Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)

Mohammad Sadek

Sabancı Algebra Seminar

Nov 11, 2020
Diophantine Problems

What are Diophantine problems?

Barry Mazur: I don't know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers \(a\), \(b\), \(c\) such that

\[a^2 + b^2 = c^2. \]

Solution: \(a = 2rs\), \(b = r^2 - s^2\), \(c = r^2 + s^2\), where \(r, s \in \mathbb{Z}\).

"1955" Given a positive integer \(k\), can we write \(k\) as the sum of three cubes?

Find three integers \(a\), \(b\), \(c\) such that

\[k = a^3 + b^3 + c^3. \]

In 2018, Andrew Booker:

\[33 = (8, 866, 128, 975, 287, 528)^3 + (−8, 778, 405, 442, 862, 239)^3 + (−2, 736, 111, 468, 807, 040)^3. \]

Mohammad Sadek Computing (Hyper)Elliptic Curves Over \(\mathbb{Q}\)
What are Diophantine problems?

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c \) such that
\[
a^2 + b^2 = c^2.
\]

Solution:
\[
a = 2rs,\quad b = r^2 - s^2,\quad c = r^2 + s^2,
\]
where \(r, s \in \mathbb{Z} \).

Given a positive integer \(k \), can we write \(k \) as the sum of three cubes?

In 2018, Andrew Booker:
\[
33 = (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3 + (-2, 736, 111, 468, 807, 040)^3.
\]
What are Diophantine problems?

Barry Mazur:

Pythagoras: List all right-angle triangles all of whose sides are integral. Find all integers a, b, c such that $a^2 + b^2 = c^2$.

Solution: $a = 2rs$, $b = r^2 - s^2$, $c = r^2 + s^2$, where $r, s \in \mathbb{Z}$.

Given a positive integer k, can we write k as the sum of three cubes? Find three integers a, b, c such that $k = a^3 + b^3 + c^3$.

In 2018, Andrew Booker: $33 = (8, 866, 128, 975, 287)^3 + (-8, 778, 405, 442, 862)^3 + (-2, 736, 111, 468, 807, 040)^3$.

Mohammad Sadek Computing (Hyper)Elliptic Curves Over \mathbb{Q}
What are Diophantine problems?

Barry Mazur: I don’t know the answer

Find all integers a, b, c such that

\[a^2 + b^2 = c^2. \]

Solution:

\[a = 2rs, \quad b = r^2 - s^2, \quad c = r^2 + s^2, \]

where $r, s \in \mathbb{Z}$.

Given a positive integer k, can we write k as the sum of three cubes?

Find three integers a, b, c such that

\[k = a^3 + b^3 + c^3. \]

In 2018, Andrew Booker:

\[
33 = (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3 + (-2, 736, 111, 468, 807, 040)^3.
\]
What are Diophantine problems?

Barry Mazur: I don’t know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c \) such that

\[
\begin{align*}
 a^2 + b^2 &= c^2
\end{align*}
\]

Solution:

\[
\begin{align*}
 a &= 2rs, \\
 b &= r^2 - s^2, \\
 c &= r^2 + s^2
\end{align*}
\]

where \(r, s \in \mathbb{Z} \).

Given a positive integer \(k \), can we write \(k \) as the sum of three cubes?

Find three integers \(a, b, c \) such that

\[
\begin{align*}
 k &= a^3 + b^3 + c^3
\end{align*}
\]

In 2018, Andrew Booker:

\[
\begin{align*}
 33 &= (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3 + (-2, 736, 111, 468, 807, 040)^3
\end{align*}
\]
What are Diophantine problems?

Barry Mazur: I don’t know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

“1955”

Given a positive integer k, can we write k as the sum of three cubes?

Solution:

Find three integers a, b, c such that $k = a^3 + b^3 + c^3$.

In 2018, Andrew Booker:

$33 = (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3 + (-2, 736, 111, 468, 807, 040)^3$.

Mohammad Sadek

Computing (Hyper)Elliptic Curves Over \mathbb{Q}
What are Diophantine problems?

Barry Mazur: I don’t know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c \) such that \(a^2 + b^2 = c^2 \)

Solution:

\[
a = 2rs, \\
b = r^2 - s^2, \\
c = r^2 + s^2.
\]

Given a positive integer \(k \), can we write \(k \) as the sum of three cubes?

In 2018, Andrew Booker: \(33 = (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3 + (-2, 736, 111, 468, 807, 040)^3 \).
Diophantine Problems

- What are Diophantine problems?
- **Barry Mazur:** I don’t know the answer, But I can feel my way around it.
- **Pythagoras:** List all right-angle triangles all of whose sides are integral.

Find all integers a, b, c such that $a^2 + b^2 = c^2$

Solution: $a = 2rs$, $b = r^2 - s^2$, $c = r^2 + s^2$, where $r, s \in \mathbb{Z}$.
What are Diophantine problems?

Barry Mazur: I don’t know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c \) such that \(a^2 + b^2 = c^2 \)

Solution: \(a = 2rs, \ b = r^2 - s^2, \ c = r^2 + s^2 \), where \(r, s \in \mathbb{Z} \).

”1955” Given a positive integer \(k \), can we write \(k \) as the sum of three cubes?
What are Diophantine problems?

Barry Mazur: I don’t know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers a, b, c such that $a^2 + b^2 = c^2$

Solution: $a = 2rs$, $b = r^2 - s^2$, $c = r^2 + s^2$, where $r, s \in \mathbb{Z}$.

”1955” Given a positive integer k, can we write k as the sum of three cubes?

Find three integers a, b, c such that $k = a^3 + b^3 + c^3$
What are Diophantine problems?

Barry Mazur: I don’t know the answer, But I can feel my way around it.

Pythagoras: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c \) such that \(a^2 + b^2 = c^2 \)

Solution: \(a = 2rs, b = r^2 - s^2, c = r^2 + s^2 \), where \(r, s \in \mathbb{Z} \).

”1955” Given a positive integer \(k \), can we write \(k \) as the sum of three cubes?

Find three integers \(a, b, c \) such that \(k = a^3 + b^3 + c^3 \)

In 2018, Andrew Booker:

\[33 = (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3 + (-2, 736, 111, 468, 807, 040)^3. \]
Diophantine Problems

- What are Diophantine problems?
- **Barry Mazur**: I don’t know the answer, But I can feel my way around it.
- **Pythagoras**: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c \) such that \(a^2 + b^2 = c^2 \)

Solution: \(a = 2rs, \ b = r^2 - s^2, \ c = r^2 + s^2, \) where \(r, s \in \mathbb{Z} \).

- ”1955” Given a positive integer \(k \), can we write \(k \) as the sum of three cubes?

Find three integers \(a, b, c \) such that \(k = a^3 + b^3 + c^3 \)

In 2018, Andrew Booker:

\[33 = \]

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)
Diophantine Problems

- What are Diophantine problems?
- **Barry Mazur**: I don’t know the answer, But I can feel my way around it.
- **Pythagoras**: List all right-angle triangles all of whose sides are integral.

Find all integers \(a, b, c\) such that \(a^2 + b^2 = c^2\)

Solution: \(a = 2rs, b = r^2 - s^2, c = r^2 + s^2\), where \(r, s \in \mathbb{Z}\).

”1955” Given a positive integer \(k\), can we write \(k\) as the sum of three cubes?

Find three integers \(a, b, c\) such that \(k = a^3 + b^3 + c^3\)

In 2018, Andrew Booker:

\[
33 = (8, 866, 128, 975, 287, 528)^3 + (-8, 778, 405, 442, 862, 239)^3
\]
\[
+ (-2, 736, 111, 468, 807, 040)^3
\]
Diophantine Equations

Studying zeros of multivariate polynomials with integer coefficients, we will only consider polynomials \(F(x, y) \) \(\in \mathbb{Z}[x, y] \) in two variables, then we ask questions about the set \(V_F = \{ (x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0 \} \).

François Viète: "the proud problem of problems is to leave no problem unsolved"
Diophantine Problems

Francois Viete: "the proud problem of problems is to leave no problem unsolved"

Mohammad Sadek: Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Studying zeros of multivariate polynomials with integer coefficients, Diophantine Equations will only consider polynomials \(F(x, y) \in \mathbb{Z}[x, y] \) in two variables, then we ask questions about the set \(V_F = \{ (x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0 \} \).

Francois Viete: "the proud problem of problems is to leave no problem unsolved".

Mohammad Sadek: Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \).
Diophantine Problems ≈ Studying zeros of multivariate polynomials with integer coefficients, *Diophantine Equations*
Diophantine Problems \approx Studying zeros of multivariate polynomials with integer coefficients, *Diophantine Equations*

We will only consider polynomials $F(x, y) \in \mathbb{Z}[x, y]$ in two variables,
Diophantine Equations

- Diophantine Problems ≈ Studying zeros of multivariate polynomials with integer coefficients, *Diophantine Equations*
- *We will only consider polynomials* $F(x, y) \in \mathbb{Z}[x, y]$ *in two variables, then we ask questions about the set*

$$V_F = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0\}$$
Diophantine Problems ≈ Studying zeros of multivariate polynomials with integer coefficients, *Diophantine Equations*

We will only consider polynomials $F(x, y) \in \mathbb{Z}[x, y]$ in two variables, then we ask questions about the set

$$V_F = \{ (x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0 \}$$

François Viète:
Diophantine Problems ≈ Studying zeros of multivariate polynomials with integer coefficients, *Diophantine Equations*

We will only consider polynomials \(F(x, y) \in \mathbb{Z}[x, y] \) *in two variables, then we ask questions about the set*

\[
V_F = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0\}
\]

François Viète:

"the proud problem of problems is to leave no problem unsolved"

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)
Diophantine Equations

Given $F(x, y) \in \mathbb{Z}[x, y]$ with $V_F = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0\}$

Is it possible to devise a process according to which it can be determined by a finite number of steps whether $V_F \neq \emptyset$?

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Diophantine Equations

Given $F(x, y) \in \mathbb{Z}[x, y]$ with $V_F = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0\}$
Given $F(x, y) \in \mathbb{Z}[x, y]$ with $V_F = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : F(x, y) = 0\}$

Is it possible to devise a process according to which it can be determined by a finite number of steps whether $V_F \neq \emptyset$?
Diophantine Equations

We organize Diophantine equations by degrees.

degree 1.

\[F(x, y) = ax + by - c, \quad a, b, c \in \mathbb{Z} \]

Then there is a pair \((x_0, y_0) \in V_F \cap \mathbb{Z}^2\) if and only if \(g := \gcd(a, b) \mid c\).

In the latter case \(V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), k \in \mathbb{Z}\}\).

degree 2.

\[F(x, y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6, \quad a_i \in \mathbb{Z} \]

\(V_F \neq \emptyset\) if and only if \(|V_F| = \infty\).

There are effective algorithms to find whether \(V_F = \emptyset\).

We know how to describe every point in \(V_F\) explicitly.

Example: For \(F(x, y) = x^2 + y^2 - 1\), \(V_F = \{(2rs, r^2 - s^2) \mid r, s \in \mathbb{Z}\}\).
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.**

\[F(x, y) = ax + by - c, \quad a, b, c \in \mathbb{Z}. \]

Then there is a pair \((x_0, y_0) \in V_F \cap \mathbb{Z}^2\) if and only if \(g := \gcd(a, b) | c\).

In the latter case \(V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g) \mid k \in \mathbb{Z}\}\).

- **degree 2.**

\[F(x, y) = a_1 x^2 + a_2 xy + a_3 y^2 + a_4 x + a_5 y + a_6, \quad a_i \in \mathbb{Z}. \]

\(V_F \neq \emptyset\) if and only if \(|V_F| = \infty\).

There are effective algorithms to find whether \(V_F = \emptyset\).

We know how to describe every point in \(V_F\) explicitly.

Example: For \(F(x, y) = x^2 + y^2 - 1\), \(V_F = \{(2rsr^2 + s^2, r^2 - s^2r^2 + s^2) \mid r, s \in \mathbb{Z}\}\).\{0,0\}
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.** $F(x, y) = ax + by - c$, $a, b, c \in \mathbb{Z}$.
We organize Diophantine equations by degrees.

- **Degree 1.** \(F(x, y) = ax + by - c, \ a, b, c \in \mathbb{Z} \). Then there is a pair \((x_0, y_0) \in V_F \cap \mathbb{Z}^2\) if and only if \(g := \gcd(a, b) | c \).
We organize Diophantine equations by degrees.

- **degree 1.** \(F(x, y) = ax + by - c, \ a, b, c \in \mathbb{Z}. \)

Then there is a pair \((x_0, y_0) \in V_F \cap \mathbb{Z}^2\) if and only if
\(g := \gcd(a, b) | c. \) In the latter case

\[
V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), \ k \in \mathbb{Z}\}.
\]
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.** \(F(x, y) = ax + by - c, \ a, b, c \in \mathbb{Z}. \)
 Then there is a pair \((x_0, y_0) \in V_F \cap \mathbb{Z}^2\) if and only if \(g := \gcd(a, b)|c\). In the latter case
 \[
 V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), \ k \in \mathbb{Z}\}.
 \]

- **degree 2.**

Mohammad Sadek

Computing (Hyper)Elliptic Curves Over \(\mathbb{Q}\)
We organize Diophantine equations by degrees.

- **degree 1.** \(F(x, y) = ax + by - c, \ a, b, c \in \mathbb{Z} \).
 Then there is a pair \((x_0, y_0) \in V_F \cap \mathbb{Z}^2\) if and only if \(g := \gcd(a, b) | c \). In the latter case

\[
V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), \ k \in \mathbb{Z}\}.
\]

- **degree 2.** \(F(x, y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6, \ a_i \in \mathbb{Z} \).
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.** $F(x, y) = ax + by - c, \ a, b, c \in \mathbb{Z}$. Then there is a pair $(x_0, y_0) \in V_F \cap \mathbb{Z}^2$ if and only if $g := \gcd(a, b)|c$. In the latter case

$$V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), \ k \in \mathbb{Z}\}.$$

- **degree 2.** $F(x, y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6, \ a_i \in \mathbb{Z}$.

$$V_F \neq \emptyset \text{ if and only if } |V_F| = \infty.$$
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.** $F(x, y) = ax + by - c$, $a, b, c \in \mathbb{Z}$.
 Then there is a pair $(x_0, y_0) \in V_F \cap \mathbb{Z}^2$ if and only if $g := \gcd(a, b) | c$. In the latter case

 $$V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), \ k \in \mathbb{Z}\}.$$

- **degree 2.** $F(x, y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6$, $a_i \in \mathbb{Z}$.
 $V_F \neq \emptyset$ if and only if $|V_F| = \infty$.
 There are effective algorithms to find whether $V_F = \emptyset$.

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.** $F(x, y) = ax + by - c$, $a, b, c \in \mathbb{Z}$.
 Then there is a pair $(x_0, y_0) \in V_F \cap \mathbb{Z}^2$ if and only if $g := \gcd(a, b)|c$. In the latter case
 \[V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), \ k \in \mathbb{Z}\}. \]

- **degree 2.** $F(x, y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6$, $a_i \in \mathbb{Z}$.
 \[V_F \neq \emptyset \text{ if and only if } |V_F| = \infty. \]
 There are effective algorithms to find whether $V_F = \emptyset$. We know how to describe every point in V_F explicitly.
Diophantine Equations

We organize Diophantine equations by degrees.

- **degree 1.** $F(x, y) = ax + by - c$, $a, b, c \in \mathbb{Z}$.

 Then there is a pair $(x_0, y_0) \in V_F \cap \mathbb{Z}^2$ if and only if $g := \gcd(a, b) | c$. In the latter case

 $$V_F \cap \mathbb{Z}^2 = \{(x_0 + bk/g, y_0 - ak/g), k \in \mathbb{Z}\}.$$

- **degree 2.** $F(x, y) = a_1x^2 + a_2xy + a_3y^2 + a_4x + a_5y + a_6$, $a_i \in \mathbb{Z}$.

 $$V_F \neq \emptyset$$ if and only if $|V_F| = \infty$.

 There are effective algorithms to find whether $V_F = \emptyset$. We know how to describe every point in V_F explicitly.

 Example: For $F(x, y) = x^2 + y^2 - 1$,

 $$V_F = \left\{ \left(\frac{2rs}{r^2 + s^2}, \frac{r^2 - s^2}{r^2 + s^2} \right), r, s \in \mathbb{Z} \right\} \setminus \{(0, 0)\}.$$
Diophantine Equations

A Diophantine equation is a polynomial equation with integer coefficients that is to be solved in integers. For a degree 3 equation,

\[F(x, y) = a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10} , \]

where \(a_i \in \mathbb{Z} \).

If \(\nabla F = (0, 0) \) and \(V_F \neq \emptyset \), then

\[F(x, y) = y^2 - x^3 - Ax - B, \quad A, B \in \mathbb{Z} \]

describes an elliptic curve. An elliptic curve is an algebraic variety which possesses a group structure. The group law can be described using geometry, algebra, or analysis.

Elliptic curves are ubiquitous. They appear in number theory, complex analysis, cryptography, and mathematical physics.
Diophantine Equations

- degree 3.

\[F(x, y) = a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]

\[a_i \in \mathbb{Z}. \]

If \((\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}) \neq (0, 0) \), and \(V_F \neq \emptyset \), then

\[F(x, y) = y^2 - x^3 - Ax - B, \]

\[A, B \in \mathbb{Z} \]

\[y^2 = x^3 + Ax + b \]

describes an elliptic curve.

An elliptic curve is an algebraic variety which possesses a group structure.

The group law can be described using geometry, algebra, or analysis.

Elliptic curves are ubiquitous. They appear in number theory, complex analysis, cryptography, and mathematical physics.
Diophantine Equations

- degree 3. 😞

An elliptic curve is an algebraic variety which possesses a group structure. The group law can be described using geometry, algebra, or analysis. Elliptic curves are ubiquitous. They appear in number theory, complex analysis, cryptography, and mathematical physics.
Diophantine Equations

- **degree 3. 🙁**

 \[F(x, y) = a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]

 \[a_i \in \mathbb{Z}. \]
Diophantine Equations

- **degree 3.** 😞
 \[F(x, y) = \]
 \[a_1x^3 + a_2x^2y + a_3x^2 + a_4xy^2 + a_5x + a_6xy + a_7y^3 + a_8y^2 + a_9y + a_{10}, \]
 \[a_i \in \mathbb{Z}. \]

If \((\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}) \neq (0, 0) \), and \(V_F \neq \emptyset \),
Diophantine Equations

- degree 3.

\[F(x, y) = \]
\[a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]
\[a_i \in \mathbb{Z}. \]

If \((\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}) \neq (0, 0), \) and \(V_F \neq \emptyset, \) then

\[F(x, y) = y^2 - x^3 - Ax - B, \quad A, B \in \mathbb{Z} \]
Diophantine Equations

- **degree 3.**

 \[F(x, y) = a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 x y^2 + a_5 x + a_6 x y + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]
 \[a_i \in \mathbb{Z}. \]

 If \((\partial F / \partial x, \partial F / \partial y) \neq (0, 0)\), and \(V_F \neq \emptyset\), then

 \[F(x, y) = y^2 - x^3 - A x - B, \quad A, B \in \mathbb{Z} \]

- \(y^2 = x^3 + A x + b \) describes an

Mohammad Sadek | Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)
Diophantine Equations

- **degree 3. 😞**

 \[F(x, y) = \]
 \[a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]
 \[a_i \in \mathbb{Z}. \]

 If \(\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right) \neq (0, 0) \), and \(V_F \neq \emptyset \), then

 \[F(x, y) = y^2 - x^3 - Ax - B, \quad A, B \in \mathbb{Z} \]

- \(y^2 = x^3 + Ax + b \) describes an **elliptic curve**
Diophantine Equations

- **degree 3.**

\[F(x, y) = a_1x^3 + a_2x^2y + a_3x^2 + a_4xy^2 + a_5x + a_6xy + a_7y^3 + a_8y^2 + a_9y + a_{10}, \]

\[a_i \in \mathbb{Z}. \]

If \((\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}) \neq (0, 0), \) and \(V_F \neq \emptyset, \) then

\[F(x, y) = y^2 - x^3 - Ax - B, \quad A, B \in \mathbb{Z} \]

- \(y^2 = x^3 + Ax + b \) describes an **elliptic curve**

- An elliptic curve is an algebraic variety which possesses a group structure.
Diophantine Equations

- **degree 3.**

 \[F(x, y) = a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]
 \[a_i \in \mathbb{Z}. \]

 If \(\left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \right) \neq (0, 0), \) and \(V_F \neq \emptyset, \) then

 \[F(x, y) = y^2 - x^3 - Ax - B, \quad A, B \in \mathbb{Z} \]

- \(y^2 = x^3 + Ax + b \) describes an **elliptic curve**

- An elliptic curve is an algebraic variety which possesses a group structure.

- The group law can be described using geometry, algebra, or analysis.
Diophantine Equations

- **degree 3.**

 \[F(x, y) = a_1 x^3 + a_2 x^2 y + a_3 x^2 + a_4 xy^2 + a_5 x + a_6 xy + a_7 y^3 + a_8 y^2 + a_9 y + a_{10}, \]
 \[a_i \in \mathbb{Z}. \]

 If \((\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}) \neq (0, 0), \text{ and } V_F \neq \emptyset\), then

 \[F(x, y) = y^2 - x^3 - Ax - B, \quad A, B \in \mathbb{Z} \]

- \(y^2 = x^3 + Ax + b\) describes an **elliptic curve**

- An elliptic curve is an algebraic variety which possesses a group structure.

- The group law can be described using geometry, algebra, or analysis.

- Elliptic curves are ubiquitous. They appear in number theory, complex analysis, cryptography, and mathematical physics.
Elliptic Curves

An elliptic curve E over the rationals is a curve described by

$$y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z}$$

where $\Delta(E) = -16(4A^3 + 27B^2) \neq 0$ is called the discriminant of E.

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
An elliptic curve E over the rationals is a curve described by

$$y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z}$$

where $\Delta(E) = -16(4A^3 + 27B^2) \neq 0$ is called the \textit{discriminant} of E.
Elliptic curves

\[y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z} \]
Elliptic curves

$y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z}$
Elliptic curves

\[y^2 = x^3 + Ax + B, \quad A, B \in \mathbb{Z} \]
An Example

\[E : y^2 = x^3 + 2x + 3 \]
An Example

\[E : y^2 = x^3 + 2x + 3 \]

- The point \(P = (3, 6) \in E \)

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)
An Example

$E : y^2 = x^3 + 2x + 3$

- The point $P = (3, 6) \in E$
- $2P = (-23/144, 2827/1728)$
An Example

\[
E : y^2 = x^3 + 2x + 3
\]

- The point \(P = (3, 6) \in E \)
- \(2P = \left(-\frac{23}{144}, \frac{2827}{1728} \right) \)
- \(3P = \left(-\frac{193101}{207025}, -\frac{53536482}{94196375} \right) \)
An Example

\[
E : y^2 = x^3 + 2x + 3
\]

- The point \(P = (3, 6) \in E \)
- \(2P = (-23/144, 2827/1728) \)
- \(3P = (-193101/207025, -53536482/94196375) \)
- \(4P = (3324592417/4603351104, -685780509326543/312328165704192) \)
Two elliptic curves described over \mathbb{Q} by

$$
\begin{align*}
y^2 &= x^3 + Ax + B \\
y^2 &= x^3 + A'x + B'
\end{align*}
$$

are isomorphic if

$$(x, y) \mapsto (u^2x, u^3y) \quad \text{for some } u \in \mathbb{Q} \setminus \{0\}.$$

Then $A' = u^4 A$ and $B' = u^6 B$ and $\Delta' = u^{12} \Delta$.

Mohammad Sadek

Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Let E be an elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + Ax + B$.

$E(\mathbb{Q}) = \{ (x, y) : x, y \in \mathbb{Q}, y^2 = x^3 + Ax + B \}$.

$E(\mathbb{Q})$ is a subgroup of E. Once you describe $E(\mathbb{Q})$, you solve a Diophantine equation.

The following celebrated theorem is due to Mordell.

Theorem $E(\mathbb{Q})$ is a finitely generated abelian group.
Let E be an elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + Ax + B$.

$E(\mathbb{Q})$ is a subgroup of E. Once you describe $E(\mathbb{Q})$, you solve a Diophantine equation.

The following celebrated theorem is due to Mordell.

Theorem $E(\mathbb{Q})$ is a finitely generated abelian group.
Let E be an elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + Ax + B$.

$$E(\mathbb{Q}) = \{(x, y) : x, y \in \mathbb{Q}, \ y^2 = x^3 + Ax + B\}.$$

$E(\mathbb{Q})$ is a subgroup of E.

Let E be an elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + Ax + B$.

$$E(\mathbb{Q}) = \{ (x, y) : x, y \in \mathbb{Q}, \ y^2 = x^3 + Ax + B \}.$$

$E(\mathbb{Q})$ is a subgroup of E. Once you describe $E(\mathbb{Q})$, you solve a Diophantine equation.
Let E be an elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + Ax + B$.

\[E(\mathbb{Q}) = \{(x, y) : x, y \in \mathbb{Q}, y^2 = x^3 + Ax + B\}. \]

$E(\mathbb{Q})$ is a subgroup of E. Once you describe $E(\mathbb{Q})$, you solve a Diophantine equation. The following celebrated theorem is due to Mordell.
Let E be an elliptic curve over \mathbb{Q} defined by $y^2 = x^3 + Ax + B$.

$$E(\mathbb{Q}) = \{(x, y) : x, y \in \mathbb{Q}, \ y^2 = x^3 + Ax + B\}.$$

$E(\mathbb{Q})$ is a subgroup of E. Once you describe $E(\mathbb{Q})$, you solve a Diophantine equation. The following celebrated theorem is due to Mordell.

Theorem

$E(\mathbb{Q})$ is a finitely generated abelian group.
Corollary

There exists a nonnegative integer r such that

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \times T, \quad |T| < \infty.$$
There exists a nonnegative integer r such that

$$E(\mathbb{Q}) \cong \mathbb{Z}^r \times T, \quad |T| < \infty.$$

In other words, there exist finitely many $P_1, \ldots, P_s \in E(\mathbb{Q})$, $s \geq r$, such that any point $P \in E(\mathbb{Q})$ can be written as

$$P = n_1P_1 + n_2P_2 + \ldots + n_sP_s, \quad n_i \in \mathbb{Z}.$$
E(\mathbb{Q}) \sim \mathbb{Z}^r \times \mathbb{T}

The following theorem is due to Mazur.
The following theorem is due to Mazur.

Theorem

\(\mathbb{T} \) is one of the following fifteen groups:

\[
\mathbb{Z}/n\mathbb{Z}, \ 1 \leq n \leq 12, \ n \neq 11; \\
\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z}, \ 1 \leq n \leq 4.
\]
The following theorem is due to Mazur.

Theorem

\[\mathbb{T} \text{ is one of the following fifteen groups:} \]

- \(\mathbb{Z}/n\mathbb{Z} \), \(1 \leq n \leq 12 \), \(n \neq 11 \);
- \(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2n\mathbb{Z} \), \(1 \leq n \leq 4 \).

In particular, \(|\mathbb{T}| \leq 16 \).
Finding solutions for a polynomial equation over a finite field is easier than finding solutions in \(\mathbb{Q} \).

Let \(E \) be an elliptic curve defined by \(y^2 = x^3 + Ax + B \), with \(A, B \in \mathbb{F}_p \).

In particular, if \(p \geq 5 \), then \(\Delta(E) = -16(4A^3 + 27B^2) \not\equiv 0 \mod p \).

\(E(\mathbb{F}_p) \) is either cyclic or \(E(\mathbb{F}_p) \sim \mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/L\mathbb{Z} \) with \(L | M \).
Finding solutions for a polynomial equation over a finite field is easier than finding solutions in \(\mathbb{Q} \).
Finding solutions for a polynomial equation over a finite field is easier than finding solutions in \mathbb{Q}.

Let E be an elliptic curve defined by $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{F}_p$.

$E(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p, y^2 = x^3 + Ax + B\}$ is either cyclic or $E(\mathbb{F}_p) \cong \mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/L\mathbb{Z}$ with $L | M$.

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Finding solutions for a polynomial equation over a finite field is easier than finding solutions in \mathbb{Q}.

Let E be an elliptic curve defined by $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{F}_p$. In particular, if $p \geq 5$, then

$$\Delta(E) = -16(4A^3 + 27B^2) \not\equiv 0 \pmod{p}.$$
Finding solutions for a polynomial equation over a finite field is easier than finding solutions in \(\mathbb{Q} \).

Let \(E \) be an elliptic curve defined by \(y^2 = x^3 + Ax + B \), \(A, B \in \mathbb{F}_p \). In particular, if \(p \geq 5 \), then

\[
\Delta(E) = -16(4A^3 + 27B^2) \not\equiv 0 \mod p.
\]

\[E(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p, \, y^2 = x^3 + Ax + B\}\]
Finding solutions for a polynomial equation over a finite field is easier than finding solutions in \mathbb{Q}.

Let E be an elliptic curve defined by $y^2 = x^3 + Ax + B$, $A, B \in \mathbb{F}_p$. In particular, if $p \geq 5$, then

$$\Delta(E) = -16(4A^3 + 27B^2) \not\equiv 0 \mod p.$$

$$E(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p, y^2 = x^3 + Ax + B\}$$

$E(\mathbb{F}_p)$ is either **cyclic** or $E(\mathbb{F}_p) \cong \mathbb{Z}/M\mathbb{Z} \times \mathbb{Z}/L\mathbb{Z}$ with $L|M$.
Let \(E : y^2 = x^3 + Ax + B, \) \(A, B \in \mathbb{Z} \) and \(p \geq 5 \) a prime.
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$ and $p \geq 5$ a prime

The above Weierstrass equation is called p-minimal if $\nu_p(\Delta)$ is the smallest among all elliptic curves isomorphic to E.
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$ and $p \geq 5$ a prime.

The above Weierstrass equation is called \textit{p-minimal} if $\nu_p(\Delta)$ is the smallest among all elliptic curves isomorphic to E.

Every elliptic curve over \mathbb{Q} has a globally minimal Weierstrass equation (p-minimal at every prime p).
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$ and $p \geq 5$ a prime.

The above Weierstrass equation is called p-minimal if $\nu_p(\Delta)$ is the smallest among all elliptic curves isomorphic to E.

Every elliptic curve over \mathbb{Q} has a globally minimal Weierstrass equation (p-minimal at every prime p).

We set $E_p : y^2 = x^3 + A_p x + B_p$ where

$$A_p \equiv A \mod p, \quad B_p \equiv B \mod p.$$
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$ and $p \geq 5$ a prime

The above Weierstrass equation is called \textit{p-minimal} if $\nu_p(\Delta)$ is the smallest among all elliptic curves isomorphic to E

Every elliptic curve over \mathbb{Q} has a globally minimal Weierstrass equation (\textit{p-minimal} at every prime p).

We set $E_p : y^2 = x^3 + A_p x + B_p$ where

$$A_p \equiv A \mod p, \quad B_p \equiv B \mod p.$$

Is E_p still an elliptic curve over \mathbb{F}_p?
Reduction of elliptic curves

\[\frac{E}{\mathbb{Q}} \]
\[y^2 = x^3 + Ax + B \]
\[\Delta \neq 0 \]

\[E \downarrow \begin{array}{c}
\text{reduction} \\
\text{mod } p
\end{array} \]
\[E_p \]

\[\frac{E_p}{\mathbb{F}_p} \]
\[y^2 = x^3 + ax + b \]

\[p = 2 \quad \Delta(E_2) \equiv 0 \text{ mod } 2 \]
\[p = 3 \quad \Delta(E_3) \equiv 0 \text{ mod } 3 \]
\[p = 5 \quad \Delta(E_5) \equiv 0 \text{ mod } 5 \]
\[p = 7 \quad \Delta(E_7) \equiv 0 \text{ mod } 7 \]
\[p = 11 \quad \Delta(E_{11}) \equiv 0 \text{ mod } 11 \]
\[p = 13 \quad \Delta(E_{13}) \equiv 0 \text{ mod } 13 \]
Reduction of elliptic curves

Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$, be an elliptic curve with minimal discriminant Δ.

$E_p : y^2 = x^3 + A_p x + B_p$ is an elliptic curve if $\nu_p(\Delta) = 0$.

E is said to have good reduction at p.

E_p is a singular curve if $\nu_p(\Delta) > 0$.

E is said to have bad reduction at p.

If moreover $\nu_p(A) = 0$ ($\nu_p(A) > 0$), then E is said to have multiplicative (additive) reduction at p.

The reason is: $E_p(F_p) \sim = F \times_p E_p(F_p) \sim = F + p(E_p(F_p))$.

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
• Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$, be an elliptic curve with minimal discriminant Δ.

• $E_p : y^2 = x^3 + A_p x + B_p$ is an elliptic curve if $\nu_p(\Delta) = 0$.

Mohammad Sadek Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Reduction of elliptic curves

Let \(E : y^2 = x^3 + Ax + B, \ A, B \in \mathbb{Z}, \) be an elliptic curve with minimal discriminant \(\Delta. \)

\(E_p : y^2 = x^3 + A_p x + B_p \) is an elliptic curve if \(\nu_p(\Delta) = 0. \) \(E \) is said to have good reduction at \(p. \)
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$, be an elliptic curve with minimal discriminant Δ.

$E_p : y^2 = x^3 + A_p x + B_p$ is an elliptic curve if $\nu_p(\Delta) = 0$. E is said to have good reduction at p.

E_p is a singular curve if $\nu_p(\Delta) > 0$.
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$, be an elliptic curve with minimal discriminant Δ.

- $E_p : y^2 = x^3 + A_p x + B_p$ is an elliptic curve if $\nu_p(\Delta) = 0$. E is said to have \textit{good reduction} at p.
- E_p is a singular curve if $\nu_p(\Delta) > 0$. E is said to have \textit{bad reduction} at p.

Mohammad Sadek

Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$, be an elliptic curve with minimal discriminant Δ.

$E_p : y^2 = x^3 + A_p x + B_p$ is an elliptic curve if $\nu_p(\Delta) = 0$. E is said to have good reduction at p.

E_p is a singular curve if $\nu_p(\Delta) > 0$. E is said to have bad reduction at p. If moreover $\nu_p(A) = 0$ ($\nu_p(A) > 0$), then E is said to have multiplicative (additive) reduction at p.
Let $E : y^2 = x^3 + Ax + B$, $A, B \in \mathbb{Z}$, be an elliptic curve with minimal discriminant Δ.

$E_p : y^2 = x^3 + A_p x + B_p$ is an elliptic curve if $\nu_p(\Delta) = 0$. E is said to have *good reduction* at p.

E_p is a singular curve if $\nu_p(\Delta) > 0$. E is said to have *bad reduction* at p. If moreover $\nu_p(A) = 0$ ($\nu_p(A) > 0$), then E is said to have multiplicative (additive) reduction at p.

The reason is: $E_p(\overline{\mathbb{F}}_p) \cong \overline{\mathbb{F}}_p^\times$ ($E_p(\overline{\mathbb{F}}_p) \cong \overline{\mathbb{F}}_p^+$).
Reduction of elliptic curves

The (globally) minimal Weierstrass equation describing \(E \) defines a scheme over \(\mathbb{Z} \) for every prime \(p \).

The resulting scheme may not be regular if \(\nu_p(\Delta) \neq 0 \).

So the singular point on the special fiber may be a singular point of the scheme.

By resolving the singularity, one obtains the minimal proper regular model of \(E \), whose generic fiber is isomorphic to \(E \), and whose special fiber is a union of curves.

The classification of such models is due to Néron-Kodaira.

The possibilities for such a model are denoted by a Kodaira symbol:

- Good Reduction: \(I^0 \)
- Multiplicative Reduction: \(I^n \), \(n \geq 1 \)
- Additive Reduction: \(II, III, IV, I^*n, II^*, III^*, IV^* \)

Mohammad Sadek Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)
The (globally) minimal Weierstrass equation describing E defines a scheme over \mathbb{Z}_p for every prime p. The resulting scheme may not be regular if $\nu_p(\Delta) \neq 0$. So the singular point on the special fiber may be a singular point of the scheme. By resolving the singularity, one obtains the minimal proper regular model of E, whose generic fiber is isomorphic to E, and whose special fiber is a union of curves. The classification of such models is due to Néron-Kodaira. The possibilities for such a model are denoted by a Kodaira symbol:

- **Good Reduction**: I^0
- **Multiplicative Reduction**: I^n, $n \geq 1$
- **Additive Reduction**: II, III, IV, I^*n, $n \geq 0$, IV^*, III^*, II^*
The (globally) minimal Weierstrass equation describing E defines a scheme over \mathbb{Z}_p for every prime p. The resulting scheme may not be regular if $\nu_p(\Delta) \neq 0$.
The (globally) minimal Weierstrass equation describing E defines a scheme over \mathbb{Z}_p for every prime p. The resulting scheme may not be regular if $\nu_p(\Delta) \neq 0$. So the singular point on the special fiber may be a singular point of the scheme.
The (globally) minimal Weierstrass equation describing E defines a scheme over \mathbb{Z}_p for every prime p. The resulting scheme may not be regular if $\nu_p(\Delta) \neq 0$. So the singular point on the special fiber may be a singular point of the scheme. By resolving the singularity, one obtains the minimal proper regular model of E, whose generic fiber is isomorphic to E, and whose special fiber is a union of curves.
The (globally) minimal Weierstrass equation describing E defines a scheme over \mathbb{Z}_p for every prime p. The resulting scheme may not be regular if $\nu_p(\Delta) \neq 0$. So the singular point on the special fiber may be a singular point of the scheme. By resolving the singularity, one obtains the minimal proper regular model of E, whose generic fiber is isomorphic to E, and whose special fiber is a union of curves.

The classification of such models is due to Néron-Kodaira.
The (globally) minimal Weierstrass equation describing E defines a scheme over \mathbb{Z}_p for every prime p. The resulting scheme may not be regular if $\nu_p(\Delta) \neq 0$. So the singular point on the special fiber may be a singular point of the scheme. By resolving the singularity, one obtains the minimal proper regular model of E, whose generic fiber is isomorphic to E, and whose special fiber is a union of curves.

The classification of such models is due to Néron-Kodaira. The possibilities for such a model are denoted by a Kodaira symbol:

- **Good Reduction**: I_0,
- **Multiplicative Reduction**: $I_n, n \geq 1$,
- **Additive Reduction**: $II, III, IV, I_n^*, n \geq 0, IV^*, III^*, II^*$
Tate’s algorithm produces the model of a given elliptic curve.
Tate’s algorithm produces the model of a given elliptic curve. The algorithm analyses the p-valuations of the coefficients in the minimal Weierstrass equation together with the discriminant.
Tate’s algorithm produces the model of a given elliptic curve. The algorithm analyses the p-valuations of the coefficients in the minimal Weierstrass equation together with the discriminant.

Example.

- The elliptic curve $E : y^2 = x^3 - 7x + 6$ has minimal discriminant $\Delta_E = 2^8 \times 5^2$.
Tate’s algorithm produces the model of a given elliptic curve. The algorithm analyses the p-valuations of the coefficients in the minimal Weierstrass equation together with the discriminant.

Example.

- The elliptic curve $E : y^2 = x^3 - 7x + 6$ has minimal discriminant $\Delta_E = 2^8 \times 5^2$.
- E has good reduction at any prime $p \neq 2, 5$.
Tate’s algorithm produces the model of a given elliptic curve. The algorithm analyses the p-valuations of the coefficients in the minimal Weierstrass equation together with the discriminant.

Example.

- The elliptic curve $E : y^2 = x^3 - 7x + 6$ has minimal discriminant $\Delta_E = 2^8 \times 5^2$.
- E has good reduction at any prime $p \neq 2, 5$.
- E has additive reduction at 2, of type I_0^*.
Tate’s algorithm produces the model of a given elliptic curve. The algorithm analyses the p-valuations of the coefficients in the minimal Weierstrass equation together with the discriminant.

Example.

- The elliptic curve $E : y^2 = x^3 - 7x + 6$ has minimal discriminant $\Delta_E = 2^8 \times 5^2$.
- E has good reduction at any prime $p \neq 2, 5$.
- E has additive reduction at 2, of type I_0^*.
- E has multiplicative reduction at 5, of type I_2.
The Discriminant

The minimal discriminant Δ_E of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_p is not an elliptic curve over \mathbb{F}_p? how hard it is to get rid of the singularity of E_p?

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
The minimal discriminant Δ_E of E carries information about the elliptic curve E, e.g., how many primes p are there such that E_p is not an elliptic curve over \mathbb{F}_p? how hard it is to get rid of the singularity of E_p?
Elliptic curves with a prescribed discriminant

Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_E = D$?

There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.

Shafarevich's Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_E = D$.

How finite? Is there a way we can list all such isomorphism classes of elliptic curves?
Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_E = D$?
Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_E = D$?

There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.
Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_E = D$?

There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.

Shafarevich’s Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_E = D$.
Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_E = D$?

There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.

Shafarevich’s Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_E = D$.

How finite?
Question. Given a nonzero integer D, how many elliptic curves E are there such that $\Delta_E = D$?

There is no elliptic curve over \mathbb{Q} whose minimal discriminant is ± 1.

Shafarevich's Theorem. Up to isomorphisms over \mathbb{Q}, there are only finitely many elliptic curves E over \mathbb{Q} such that $\Delta_E = D$.

How finite? Is there a way we can list all such isomorphism classes of elliptic curves?
Elliptic curves with a prescribed discriminant

Why is the question hard?
Elliptic curves with a prescribed discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}.

A globally minimal Weierstrass equation describing E is of the form

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where $a_i \in \mathbb{Z}$.

$$b_2 = a_2^2 + 4a_2,$$

$$b_4 = 2a_4 + a_1 a_3,$$

$$b_6 = a_2^3 + 4a_6,$$

$$\Delta_E = -b_2^2 b_8 - 8b_3^4 - 27b_2^6 + 9b_2 b_4 b_6.$$

To find elliptic curves with prime power discriminant $\pm p^\alpha$, we solve the Diophantine equation

$$-b_2^2 b_8 - 8b_3^4 - 27b_2^6 + 9b_2 b_4 b_6 = \pm p^\alpha$$

in $b_2, b_4, b_6, b_8, p, \alpha$.
Elliptic curves with a prescribed discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}.
- A globally minimal Weierstrass equation describing E is of the form
 \[y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \quad a_i \in \mathbb{Z}. \]

To find elliptic curves with prime power discriminant $\pm p^\alpha$, we solve the Diophantine equation
\[-b_2^2 b_8 - 8 b_3^4 - 27 b_2^6 + 9 b_2 b_4 b_6 = \pm p^\alpha \]
in $b_2, b_4, b_6, b_8, p, \alpha$.

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Elliptic curves with a prescribed discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}.
- A globally minimal Weierstrass equation describing E is of the form $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$, $a_i \in \mathbb{Z}$.

\[
\begin{align*}
 b_2 &= a_1^2 + 4a_2 \\
 b_4 &= 2a_4 + a_1a_3 \\
 b_6 &= a_3^2 + 4a_6 \\
 b_8 &= a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2 \\
 \Delta_E &= -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6
\end{align*}
\]
Elliptic curves with a prescribed discriminant

Why is the question hard?

- Let E be an elliptic curve over \mathbb{Q}.
- A globally minimal Weierstrass equation describing E is of the form $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$, $a_i \in \mathbb{Z}$.

\[
\begin{align*}
 b_2 &= a_1^2 + 4a_2 \\
 b_4 &= 2a_4 + a_1 a_3 \\
 b_6 &= a_3^2 + 4a_6 \\
 b_8 &= a_1^2 a_6 + 4a_2 a_6 - a_1 a_3 a_4 + a_2 a_3^2 - a_4^2 \\
 \Delta_E &= -b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6
\end{align*}
\]

- To find elliptic curves with prime power discriminant $\pm p^\alpha$, we solve the Diophantine equation

\[-b_2^2 b_8 - 8b_4^3 - 27b_6^2 + 9b_2 b_4 b_6 = \pm p^\alpha\]

in $b_2, b_4, b_6, b_8, p, \alpha$.
Elliptic curves with a prescribed discriminant

Given a specified number field and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.

Example. If $K = \mathbb{Q}$ and $S = \{2, 3\}$, then there are 6120 elliptic curves over \mathbb{Q}, up to \mathbb{Q}-isomorphism, with discriminant $2^a \times 3^b$ ($a \leq 8$, $b \leq 5$). This list was given earlier by Ogg and Hadano.
Given a specified number field and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.
Elliptic curves with a prescribed discriminant

- Given a specified number field and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.

- **Example.** If $K = \mathbb{Q}$ and $S = \{2, 3\}$, then there are 6120 elliptic curves over \mathbb{Q}, up to \mathbb{Q}-isomorphism, with discriminant $2^a \times 3^b$ ($a \leq 8$, $b \leq 5$).
Given a specified number field and a finite set of primes S, there is an algorithm that gives a complete set of elliptic curves over K with good reduction outside S, Cremona-Lingham.

Example. If $K = \mathbb{Q}$ and $S = \{2, 3\}$, then there are 6120 elliptic curves over \mathbb{Q}, up to \mathbb{Q}-isomorphism, with discriminant $2^a \times 3^b$ ($a \leq 8, b \leq 5$). This list was given earlier by Ogg and Hadano.
Elliptic curves with a prescribed discriminant

Can we list all elliptic curves over \(\mathbb{Q} \) whose minimal discriminant is a prime power, \(p^\alpha, \alpha \geq 1 \)?

Either \(|\Delta_E| = p \) or \(p^2 \), or else \(p = 11 \) and \(\Delta_E = 11^5 \), or \(p = 17 \) and \(\Delta_E = 17^4 \), or \(p = 19 \) and \(\Delta_E = 19^3 \), or \(p = 37 \) and \(\Delta_E = 37^3 \) (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).

It is conjectured that there are infinitely many elliptic curves with prime discriminant!

Can we classify all elliptic curves over \(\mathbb{Q} \) whose minimal discriminant is a product of two prime powers?

Mohammad Sadek

Computing (Hyper)Elliptic Curves Over \(\mathbb{Q} \)
Can we list all elliptic curves over \mathbb{Q} whose minimal
discriminant is a prime power, p^α, $\alpha \geq 1$?
Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, p^α, $\alpha \geq 1$?

Either $|\Delta_E| = p$ or p^2, or else $p = 11$ and $\Delta_E = 11^5$, or $p = 17$ and $\Delta_E = 17^4$, or $p = 19$ and $\Delta_E = 19^3$, or $p = 37$ and $\Delta_E = 37^3$ (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).
Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, p^α, $\alpha \geq 1$?

Either $|\Delta_E| = p$ or p^2, or else $p = 11$ and $\Delta_E = 11^5$, or $p = 17$ and $\Delta_E = 17^4$, or $p = 19$ and $\Delta_E = 19^3$, or $p = 37$ and $\Delta_E = 37^3$ (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).

It is conjectured that there are infinitely many elliptic curves with prime discriminant!
Can we list all elliptic curves over \mathbb{Q} whose minimal discriminant is a prime power, p^α, $\alpha \geq 1$?

Either $|\Delta_E| = p$ or p^2, or else $p = 11$ and $\Delta_E = 11^5$, or $p = 17$ and $\Delta_E = 17^4$, or $p = 19$ and $\Delta_E = 19^3$, or $p = 37$ and $\Delta_E = 37^3$ (Serre, Mestre, Frey, Mazur, Oesterlé, Edixhoven, De Groot, J. Top).

It is conjectured that there are infinitely many elliptic curves with prime discriminant!

Can we classify all elliptic curves over \mathbb{Q} whose minimal discriminant is a product of two prime powers?
Elliptic curves with a prescribed discriminant

History.
History.

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^k p^m$ was given by Ogg, Hadano, and Ivorra.

It is an open problem to classify elliptic curves over \mathbb{Q} with a rational 3-torsion point and good reduction outside the set $\{p, q\}$, with p and q different primes ≥ 5.

It is an open problem to classify elliptic curves over \mathbb{Q} with trivial rational torsion and good reduction outside the set $\{p, q\}$, with p and q different primes.
History.

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^k p^m$ was given by Ogg, Hadano, and Ivorra.
- The list of elliptic curves with n-torsion, $n \geq 4$, and with minimal discriminant $p^m q^n$, where p and q are distinct primes was given by Bennett-Vatsal-Yazdani, Sadek, Dąbrowski-Jędrzejak.
History.

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^k p^m$ was given by Ogg, Hadano, and Ivorra.
- The list of elliptic curves with n-torsion, $n \geq 4$, and with minimal discriminant $p^m q^n$, where p and q are distinct primes was given by Bennett-Vatsal-Yazdani, Sadek, Dąbrowski-Jędrzejak.
- It is an open problem to classify elliptic curves over \mathbb{Q} with a rational 3-torsion point and good reduction outside the set $\{p, q\}$, with p and q different primes ≥ 5.
History.

- The list of all elliptic curves with 2-torsion and with minimal discriminant $2^k p^m$ was given by Ogg, Hadano, and Ivorra.
- The list of elliptic curves with n-torsion, $n \geq 4$, and with minimal discriminant $p^m q^n$, where p and q are distinct primes was given by Bennett-Vatsal-Yazdani, Sadek, Dąbrowski-Jędrzejak.
- It is an open problem to classify elliptic curves over \mathbb{Q} with a rational 3-torsion point and good reduction outside the set $\{p, q\}$, with p and q different primes ≥ 5.
- It is an open problem to classify elliptic curves over \mathbb{Q} with trivial rational torsion and good reduction outside the set $\{p, q\}$, with p and q different primes.
Goal:

Given an integer p^aq^b, where $q \neq p$ are primes and $a, b > 0$, provide a recipe to find all elliptic curves with a non-trivial torsion point and minimal discriminant $\Delta = \pm p^aq^b$.
The Tate normal form of an elliptic curve E with torsion point $P = (0, 0) \in E(\mathbb{Q})[m], m \neq 2, 3$, is:

$$y^2 + (1 - c)xy - by = x^3 - bx^2$$
The Tate normal form of an elliptic curve E with torsion point $P = (0, 0) \in E(\mathbb{Q})[m]$, $m \neq 2, 3$, is:

$$y^2 + (1 - c)xy - by = x^3 - bx^2$$

The discriminant:

$$\Delta_E = b^3(16b^2 - b(8c^2 + 20c - 1) - c(1 - c)^3)$$
The Tate normal form of an elliptic curve E with torsion point $P = (0, 0) \in E(\mathbb{Q})[m], \ m \neq 2, 3,$ is:

$$y^2 + (1 - c)xy - by = x^3 - bx^2$$

The discriminant:

$$\Delta_E = b^3(16b^2 - b(8c^2 + 20c - 1) - c(1 - c)^3)$$

Strategy. Solve the Diophantine equation:

$$\Delta_E = \pm p^aq^b$$

We solve the problem when the order of the torsion point is $m \geq 4$, and $p, q \geq 5$.
when \(E(\mathbb{Q})[5] \neq \{0\} \), we solve the Diophantine equation:

\[
5st + 5(5s^2 - 11st - t^2) = \pm 5^a q^b
\]

for \(p \neq q \) primes, and \(a, b > 0 \).

Theorem (Sadek, 2014)

Let \(E/\mathbb{Q} \) be an elliptic curve such that \(E(\mathbb{Q})[5] \neq \{0\} \) and \(\Delta_E = \pm 5^a q^b \) for distinct prime \(p \) and \(q \). It follows that \(\Delta_E \) is given as follows:

\[
\begin{align*}
25 \times 5^2, \\
215 \times 5^2, \\
35 \times 5^2, \\
13 \times 5^2, \\
37 \times 31^2, \\
7 \times 5^3, \\
p^k q^k
\end{align*}
\]

Similar lists when \(E(\mathbb{Q})[m] \neq \{0\} \), \(m \geq 4 \).

For example, there exists no elliptic curve \(E/\mathbb{Q} \) with \(E(\mathbb{Q})[10] \neq \{0\} \) and \(|\Delta_E| = 5^a q^b \), where \(p \neq q \) are primes, and \(a, b > 0 \).
when $E(\mathbb{Q})[5] \neq \{O\}$, we solve the Diophantine equation:

$$s^5 t^5 (s^2 - 11st - t^2) = \pm p^aq^b$$

for $p \neq q$ primes, and $a, b > 0$
• when $E(\mathbb{Q})[5] \neq \{O\}$, we solve the Diophantine equation:

$$s^5t^5(s^2 - 11st - t^2) = \pm p^aq^b$$

for $p \neq q$ primes, and $a, b > 0$

Theorem (Sadek, 2014)

Let E/\mathbb{Q} be an elliptic curve such that $E(\mathbb{Q})[5] \neq \{0\}$ and $\Delta_E = \pm p^aq^b$ for distinct prime p and q. It follows that Δ_E is given as follows:

$$2^5 \times 5^2, 2^{15} \times 5^2, 3^5 \times 5^2, 13^5 \times 5^2, 37^5 \times 31^2, 7^5 \times 5^3, p^kq$$
when \(E(\mathbb{Q})[5] \neq \{O\} \), we solve the Diophantine equation:

\[
s^5t^5(s^2 - 11st - t^2) = \pm p^aq^b
\]

for \(p \neq q \) primes, and \(a, b > 0 \)

Theorem (Sadek, 2014)

\(E/\mathbb{Q} \) be an elliptic curve such that \(E(\mathbb{Q})[5] \neq \{0\} \) and \(\Delta_E = \pm p^aq^b \) for distinct prime \(p \) and \(q \). It follows that \(\Delta_E \) is given as follows:

\[
2^5 \times 5^2, \ 2^{15} \times 5^2, \ 3^5 \times 5^2, \ 13^5 \times 5^2, \ 37^5 \times 31^2, \ 7^5 \times 5^3, \ p^{5k}q
\]

Similar lists when \(E(\mathbb{Q})[m] \neq \{0\}, m \geq 4 \).
When \(E(\mathbb{Q})[5] \neq \{O\} \), we solve the Diophantine equation:

\[
s^5 t^5 (s^2 - 11st - t^2) = \pm p^a q^b
\]

for \(p \neq q \) primes, and \(a, b > 0 \)

Theorem (Sadek, 2014)

Let \(E/\mathbb{Q} \) be an elliptic curve such that \(E(\mathbb{Q})[5] \neq \{0\} \) and \(\Delta_E = \pm p^a q^b \) for distinct prime \(p \) and \(q \). It follows that \(\Delta_E \) is given as follows:

\[
2^5 \times 5^2, 2^{15} \times 5^2, 3^5 \times 5^2, 13^5 \times 5^2, 37^5 \times 31^2, 7^5 \times 5^3, p^{5k} q
\]

Similar lists when \(E(\mathbb{Q})[m] \neq \{0\}, m \geq 4 \).

For example, There exists no elliptic curve \(E/\mathbb{Q} \) with \(E(\mathbb{Q})[10] \neq \{0\} \) and \(|\Delta_E| = p^a q^b \), where \(p \neq q \) are primes, and \(a, b > 0 \).
Let

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \quad a_i \in K, \quad a_n \neq 0 \]

where \(n \geq 5 \) and \(f(x) \) has no double roots.
Let
\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \quad a_i \in K, \quad a_n \neq 0 \]

where \(n \geq 5 \) and \(f(x) \) has no double roots.

The curve \(C : y^2 = f(x) \), is a **hyperelliptic curve**.
Let
\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \quad a_i \in K, \quad a_n \neq 0 \]
where \(n \geq 5 \) and \(f(x) \) has no double roots.

The curve \(C : y^2 = f(x) \), is a **hyperelliptic curve**.

The genus of the curve \(C \) is \(\left\lfloor \frac{n-1}{2} \right\rfloor \geq 2 \).
Let

\[f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0, \quad a_i \in K, \quad a_n \neq 0 \]

where \(n \geq 5 \) and \(f(x) \) has no double roots. The curve \(C : y^2 = f(x) \), is a \textbf{hyperelliptic curve}.

The genus of the curve \(C \) is \(\left\lfloor \frac{n - 1}{2} \right\rfloor \geq 2 \).

Recall that

\[C(\mathbb{Q}) = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : y^2 = f(x)\}. \]
Let

\[f(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0, \quad a_i \in K, \quad a_n \neq 0 \]

where \(n \geq 5 \) and \(f(x) \) has no double roots.

The curve \(C : y^2 = f(x) \), is a **hyperelliptic curve**.

The genus of the curve \(C \) is \(\left\lfloor \frac{n-1}{2} \right\rfloor \geq 2 \).

Recall that

\[C(\mathbb{Q}) = \{(x, y) \in \mathbb{Q} \times \mathbb{Q} : y^2 = f(x)\}. \]

Theorem (Faltings’ Theorem)

\(C(\mathbb{Q}) \) is finite.
The curve $C : y^2 = f(x)$, $\deg f(x) \geq 5$, and $g(C) = \left\lfloor \frac{n-1}{2} \right\rfloor$.

$C(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p, y^2 = f(x)\}$.
The curve $C : y^2 = f(x)$, $\deg f(x) \geq 5$, and $g(C) = \left\lfloor \frac{n-1}{2} \right\rfloor$.

$$C(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p, y^2 = f(x)\}.$$
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and deg $f(x)$ is either 5 or 6, over \mathbb{Q}.

Let C_p be the curve defined by $y^2 = f_p(x)$, where $f_p(x)$ is the reduction of $f(x) \mod p$.
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

Let C_p be the curve defined by $y^2 = f_p(x)$, where $f_p(x)$ is the reduction of $f(x) \mod p$. When $g = 1$, there were 3 possibilities,
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

Let C_p be the curve defined by $y^2 = f_p(x)$, where $f_p(x)$ is the reduction of $f(x)$ mod p. When $g = 1$, there were 3 possibilities, when $g = 2$, there are 8 possibilities for C_p.

There is a globally minimal discriminant Δ_C of C over \mathbb{Q}, (Lockhart, Liu). C_p is singular if and only if $\nu_p(\Delta_C) > 0$.

Mohammad Sadek
Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

Let C_p be the curve defined by $y^2 = f_p(x)$, where $f_p(x)$ is the reduction of $f(x)$ mod p. When $g = 1$, there were 3 possibilities, when $g = 2$, there are 8 possibilities for C_p.

One may define the discriminant of C.
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

Let C_p be the curve defined by $y^2 = f_p(x)$, where $f_p(x)$ is the reduction of $f(x)$ mod p. When $g = 1$, there were 3 possibilities, when $g = 2$, there are 8 possibilities for C_p.

One may define the discriminant of C. There is a globally minimal discriminant Δ_C of C over \mathbb{Q}, (Lockhart, Liu).
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

Let C_p be the curve defined by $y^2 = f_p(x)$, where $f_p(x)$ is the reduction of $f(x) \bmod p$. When $g = 1$, there were 3 possibilities, when $g = 2$, there are 8 possibilities for C_p.

One may define the discriminant of C. There is a globally minimal discriminant Δ_C of C over \mathbb{Q}, (Lockhart, Liu).

C_p is singular if and only if $\nu_p(\Delta_C) > 0$.

Let \(C \) be a hyperelliptic curve defined by \(y^2 = f(x) \), where \(f(x) \in \mathbb{Z}[x] \) and \(\deg f(x) \) is either 5 or 6, over \(\mathbb{Q} \).
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

There is a minimal regular model for C over \mathbb{Z}_p for every prime p, (Ueno-Namikawa, Liu).
Let C be a hyperelliptic curve defined by $y^2 = f(x)$, where $f(x) \in \mathbb{Z}[x]$ and $\deg f(x)$ is either 5 or 6, over \mathbb{Q}.

There is a minimal regular model for C over \mathbb{Z}_p for every prime p, (Ueno-Namikawa, Liu).

There are 120 possibilities for these minimal proper regular models.
Let \(C \) be a hyperelliptic curve defined by \(y^2 = f(x) \), where \(f(x) \in \mathbb{Z}[x] \) and \(\deg f(x) \) is either 5 or 6, over \(\mathbb{Q} \).

There is a minimal regular model for \(C \) over \(\mathbb{Z}_p \) for every prime \(p \), (Ueno-Namikawa, Liu).

There are 120 possibilities for these minimal proper regular models.

Given a hyperelliptic curve \(C : y^2 = f(x) \), \(\deg f(x) = 5, 6 \), an algorithm due to Liu gives the minimal proper regular model of \(C \).
Question. Given a nonzero integer D, list all genus 2 curves with minimal discriminant D. Up to isomorphisms over \mathbb{Q}, there are only finitely many hyperelliptic curves C over \mathbb{Q} with genus 2 such that $\Delta_C = D$, (Shafarevich, Merriman, Oort, Parˇsin, Faltings).
Hyperelliptic curves with a prescribed discriminant

Question. Given a nonzero integer D, list all genus 2 curves with minimal discriminant D.
Question. Given a nonzero integer D, list all genus 2 curves with minimal discriminant D.

Up to isomorphisms over \mathbb{Q}, there are only finitely many hyperelliptic curves C over \mathbb{Q} with genus 2 such that $\Delta_C = D$, (Shafarevich, Merriman, Oort, Paršin, Faltings).
Hyperelliptic curves with a prescribed discriminant

Genus 2 Curve Search Results give all genus 2 curves with absolute discriminant up to 10^6 together with much additional information (Cremona).

The complete list of genus 2 curves over \mathbb{Q} with good reduction outside 2, up to isomorphism over \mathbb{Q}, is produced. There are 428 of them, (Smart, 1996).

Can we produce the list of genus 2 curves with good reduction away from a prime $p \neq 2$, i.e., $\Delta_C = p^a$, $a \geq 1$, for some prime $p \neq 2$?
Genus 2 Curve Search Results give all genus 2 curves with absolute discriminant up to 10^6 together with much additional information (Cremona)
Genus 2 Curve Search Results give all genus 2 curves with absolute discriminant up to 10^6 together with much additional information (Cremona).

The complete list of genus 2 curves over \mathbb{Q} with good reduction outside 2, up to isomorphism over \mathbb{Q}, is produced. There are 428 of them, (Smart, 1996).
Hyperelliptic curves with a prescribed discriminant

- Genus 2 Curve Search Results give all genus 2 curves with absolute discriminant up to 10^6 together with much additional information (Cremona).
- The complete list of genus 2 curves over \mathbb{Q} with good reduction outside 2, up to isomorphism over \mathbb{Q}, is produced. There are 428 of them, (Smart, 1996).
- Can we produce the list of genus 2 curves with good reduction away from a prime $p \neq 2$, i.e., $\Delta_C = p^a$, $a \geq 1$, for some prime $p \neq 2$?
Hyperelliptic curves with a prescribed discriminant

Why is the question harder?
Why is the question harder?

- Let C be a smooth genus two curve over \mathbb{Q}.
Why is the question harder?

- Let C be a smooth genus two curve over \mathbb{Q}.
- A globally minimal equation describing C is of the form

\[y^2 + (a_0 x^2 + a_1 x + a_2)y = b_0 x^6 + b_1 x^5 + b_2 x^4 + b_3 x^3 + b_4 x^2 + b_5 x + b_6, \quad a_i, b_i \in \mathbb{Z}; \]
Why is the question harder?

Let C be a smooth genus two curve over \mathbb{Q}.

A globally minimal equation describing C is of the form

$$y^2 + (a_0 x^2 + a_1 x + a_2)y = b_0 x^6 + b_1 x^5 + b_2 x^4 + b_3 x^3 + b_4 x^2 + b_5 x + b_6, \quad a_i, b_i \in \mathbb{Z};$$

$$\Delta_C \in \mathbb{Z}[a_0, a_1, a_2, b_0, \ldots, b_6]$$

is homogeneous of degree 10.
Why is the question harder?

- Let C be a smooth genus two curve over \mathbb{Q}.
- A globally minimal equation describing C is of the form
 \[y^2 + (a_0 x^2 + a_1 x + a_2)y = b_0 x^6 + b_1 x^5 + b_2 x^4 + b_3 x^3 + b_4 x^2 + b_5 x + b_6, \ a_i, b_i \in \mathbb{Z}; \]

 \[\Delta_C \in \mathbb{Z}[a_0, a_1, a_2, b_0, \ldots, b_6] \]

 is homogeneous of degree 10.

- To find all genus 2 curves with minimal discriminant $\pm p^\alpha$, we solve the Diophantine equation

 \[\Delta_C = \pm p^\alpha \]

 in $a_0, a_1, a_2, b_0, b_1, b_2, b_3, b_4, b_5, b_6, p, \alpha$.

Mohammad Sadek Computing (Hyper)Elliptic Curves Over \mathbb{Q}
Joint with A. Dąbrowski, 2020

- We assume the existence of at least two rational Weierstrass points on C.

$y^2 = x^5 + a_1x^4 + a_2x^3 + a_3x^2 + a_4x + a_5,$
$a_i \in \mathbb{Z} = (x - A)g(x), A \in \mathbb{Z}, g(x) \in \mathbb{Z}[x]$ is monic.

Under this assumption, we find those genus 2 curves with minimal discriminant $\Delta = \pm p$, and p is an odd prime.
Joint with **A. Dąbrowski**, 2020

- We assume the existence of at least two rational Weierstrass points on C. In particular, C may be described by

$$y^2 = x^5 + a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + a_5, \quad a_i \in \mathbb{Z}$$
Joint with **A. Dąbrowski**, 2020

- We assume the existence of at least two rational Weierstrass points on C. In particular, C may be described by

$$y^2 = x^5 + a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + a_5, \quad a_i \in \mathbb{Z}$$

$$= (x - A)g(x), \quad A \in \mathbb{Z}, \ g(x) \in \mathbb{Z}[x] \text{ is monic.}$$
Joint with A. Dąbrowski, 2020

- We assume the existence of at least two rational Weierstrass points on C. In particular, C may be described by

$$y^2 = x^5 + a_1 x^4 + a_2 x^3 + a_3 x^2 + a_4 x + a_5, \quad a_i \in \mathbb{Z}$$

$$= (x - A)g(x), \quad A \in \mathbb{Z}, \ g(x) \in \mathbb{Z}[x] \text{ is monic.}$$

- Under this assumption, we find those genus 2 curves with minimal discriminant $\Delta = \pm p$, and p is an odd prime.
Theorem (Dąbrowski-Sadek, 2020)

Let C be a genus 2 curve with minimal discriminant of the form $2^a p^b$, where p is an odd prime, $a \geq 0$, $b \geq 1$. If C has six rational Weierstrass points, then C is isomorphic to one of the following curves described by the following Weierstrass equations:

$$y^2 = x(x - 1)(x + 1)(x - 2)(x + 2), \quad \Delta_{E_0} = 2^{18} \cdot 3^4,$$
$$y^2 = x(x - 3)(x + 3)(x - 6)(x + 6), \quad \Delta_{E_1} = 2^{18} \cdot 3^{14}.$$
If we consider genus two curves with exactly three \mathbb{Q}-rational Weierstrass points.

Theorem (Dąbrowski-Sadek, 2020)

Let C be a smooth projective curve of genus 2 defined over \mathbb{Q} with good reduction at the prime 2. Assume that C has exactly three \mathbb{Q}-rational Weierstrass points. If the minimal discriminant of C is a square-free odd integer, then C is described by one of the following globally minimal Weierstrass equations

\[
y^2 - x^2y = x^5 + 16t x^4 + (16 + 8t) x^3 + (8 + t) x^2 + xy^2 + (-x^2 - x)y = x^5 + (-1 + t) x^4 + (-2 - 2t) x^3 + (2 + t) x^2 - xy
\]

for some $t \in \mathbb{Z}$.

By Bounyakovsky' Conjecture, there are infinitely many genus 2 curves with prime discriminant.
If we consider genus two curves with exactly three \mathbb{Q}-rational Weierstrass points.

Theorem (Dąbrowski-Sadek, 2020)

Let C be a smooth projective curve of genus 2 defined over \mathbb{Q} with good reduction at the prime 2. Assume that C has exactly three \mathbb{Q}-rational Weierstrass points. If the minimal discriminant of C is a square-free odd integer, then C is described by one of the following globally minimal Weierstrass equations

\[
\begin{align*}
 y^2 - x^2 y &= x^5 + 16t x^4 + (16 + 8t) x^3 + (8 + t) x^2 + x \\
 y^2 + (-x^2 - x) y &= x^5 + (-1 + t) x^4 + (-2 - 2t) x^3 + (2 + t) x^2 - x
\end{align*}
\]

for some $t \in \mathbb{Z}$.

By Bounyakovsky' Conjecture, there are infinitely many genus 2 curves with prime discriminant.
If we consider genus two curves with exactly three \mathbb{Q}-rational Weierstrass points.

Theorem (Dąbrowski-Sadek, 2020)

Let C be a smooth projective curve of genus 2 defined over \mathbb{Q} with good reduction at the prime 2. Assume that C has exactly three \mathbb{Q}-rational Weierstrass points. If the minimal discriminant of C is a square-free odd integer, then C is described by one of the following globally minimal Weierstrass equations

\[
\begin{align*}
y^2 - x^2 y &= x^5 + 16t x^4 + (16 + 8t) x^3 + (8 + t) x^2 + x \\
y^2 + (-x^2 - x)y &= x^5 + (-1 + t) x^4 + (-2 - 2t) x^3 + (2 + t) x^2 - x
\end{align*}
\]

for some $t \in \mathbb{Z}$.

$|\Delta| = p$ if a certain irreducible quartic polynomial in $\mathbb{Z}[x]$ takes the value p.
If we consider genus two curves with exactly three \(\mathbb{Q} \)-rational Weierstrass points.

Theorem (Dąbrowski-Sadek, 2020)

Let \(C \) be a smooth projective curve of genus 2 defined over \(\mathbb{Q} \) with good reduction at the prime 2. Assume that \(C \) has exactly three \(\mathbb{Q} \)-rational Weierstrass points. If the minimal discriminant of \(C \) is a square-free odd integer, then \(C \) is described by one of the following globally minimal Weierstrass equations

\[
\begin{align*}
 y^2 - x^2 y &= x^5 + 16t x^4 + (16 + 8t) x^3 + (8 + t) x^2 + x \\
 y^2 + (-x^2 - x) y &= x^5 + (-1 + t) x^4 + (-2 - 2t) x^3 + (2 + t) x^2 - x
\end{align*}
\]

for some \(t \in \mathbb{Z} \).

\(|\Delta| = p \) if a certain irreducible quartic polynomial in \(\mathbb{Z}[x] \) takes the value \(p \). By Bounyakovsky’ Conjecture, there are infinitely many genus 2 curves with prime discriminant.
Thank you for your attention!