Permutations of the Form $x^k - \gamma \text{Tr}(x)$ and Curves over Finite Fields

Nurdagül Anbar
Sabancı University

Let q be a power of a prime p, and let \mathbb{F}_q be the finite field with q elements. A polynomial $P(x) \in \mathbb{F}_q[x]$ is called a permutation of \mathbb{F}_q if the associated map from \mathbb{F}_q to \mathbb{F}_q defined by $x \mapsto P(x)$ is a bijection, i.e., it permutes the elements of \mathbb{F}_q. In this talk, we consider the polynomials of the form $P(x) = x^k - \gamma \text{Tr}(x)$ over \mathbb{F}_{q^n} for $n \geq 2$, where \mathbb{F}_{q^n} is the extension of \mathbb{F}_q of degree n and Tr is the absolute trace from \mathbb{F}_{q^n} to \mathbb{F}_q. We show that $P(x)$ is not a permutation of \mathbb{F}_{q^n} in the case $\gcd(k, q^n - 1) > 1$. Our proof uses an absolutely irreducible curve over \mathbb{F}_{q^n} and the number of rational points on it.