

In [8], Szönyi and Weiner proved the following result on small blocking sets.

Result 5. [8, Theorem 2.7] Let \(B\) be a minimal blocking set of \(\text{PG}(n, q)\) with respect to \(k\)-dimensional subspaces, \(q = p^h, p > 2\) prime, \(h \geq 1\), and assume that \(|B| < 3(q^n - k + 1)/2\). Then any subspace that intersects \(B\), intersects it in 1 \((\text{mod } p)\) points.

In [5], we proved the following lemmas.

Result 6. The support of a codeword \(c \in C_k(n, q)\) with weight smaller than \(2q^k\), for which \((c, S) \neq 0\) for some \((n - k)\)-space \(S\), is a minimal \(k\)-blocking set in \(\text{PG}(n, q)\). Moreover, \(c\) is a scalar multiple of a certain incidence vector, and \(\text{supp}(c)\) intersects every \((n - k)\)-dimensional space in \(1\) \((\text{mod } p)\) points.

Lemma 7. Let \(c \in C_k(n, q)\), then there exists a constant \(a \in \mathbb{F}_p\) such that \((c, U) = a\), for all subspaces \(U\) of dimension at least \(n - k\).
In the same way as the authors do in [5, Theorem 19], one can prove Lemma 8, which shows that all minimal \(k \)-blocking sets of size less than \(2q^k \) and intersecting every \((n-k)\)-space in \((1 \mod p)\) points, are small.

Lemma 8. Let \(B \) be a minimal \(k \)-blocking set in \(\text{PG}(n, q) \), \(n \geq 2 \), \(q = p^h \), \(p \) prime, \(p > 5 \), \(h \geq 1 \), intersecting every \((n-k)\)-dimensional space in \((1 \mod p)\) points. If \(|B| \in [\theta_k, 2q^k] \), then

\[
|B| < \frac{3(q^k - q^k/p)}{2}.
\]

Lemma 9. Let \(B_1 \) and \(B_2 \) be small minimal \((n-k)\)-blocking sets in \(\text{PG}(n, q) \). Then \(B_1 - B_2 \in C_k(n, q)^\perp \).

Proof. It follows from Result 5 that \((B_i, \pi_k) = 1 \) for all \(k \)-spaces \(\pi_k, i = 1, 2 \). Hence \((B_1 - B_2, \pi_k) = 0 \) for all \(k \)-spaces \(\pi_k \). This implies that \(B_1 - B_2 \in C_k(n, q)^\perp \).

Lemma 10. Let \(c \) be a codeword of \(C_k(n, q) \) with weight smaller than \(2q^k \), for which \((c, S) \neq 0 \) for some \((n-k)\)-space \(S \), and let \(B \) be a small minimal \((n-k)\)-blocking set. Then \(\text{supp}(c) \) intersects \(B \) in \((1 \mod p)\) points.

Proof. Let \(c \) be a codeword of \(C_k(n, q) \) with weight smaller than \(2q^k \), for which \((c, S) \neq 0 \) for some \((n-k)\)-space \(S \). Lemma 9 shows that \((c, B_1 - B_2) = 0 = (c, B_1) - (c, B_2) \) for all small minimal \((n-k)\)-blocking sets \(B_1 \) and \(B_2 \). Hence \((c, B), \) with \(B \) a small minimal \((n-k)\)-blocking set, is a constant. Result 6 shows that \(c \) is a codeword only taking values from \(\{0, a\} \), so \((c, B) = a(\text{supp}(c), B) \), hence \(\text{supp}(c), B \) is a constant too. Let \(B_1 \) be an \((n-k)\)-space, then Result 6 shows that \((\text{supp}(c), B_1) = 1 \). Since \(B_1 \) is a small minimal \((n-k)\)-blocking set, the number of intersection points of \(\text{supp}(c) \) and \(B \) is equal to \((1 \mod p)\) for any small minimal blocking set \(B \).

It follows from Lemma 7 that, for \(c \in C_k(n, q) \) and \(S \) an \((n-k)\)-space, \((c, S) \) is a constant. Hence, either \((c, S) \neq 0 \) for all \((n-k)\)-spaces \(S \), or \((c, S) = 0 \) for all \((n-k)\)-spaces \(S \). In this latter case, \(c \in C_{n-k}(n, q)^\perp \).

Theorem 11. There are no codewords in \(C_k(n, q) \setminus C_{n-k}(n, q)^\perp \) with weight in \([\theta_k, 2q^k]\), \(q = p^h \), \(p \) prime, \(p > 5 \), \(h \geq 1 \).

Proof. Let \(Y \) be a linear small minimal \((n-k)\)-blocking set in \(\text{PG}(n, q) \). As explained in Section 2, \(Y \) corresponds to a set \(Y = B(\pi) \) of \((h-1)\)-dimensional spread elements intersecting a certain \((h(n-k))\)-space \(\pi \) in \(\text{PG}(h(n+1) - 1, p) \). Let \(c \) be a codeword of \(C_k(n, q) \setminus C_{n-k}(n, q)^\perp \) with weight at most \(2q^k - 1 \). Result 6 and Lemma 8 show that \(\text{supp}(c) \) is a small minimal \(k \)-blocking set \(B \). This blocking set \(B \) corresponds to a set \(\hat{B} \) of \(|B| \) spread elements in \(\text{PG}(h(n+1) - 1, p) \). Since \(\text{supp}(c) \) and \(Y \) intersect in \((1 \mod p) \) points (see Lemma 10), \(\hat{B} \) and \(Y \) intersect in \((1 \mod p)\) spread elements. Since all spread elements of \(\hat{Y} \) intersect \(\pi \), there are \((1 \mod p)\) spread elements of \(\hat{B} \) that intersect \(\pi \).

But this holds for any \((h(n-k))\)-space \(\pi' \) in \(\text{PG}(h(n+1) - 1, p) \), since any \((h(n-k))\)-space \(\pi' \) corresponds to a linear small minimal \((n-k)\)-blocking set \(Y' \) in \(\text{PG}(n, q) \).

Let \(\hat{B} \) be the set of points contained in the spread elements of the set \(\hat{B} \). Since a spread element that intersects a subspace of \(\text{PG}(h(n+1) - 1, p) \) intersects
it in 1 (mod p) points, \tilde{B} intersects any $(h(n - k))$-space in 1 (mod p) points. Moreover, $|B| = |B| \cdot (p^h - 1)/(p - 1) \leq 3(p^{hk} - p^{hk-1}) \cdot (p^h - 1)/(2(p - 1)) < 3(p^{hk+1} - 1)/2$ (see Lemma 8). This implies that \tilde{B} is a small $(h(k+1) - 1)$-blocking set in $\text{PG}(h(n+1) - 1, p)$.

Moreover, \tilde{B} is minimal. This can be proven in the following way. Let R be a point of \tilde{B}. Since B is a minimal k-blocking set in $\text{PG}(n, q)$, there is a tangent $(n - k)$-space S through the point R' of $\text{PG}(n, q)$ corresponding to the spread element $\mathcal{B}(R)$. Now S corresponds to an $(h(n - k+1) - 1)$-space π' in $\text{PG}(h(n+1) - 1, p)$, such that $\mathcal{B}(R)$ is the only element of \tilde{B} in π'. This implies that through R, there is an $(h(n-k))$-space in π' containing only the point R of \tilde{B}. This shows that through every point of \tilde{B}, there is a tangent $(h(n-k))$-space, hence that \tilde{B} is a minimal $(h(k+1) - 1)$-blocking set.

Result 5 implies that \tilde{B} intersects any subspace of $\text{PG}(h(n+1) - 1, p)$ in zero or 1 (mod p) points. This implies that a line is skew, tangent or entirely contained in \tilde{B}, hence \tilde{B} is a subspace of $\text{PG}(h(n + 1) - 1, p)$, with at most $3(p^{hk+1} - 1)/2$ points, intersecting every $(h(n-k))$-space. Moreover, it is the point set of a set of $|B|$ spread elements. Hence, \tilde{B} is the set of spread elements corresponding to a k-space in $\text{PG}(n, q)$, so $\text{supp}(c)$ has size θ_k.

In [5], we determined a lower bound on the weight of the code $C_k(n, q)^\perp$.

Result 12. The minimum weight of $C_k(n, q)^\perp$ is at least $(12\theta_{n-k} + 2)/7$ if $p = 7$, and at least $(12\theta_{n-k} + 6)/7$ if $p > 7$.

Theorem 13. There are no codewords in $C_k(n, q)$ with weight in $\lceil \theta_k \cdot (12\theta_k + 2)/7 \rceil$ if $p = 7$ and there are no codewords in $C_k(n, q)$ with weight in $\lceil \theta_k \cdot (12\theta_k + 6)/7 \rceil$ if $p > 7$.

Proof. This follows immediately from Theorem 11 and Result 12.

In [5], we proved the following result.

Result 14. Assume that $k \geq n/2$. A codeword c of $C_k(n, q)$ is in $C_k(n, q) \cap C_k(n, q)^\perp$ if and only if $(c, U) = 0$ for all subspaces U with $\dim(U) \geq n - k$.

Corollary 15. If $k \geq n/2$, $C_k(n, q) \setminus C_{n-k}(n, q)^\perp = C_k(n, q) \setminus C_k(n, q)^\perp$.

Proof. It follows from Result 14 that $C_k(n, q) \cap C_{n-k}(n, q)^\perp = C_k(n, q) \cap C_k(n, q)^\perp$ if $k \geq n/2$.

In [4], we proved the following result.

Result 16. The minimum weight of $C_{n-1}(n, q) \cap C_{n-1}(n, q)^\perp$ is equal to $2q^{n-1}$.

Theorem 11, Corollary 15, and Result 16 yield the following corollary, which gives a sharp empty interval on the size of small weight codewords of $C_{n-1}(n, q)$, since θ_{n-1} is the weight of a codeword arising from the incidence vector of an $(n - 1)$-space and $2q^{n-1}$ is the weight of a codeword arising from the difference of the incidence vectors of two $(n - 1)$-spaces.

Corollary 17. There are no codewords with weight in $\lceil \theta_{n-1} \cdot 2q^{n-1} \rceil$ in the code $C_{n-1}(n, q)$.

In the planar case, this yields the following corollary, which improves on the results in [1].
Corollary 18. There are no codewords with weight in \(]q + 1, 2q[\) in the code of points and lines of \(\text{PG}(2, q) \).

In this case, the weight \(q + 1 \) corresponds to the incidence vector of a line, and the weight \(2q \) can be obtained by taking the difference of the incidence vectors of two different lines.

References

Address of the authors:

Michel Lavrauw, Leo Storme, Geertrui Van de Voorde:
Department of pure mathematics and computer algebra,
Ghent University
Krijgslaan 281-S22
9000 Ghent (Belgium)
{ml,ls,gvdvoorde}@cage.ugent.be
http://cage.ugent.be/~{ml,ls,gvdvoorde}

Peter Sziklai:
Department of Computer Science,
Eötvös Loránd University
Pázmány P. sétány 1/C
H-1117 Budapest (Hungary)
sziklai@cs.elte.hu
http://www.cs.elte.hu/~sziklai