Existence theorems for \(r \)-primitive elements in finite fields
Stephen D. Cohen

Abstract
Let \(r \mid q-1 \). An element of \(\mathbb{F}_q \) is \(r \)-primitive if it has order \((q-1)/r\). Thus, a primitive element is \(1 \)-primitive and an \(r \)-primitive element is the \(r \)th power of a primitive element of \(\mathbb{F}_q \). We describe some existence theorems for general \(r \)-primitive elements and, in particular, analogues for \(2 \)-primitive elements of the following complete existence theorems for primitive elements.

Theorem A (1990). For any \(n \geq 2 \) and \(a \in \mathbb{F}_q \) (necessarily with \(a \neq 0 \) if \(n = 2 \)) there exists a primitive \(\alpha \in \mathbb{F}_{q^n} \) with trace \(a \) over \(\mathbb{F}_q \), except when \(a = 0, n = 3, q = 4 \).

Theorem B (1983). Every line in \(\mathbb{F}_{q^2} \) contains a primitive element. (A line in \(\mathbb{F}_{q^2} \) is a set of the form \(\{ \beta(\gamma + a) : a \in \mathbb{F}_q \} \), for some nonzero \(\beta \in \mathbb{F}_{q^2}, \gamma \in \mathbb{F}_{q^2} \setminus \mathbb{F}_q \).)

Joint work with Giorgos Kapetanakis.