MAT 312
Material Characterization
Mechanical Testing

Co-Instructor: Melih Papila
Material Selection

• Procedure
 – Analysis of problem regarding material application
 – Translation of the material application requirements to material property values
 – Selection of candidate materials
 – Evaluation of candidate materials
 – Decision making

• Properties
 – Mechanical, thermal, chemical, electrical

• Constraints
 – Existing facilities
 – Compatibility
 – Marketability
 – Availability
 – Disposability and recyclability
Mechanical Testing of Materials

- Test type/loading
 - Tension
 - Compression
 - Hardness
 - Bending
 - Torsion

- Environmental conditions
 - Test ambient
 - Specimen

- Test specimen
 - Un-notched
 - Notched
 - Any stress raiser: Notch, hole, groove, cracks …

- Test standards
 - Industry
 - Company

- Test Equipment
Mechanical Testing of Materials

- Universal Testing Machines
 - Go back to early 1900s
 - Mechanical-screw-driven machine (electromechanical)
 - Servo-hydraulic machine

- Static or dynamic?
- Strain gage based
 - Load cells
 - Extensometer
Standard Test Methods

- **Mechanical testing**
 - Material properties as input for design procedure
 - Quality control
- **Test standards provide consistency, user-producer communication**
- **Professional societies:**
 - American Society for Testing and Materials - ASTM
 - International Organization for Standardization – ISO
 - European Norms- EN
 - TSE
Standard Test Methods

• Annual Book of ASTM standards covers significant number of standards for mechanical testing-about 10 volumes
• Test standards organized by class of material
 – Metals, concrete, plastics, rubber, glass...
Table 4.1: Some of the Major ASTM Standards for Basic Mechanical Tests

<table>
<thead>
<tr>
<th>Class of Material (Volume in ASTM Standards)</th>
<th>Tension</th>
<th>Compression</th>
<th>Hardness</th>
<th>Impact</th>
<th>Bending</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metals (01.01, 02.02, and 03.01)</td>
<td>A 370</td>
<td>E 9</td>
<td>A 370</td>
<td>A 370</td>
<td>E 290</td>
</tr>
<tr>
<td></td>
<td>B 557</td>
<td>E 209</td>
<td>E 10</td>
<td>E 23</td>
<td>E 812</td>
</tr>
<tr>
<td></td>
<td>E 8</td>
<td>E 18</td>
<td>E 208</td>
<td>E 55</td>
<td>E 855</td>
</tr>
<tr>
<td></td>
<td>E 602</td>
<td>E 92</td>
<td>E 436</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E 646</td>
<td>E 384</td>
<td>E 604</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>E 448</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concrete (04.02)</td>
<td>C 496</td>
<td>C 39</td>
<td></td>
<td></td>
<td>C 78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C 469</td>
<td></td>
<td></td>
<td>C 293</td>
</tr>
<tr>
<td>Stone and rock (04.07 to .09)</td>
<td>D 2936</td>
<td>C 170</td>
<td></td>
<td></td>
<td>C 99</td>
</tr>
<tr>
<td></td>
<td>D 3967</td>
<td>D 2938</td>
<td></td>
<td></td>
<td>C 120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D 3148</td>
<td></td>
<td></td>
<td>C 880</td>
</tr>
<tr>
<td>Wood and plywood (04.10)</td>
<td>D 143</td>
<td>D 143</td>
<td>D 143</td>
<td>D 143</td>
<td>D 143</td>
</tr>
<tr>
<td></td>
<td>D 198</td>
<td>D 198</td>
<td>D 3499</td>
<td>D 198</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D 3500</td>
<td>D 3501</td>
<td>D 3043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plastics (08.01 to .03)</td>
<td>D 638</td>
<td>D 695</td>
<td>D 785</td>
<td>D 256</td>
<td>D 648</td>
</tr>
<tr>
<td></td>
<td>D 882</td>
<td>D 1621</td>
<td>D 2583</td>
<td>D 1822</td>
<td>D 747</td>
</tr>
<tr>
<td></td>
<td>D 1623</td>
<td>D 5420</td>
<td></td>
<td>D 4812</td>
<td>D 790</td>
</tr>
<tr>
<td>Rubber (09.01)</td>
<td>D 412</td>
<td>D 395</td>
<td>D 1415</td>
<td>D 1054</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>D 575</td>
<td>D 2240</td>
<td>D 2632</td>
<td></td>
</tr>
<tr>
<td>Ceramics and glass (15.01 and .02)</td>
<td>C 565</td>
<td>C 133</td>
<td>C 730</td>
<td></td>
<td>C 158</td>
</tr>
<tr>
<td></td>
<td>C 749</td>
<td>C 695</td>
<td>C 748</td>
<td></td>
<td>C 674</td>
</tr>
<tr>
<td></td>
<td>C 1273</td>
<td>C 773</td>
<td>C 849</td>
<td></td>
<td>C 1161</td>
</tr>
<tr>
<td></td>
<td>C 1275¹</td>
<td>C 886</td>
<td>C 886</td>
<td></td>
<td>C 1211</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C 1341¹</td>
</tr>
<tr>
<td>Fibers and composites (15.03)</td>
<td>D 3039</td>
<td>C 364</td>
<td></td>
<td></td>
<td>C 393</td>
</tr>
<tr>
<td></td>
<td>D 3379</td>
<td>C 365</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D 3552</td>
<td>D 3410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D 4018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: ¹Long fiber ceramic composite material.
Standard Test Methods

• Provide procedures to be followed in detail
 – Specimen description
 – Loading conditions
 – Values to report
 – Statistical analysis
Tension Test

- Pulling a sample of material in tension until fracture
- Specimens designed to avoid break where gripped
- Usually constant speed
 - Crosshead speed, mm/min
- Report stress-strain curve until failure
- Ideally recorded by dedicated transducers
 - Extensometer
 - Strain gages bonded on the specimen
Tension Test

• **Stress-strain behavior varies widely**
 – **Brittle behavior: without extensive deformation**-gray cast iron, some polymers (PMMA), glass
 – **Ductile behavior: failure following extensive deformation**-metals
Tension Test

- **Material properties are based on**
 - Mostly engineering stress-strain
 - Some true stress-strain

- **Elastic constants**
 - Elastic or Young’s modulus-slope of initial elastic line, \(E=(\sigma_B - \sigma_A)/(\varepsilon_B-\varepsilon_B) \)
 - Tangent modulus-tangent at the origin (if there is no well-defined linear region)
 - Poisson’s ratio
Tension Test

Figure 4.11 Initial portions of stress-strain curves: (a) many metals and alloys, (b) material with yield drop, and (c) material with no linear region.
Tension Test

- **Strength**
 - Ultimate - highest engineering stress prior to fracture
 - Fracture strength - stress at fracture
 - Yield strength - stress where departure from elastic behavior happens and contribution of plastic strain begins resulting in rapidly increasing deformation

- **Tensile strength at yield**
- **Tensile strength at break**
- **Usual priority** - assure that stresses are sufficiently small that yielding does not occur
Tension Test-criteria for yielding

• First departure from linearity-proportional limit,
 – Difficult to precisely locate- depends on judgment
 – Some material with gradually decreasing slope, no proportional limit identified

• Elastic limit-highest stress without permanent deformation
 – Difficult to determine, periodic unloading to check for permanent deformation
Tension Test-criteria for yielding

- Some metals exhibit nonlinearity followed by a dramatic drop in load (fig 4.11)
 - Upper yield point, σ_{ou} - prior to the drop
 - Lower yield point, σ_{ol} - prior to the subsequent increase

- Offset Method - offset yield strength
 - Intersection of the stress-strain curve and the straight line parallel to elastic slope E or E_t, that is offset by an arbitrary amount
 - Offset amount for metals 0.2% strain
Tension Test-criteria for yielding

Figure 4.11 Initial portions of stress-strain curves: (a) many metals and alloys, (b) material with yield drop, and (c) material with no linear region.

Mechanical Behaviour of Materials, N. E. Dowling
Tension Test-criteria for yielding

• For polymers offset yield strength also used

• Yield is at $d\sigma/d\varepsilon=0$, if there is early relative maximum σ_{ou}, usually followed by substantial plastic deformation (fig 4.10),
Tension Test-criteria for yielding

Figure 4.10 Engineering stress-strain curve and geometry of deformation typical of some polymers.

Mechanical Behaviour of Materials, N. E. Dowling
Tension Test-Measures of Ductility

• **Definition:** Ability of a material to accommodate inelastic deformation without breaking

• **Measured by**
 - Engineering fracture strain or percent elongation, corresponds to the engineering fracture strength point

\[\varepsilon_f = \frac{(L_f - L_i)}{L_i} \]
Tension Test-Measures of Ductility

- Elongation is the value at fracture
 - For polymers (ASTM standard): strain ε_f at the instant of fracture
 - For ductile metals (ASTM standard): measured after it is broken using marks placed at a known distance apart prior to the test – plastic component of the strain or elongation ε_{pf} (~ ε_f for ductile metals)
 - For metals of limited ductility,
 \[\varepsilon_{pf} = \varepsilon_f - \frac{\sigma_f}{E} \]
Tension Test-Measures of Ductility

• Also measured by percent reduction in area

\[\% \text{RA} = 100\left(\frac{A_i - A_f}{A_i}\right) \]
Tension Test-Necking and Ductility

• If ductile, necking usually occurs
 – Deformation begins to concentrate in one region, area reduction higher than elsewhere
 – Strain becomes nonuniform

• With necking involved, percent elongation is sensitive to L/d or L/t as it is an average over a gage length, thus reduction in area is considered as more fundamental
Tension Energy Capacity

- Work done by the applied tensile load is equal to energy absorbed by the material, area under the stress-strain curve work done per unit volume
 \[u = \int \sigma \, d\varepsilon \]
 Called tensile toughness of the material
 (ability of the material to absorb energy without fracture)
Figure 4.14 Areas under engineering stress-strain curves corresponding to resilience u_r and tensile toughness u_f.

Mechanical Behaviour of Materials, N. E. Dowling
Tension Energy Capacity

• Within the region of elastic deformation, potential energy released upon unloading

• At the proportional limit, resilience (ability of the material to store elastic energy)

\[u_r = \frac{\sigma_p^2}{2E} \]

Usually preferable to use offset yield strength

\[u_r = \frac{\sigma_o^2}{2E} \]
Strain Hardening

- Increase in mechanical resistance with increasing strain following the yielding
- A measure of the strain hardening
 \[
 \frac{\sigma_u}{\sigma_o}
 \]
 Range considered average for metals 1.2-1.4
Trends in Tensile Behavior

- Materials vary widely regarding their strength and ductility
Effect of Temperature and Strain Rate

- In a temperature range where creep-related effects occur, strain rate temperature interaction exists
- Polymers of low Tg, for instance (larger creep effects occur even around RT), strain rate draws attention
- Generally speaking—for a given material at T range where creep-related strain-rate effects occur—
 - At a given T, increasing strain rate increases the strength, but decreases ductility
 - For a given strain rate, decreasing temperature increases strength, but decreases ductility
Effect of Temperature and Strain Rate

Figure 4.18 Effect of strain rate on the ultimate tensile strength of copper for tests at various temperatures. (Adapted from [Nadai 41]; used with permission of ASME.)

Mechanical Behaviour of Materials, N. E. Dowling
True Stress-Strain

- Engineering stress and strain appropriate when the changes in specimen dimensions are small, area for instance.
- For ductile materials, in particular, true stress-strain differs from engineering stress-strain.
- If necking occurs, correction may be needed.

\[\tilde{\sigma} = \sigma \left(\frac{A_i}{A} \right) \]

\[\tilde{\varepsilon} = \ln(1 + \varepsilon) \]
Tension Test

TABLE 4.6 MATERIALS PROPERTIES OBTAINABLE FROM TENSION TESTS

<table>
<thead>
<tr>
<th>Category</th>
<th>Engineering Property</th>
<th>True Stress-Strain Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elastic constants</td>
<td>Elastic modulus, E, E_i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poisson’s ratio, v</td>
<td></td>
</tr>
<tr>
<td>Strength</td>
<td>Proportional limit, σ_p</td>
<td>True fracture strength, $\tilde{\sigma}_{FB}$</td>
</tr>
<tr>
<td></td>
<td>Yield strength, σ_y</td>
<td>Strength coefficient, H</td>
</tr>
<tr>
<td></td>
<td>Ultimate tensile strength, σ_u</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engineering fracture strength, σ_f</td>
<td></td>
</tr>
<tr>
<td>Ductility</td>
<td>Percent elongation, $100\varepsilon_f$</td>
<td>True fracture strain, $\tilde{\varepsilon}_f$</td>
</tr>
<tr>
<td></td>
<td>Reduction in area, $%RA$</td>
<td></td>
</tr>
<tr>
<td>Energy capacity</td>
<td>Resilience, u_r</td>
<td>True toughness, \tilde{u}_f</td>
</tr>
<tr>
<td></td>
<td>Tensile toughness, u_f</td>
<td></td>
</tr>
<tr>
<td>Strain hardening</td>
<td>Strain hardening ratio, σ_u/σ_y</td>
<td>Strain hardening exponent, n</td>
</tr>
</tbody>
</table>

Mechanical Behaviour of Materials, N. E. Dowling
Compression

• Behavior in compression may be substantially different
 – Concrete
• Similar test arrangement except the direction of loading
• Specimen dimensions
 – Too small: end effects
 – Too long: buckling
 – L/d=3 for ductile materials
 – L/d=1.5-2 for brittle
Compression

Figure 4.26 Stress-strain curves for plexiglass (acrylic, PMMA) in both tension and compression. (Adapted from [Richards 61] p. 153; reprinted by permission of PWS-Kent Publishing Co., Boston.)
Hardness Test

• Hardness is the property of a material that enables it to resist plastic deformation, usually by penetration. However, the term hardness may also refer to resistance to scratching, abrasion or cutting.

• Several types
 – Indentation hardness: pressing of a hard indenter against the sample with a known force
 – Scleroscope hardness test: rebound of a hammer with diamond tip
 – Mohs hardness: Scratching, matter of judgment, scaled between 1-10, (10 for diamond)
Indentation Hardness Test

• Surface resistance to indentation/penetration that results from plastic deformation beneath the indenter
• Differ by type and geometry of indenter, amount of force, but measure the size/depth of an indentation
 – Brinell harness test: sphere indenter of 10 mm in dia,, varying load, measure the size of indentation
 – Rockwell hardness test: using different scale (various sized indenter, different loads)
 – Vickers hardness test: diamond pyramid used as indenter
 – Shore Durometer hardness test (polimers, rubber)
Indentation Hardness Test

- Brinell harness test: sphere indenter of D, load F, measure the size of indentation D_i
Indentation Hardness Test

- Vickers harness test: square based pyramid diamond indenter, load F, measure the size of indentation D_i

\[
HV = \frac{2F \sin \frac{136^\circ}{2}}{d^2}
\]

$HV = 1.854 \frac{F}{d^2}$ approximately

http://www.gordonengland.co.uk/hardness/
Indentation Hardness Test

• Rockwell hardness test: measures the depth of indentation

\[HR = E - e \]

http://www.gordonengland.co.uk/hardness/
Indentation Hardness Test

- Microhardness test: very similar to that of the standard Vickers hardness test, except that it is done on a microscopic scale with higher precision instruments. Vickers diamond pyramid or the Knoop elongated diamond pyramid. Use projected area A, \(KHN = \frac{F}{A} \)

http://www.gordonengland.co.uk/hardness/
Indentation Hardness Test

• Shore Durometer hardness Test: to determine the relative hardness of soft materials, usually plastic or rubber

Notch-impact Tests

- Measure the resistance of a material to sudden fracture in the presence of stress raiser or flaw
- Energy required to break the sample is determined from an indicator measuring how high the pendulum swings after breaking the sample
- Simple, quickly compare materials,
Notch-impact Tests

For polymers and plastics

Bending (Flexure) Tests

• Tensile strength of brittle materials that are difficult to grip without cracking, glass...

• Laminated materials: interlaminar strength

• Meaningful for materials of linear stress-strain behavior until fracture

\[
\sigma = \frac{Mc}{I}
\]

\[
\sigma_{fb} = \frac{3L}{8tc^2} P_f
\]
Bending (Flexure) Tests

- Elastic modulus may also be obtained
- Maximum deflection using linear-elastic analysis

\[v = \frac{PL^3}{48EI} \]

\[E = \frac{L^3}{48I \left(\frac{dP}{dv} \right)} \]

Figure 4.39 Loading configuration for (a) three-point bending and (b) four-point bending. The deflection of the centerline of either beam is similar to (c).
Torsion Tests

- Test of round bars subject to torque
- Shear modulus, G is determined
- Fracture of brittle materials: at 45 to both specimen axis and surface, planes of maximum tension
- Fracture of ductile materials: planes of maximum shear
Torsion Tests

Figure 4.40 Typical torsion failures showing brittle behavior (above) in gray cast iron, and ductile behavior (below) in aluminum alloy 2024-T351. (Photo by R. A. Simonds.)

Mechanical Behaviour of Materials, N. E. Dowling