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Chapter 1

Introduction

Summary: This chapter provides a motivation for Monte Carlo methods. We will basi-
cally discuss averaging, which is the core of Monte Carlo integration. Then we will discuss
theoretical and practical justifications of Monte Carlo. The chapter ends with a toy exam-
ple, Buffon’s needle experiment.

1.1 Sample averages

Suppose we are given N > 1 random samples XV, ..., X each taking values from a set
X C R% for some d, > 1. The samples are independent and identically distributed (i.i.d.)

according to some distribution P for a random variable X. We summarise this sentence as
X0 xW S p

Also, the distribution P is unknown.
Mean value of the distribution: First, we are asked to provide an estimate of the

mean value i.e. the expectation of X with respect to P using the sample set XN If P
has a probability density function p(z), this expectation can be written as'

EP(X):/Xxp(:U)d:E. (1.1)

A reasonable estimate of this quantity would be
1 )
~ (1)
Ep(X) ~ + ZX . (1.2)

Expectation of a general function: Next, we are asked to provide an estimate of the
expectation of a certain function ¢ : X — R with respect to P, that is”

P(¢) i= En(p(X)) = /X o(2)p(a)d. (1.3)

'We assume continuity of X to avoid repetitions for continuous and discrete variables. For discrete
distributions change the integral to the sum ), x;p(z;).
2Again, for discrete variables this would be Y, ¢(z;)p(;).

1



CHAPTER 1. INTRODUCTION 2

(Here, the notation P(¢p) is introduced for simplicity.) This time, we replace our estimator
with one that has the values of the ¢ evaluated at the samples (X @), i = 1,..., N instead
of X themselves.

Er((X)) ~ 1 3 #(X0). (1.4

It is easy to see that the second problem is just a simple generalisation of the first: Put
¢(X) = X and you will come back to the first problem, which was to estimate the expected
value of X. The function ¢ can correspond to another moment of interest, for example
@(x) = x?%, or a specific function of interest, for example p(x) = log x.

Probability of a set: Another special case of ¢ is seen when we are interested in the
probability of a certain set A C X. How do we write this probability

P(A) = P(X € A)

as an expectation of a function with respect to P? For this, consider the indicator function

I4: X — {0,1} such that
1, z€ A
I =< 1.5
e {O’ o (1.5)

Now, let us consider ¢ = 4 and write the expectation of this function with respect to P:

Ep(Li(X)) = / Ly(a)p(a)de

X

:Am@m

— P(X € A). (1.6)

where the second line follows from the fact that the integrand becomes p(z) for z € A and

0 for ¢ A. Therefore, we know what to do when XM ... X&) P are given and we
want to estimate P(X € A) = Ep(I4(X)): we simply apply equation (1.4) for the function
]IA(X)Z

MXEAV&%EﬁMXW. (1.7)

Notice that this will output a value that is guaranteed to be in [0,1] (since the sum can
be at least 0 and at most V), so it is a valid probability estimate.

In the following, we will talk in general about the expectation (1.3) and its estimate
(1.4), after hopefully having convinced you that the other expectations and their estimates
are just special cases.
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1.2 Monte Carlo: Generating your own samples

See the equation (1.4); this is what we would do to estimate a certain quantity that is
to do with the distribution P. However, notice that you do not need to know anything
explicit about P in order to make that calculation. All you need are the samples X (V)
from P. Perhaps we would be able to calculate the exact value of (1.3) if P were known.
However, we said P was unknown, and we proposed to use the estimate (1.4) instead.

Now consider a new scenario: This time you do know P, at least up to a certain extent;
but you are not given any samples from P. The following are what you can and cannot
do about P:

e You can generate (draw) i.i.d. samples from P, as many as you want.

e You cannot compute (one or more of) the integral in (1.3), or you can only compute
it in a very very long time - so long that you do not want to! Another way of saying
this is that the integral is intractable.

What would you do to estimate (1.3) in that case? Of course, by generating your own
samples XM ..., X from P so that the problem reduces to the one in the previous
section.® This simple idea is the core of Monte Carlo methods. Once you generate samples
from P, you do not need to deal with it in order to implement the estimate (1.4).

The term Monte Carlo was coined in the 1940s, see Metropolis and Ulam (1949) for a
first use of the term, and Metropolis (1987); Eckhardt (1987) for a historical review.

1.2.1 Justification of Monte Carlo

Let P{jo(v) denote the Monte Carlo estimate of P(y) in (1.3) that is given in (1.4) using
n samples, i.e.

Pllole) = 5 309X 1), (18)

3An engineer is asked how to make tea using an empty kettle, a tea bag, a cup, and tap water. The
engineer explained that first she would pour water in the kettle, then boil it, pour it in a cup, put the
tea bag in the cup, and wait until the tea brews. Next, a mathematician is asked how to make tea using
a kettle full of water, a tea bag, a cup, and tap water. The mathematician proposed to empty the kettle
first so that they are back to the first problem.
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It is easy to show that P{J() is an unbiased estimator of P(y) for any N > 1:

E (PYo(¢) = E (% > so(X“‘))) .

= 3+ Y Er(p(x )

= SNEp(p(X))

= Ep(p(X)) = P(p).

However, unbiasedness itself is not enough.? Fortunately, we have results on the conver-
gence and decreasing variance as N increases.

Law of large numbers: If |P(p)| < oo, the law of large numbers (e.g. Shiryaev (1995),
p. 391) ensures almost sure (a.s.) convergence of Pij.(¢) to P(¢) as the number of i.i.d.
samples tends to infinity,

Pic(p) = P(p), as N — oo.

Central limit theorem: The variance of Pij~(y) is given by

V [Be(@)] = 7 2 Ve [f(X9)] = V0 [o(X)].

which indicates the improvement in the accuracy with increasing N, provided that Vp [p(X)]
is finite. Also, if Vp [p(X)] is finite, the distribution of the estimator is well behaved in
the limit, which is ensured by the central limit theorem (e.g. Shiryaev (1995), p. 335)

VN [Plc(p) = P(9)] 5 N (0, Vp[p(X)]) as N — oc.

Advantage over deterministic integration: There are deterministic numerical in-
tegration techniques available to approximate P(y); however these methods encounter
the problem called the curse of dimensionality since the amount of computation grows
exponentially with the dimension of X, d, (Press, 2007). Therefore, they are far from
being practical and reliable unless they work in low dimensional problems. Monte Carlo
integration is a powerful alternative to deterministic methods for integration problems.
Compared to deterministic numerical integration algorithms, the performance of Monte
Carlo does not depend on the dimension d, (check the variance of the Monte Carlo esti-
mate above, which does not depend on d,). This makes the method particularly useful for
high dimensional integrations (Newman and Barkema, 1999).

“Even (X ™) is an unbiased estimate of P() but it is ‘somewhat’ inferior than taking the average
over N samples.
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0 2 4 6 8 10

Figure 1.1: Buffon’s needles: 3 throws

1.2.2 Toy example: Buffon’s needle

This is an illustrative example for the use of Monte Carlo. In mathematics, Buffon’s needle
problem is a question first posed in the 18’th century by Georges-Louis Leclerc, Comte de
Buffon. Suppose we have a floor made of parallel strips of wood, each the same width, and
we drop a needle onto the floor. What is the probability that the needle will lie across a
line between two strips?

Buffon’s needle was the earliest problem in geometric probability to be solved; it can
be solved using integral geometry. The solution, in the case where the needle length is
not greater than the width of the strips, can be used to design a Monte Carlo method
for approximating the number 7, (although that was not the original motivation for de
Buffon’s question).

First, let us try to answer the initial question: What is the probability of the needle
of length 1 (without loss of generality) crossing a line between the strips of width 1 if the
location and the direction of the needle are independent and uniformly distributed? The
probability can actually be calculated: Let d be the distance from middle of the needle to
the nearest line and 6 be the acute angle between the parallel lines and the needle (between
0 and 7/2). A needle touches a line if and only if

—_

d
— 1.
sin 6 < 2 (1.9)

Try to verify this by observing the needles Figure 1.1. The variables d, 6 are independent
and uniformly distributed in [0, 1/2] and [0, /2], respectively, so that their joint probability
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0.4 d > sin(6)/2 1
0.3} 1
° ool d < sin(6)/2 ]
0.1} 1
0 1 1 1
0 0.5 1 15

¢

Figure 1.2: The set A that corresponds to the needle crossing a line

density can be written as

p(d,0) = {g fis? € [0,1/2] x [0,7/2]

Now, define the set A = {(d,0) : d/sinf < 1/2} = {(d,0) : d < sinf/2}. The set A
corresponds to the area under the curve in Figure 1.2. Letting X = (d,0), the required
probability is

P(X € A) = / /A p(r, 0)drdo

/2 sin(6)/2 4
:/ d9/ —dr
0 0 Q

2 w/2

— ;/ df sin(0)
= —[—cos(7/2) 4 cos(0)]

(1.10)

Q, x|

where the dummy variable r is used for d (just to avoid writing dd in the integral!).

Monte Carlo approximation: Suppose it is not our day and we cannot carry out
calculation in (1.10). In order to find P(X € A), we decide to run a Monte Carlo experiment
instead. Let X = (d,0) and observe P(X € A) = E(I4(X)). The idea is to generate
samples X = (d®¥ 9®) i =1,... N where each sample is generated independently as

d" ~ Unif(0,1/2), 0% ~ Unif(0, 7/2), (1.11)
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and estimate P(X € A) as
L
P(X € A)m— Y Ty(X®
XM~ 5> L)

= %Zﬂ(d(i) < sin(A")/2) (1.12)

(where we have introduced another notation-wise use of the indicator function I). In words,
for each sample X@ = (d@,0%)) we check whether d) < sin(6?)/2 (in other words, we
check whether X € A) and we divide the number of samples satisfying this condition
by the total number samples n. Observe that this is the implementation of (1.7) for this
problem. The samples (d,0®) can be generated by throwing a needle on a table with
parallel lines - or using a computer! Figure 1.3 shows the described Monte Carlo experiment
performed with N = 100 throws. The d, 6 values corresponding to these throws are shown
in Figure 1.3. Note that (1.12) is

number of red dots

P(X €A~ .
( ) total number of dots

The law of large numbers says that as n tends to infinity the estimate above converges to
the true value P(X € A) = 2/x. This fact can be ‘felt’ by observing the Figure 1.4 which
show the results of the same Monte Carlo experiment with larger N values. The estimate
of P(X € A) improves with V.

Estimating m: We have already stated that P(X € A) is known for this problem and in
fact it is 2/7. We have also described a Monte Carlo experiment to estimate this value.
With a little modification, our estimate can be used to estimate w. Since we have

2
P(X € A)’

we can approximate m by

Zi:l I(d® < sin(6()/2)
total number of dots

=2 X
number of red dots
This is a pretty fancy way of estimating m with a needle and a table! Figure 1.5 shows
the estimated value versus the number of samples n. Again, we see improvement in the
estimate as N increases.
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Figure 1.3: Top: Buffon’s needle experiment with 100 independent throws. Bottom: (d, 6)
values of the needle throws
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Buffon's needle, N = 1000. The estimated prob is 0.6590. True value is 0.6366
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Figure 1.4: (d,0) values of N = 1000 and N = 10000 independent needle throws
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1.2.3 The need for more sophisticated methods

The distribution P in the toy example was the product of two uniform distributions for

= (d, ). However, in many problems P is not always trivial to sample from. In the rest
of the course, we will see some methods to generate exact samples from P (that is, samples
that are exactly distributed according to P). These are the inverse transform method and
the rejection sampling method.

However, the story does not end there: Being able to sample from the distribution of
interest exactly is rarely the case when it comes to real applications in engineering and
science. Especially in Bayesian statistics, where the distribution we want to sample from
is the posterior distribution of some variable X given Y = y, which is of the form

pxpy (zly) = px(x )py|x(y|$) _ pr(x,y)
X|Y [ px(@)pyx(ylz)dz' [ pxy (2!, y)dz’
o px (2)pyx (y])

it is either too costly or impossible to perform exact sampling. That explains the vast
amount of literature on sophisticated Monte Carlo methods that aim to generate approzi-
mate samples. In the course, we will cover some of these methods. Among them, impor-
tance sampling and Markov chain Monte Carlo methods are worth mentioning as early as
here.



Chapter 2
Exact Sampling Methods

Summary: In order to obtain estimates as in (1.8), we need exact i.i.d. samples from P,
that is samples that are exactly distributed from P. This chapter describes some exact sam-
pling methods. These methods are the method of inversion, transformation, composition,
and rejection sampling

2.1 Pseudo-random number generation

“The generation of random numbers is too important to be left to chance” and truly
random numbers are impossible to generate on a deterministic computer. Published tables
or other mechanical methods such as throwing dice, flipping coins, shuffling cards or turning
the roulette wheels are clearly not very practical for generating the random numbers that
are needed for computer simulations. Other techniques rely on chaotic behaviour, such
as the thermal noise in Zener diodes or other analog circuits as well as the atmospheric
noise (see, e.g., www.Random.org) or running a hash function against a frame of a video
stream. Still, the vast amount of random numbers are obtained from pseudo-random
number generators. Apart from being very efficient, one additional advantage of these
techniques is that the sequences are reproducible by setting a seed, this property is key for
debugging a Monte Carlo code.

2.1.1 Pseudo-random number generators for Unif(0, 1)

Today, in most applications the task of random variable generation is performed on com-
puters. In fact, a computer is mainly responsible for generating pseudo-random numbers
that look as if they are independent and distributed uniformly from between 0 and 1,
so goes the name “pseudo-random”. That is, any sequence of pseudo-random numbers
that are produced by the pseudo-random number generator should look like a sequence of
i.i.d. uniformly distributed random numbers between 0 and 1, showing no correlation and
spreading over the (0, 1) interval uniformly.

There already exist highly sophisticated numerical methods to generate such pseudo-
random numbers that pass certain tests for uniformity and independence. The most well
known method for generating random numbers is based on a Linear Congruential Generator
(LCG). The theory is well understood, and the method is easy to implement and fast. A

11
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LCG is defined by the recurrence relation:
Tpy1 = (ax, + ¢)(mod M)

If the coefficients a and ¢ are chosen carefully (e.g. relatively prime to M), x, will be
roughly uniformly distributed between 0 and M — 1 (and with normalisation by M they
can be shrunk between 0 and 1). By “roughly uniformly” we mean that the sequence of
numbers x,, will pass many reasonable tests for randomness. One such test suite are the
so called DIEHARD tests, developed by George Marsaglia, that are a battery of statistical
tests for measuring the quality of a random number generator.

A more recently proposed generator is the Mersenne Twister algorithm, by Matsumoto
and Nishimura, 1997. It has several desirable features such as a long period and being very
fast. Many public domain implementations of the algorithm exist and it is the preferred
random number generator for statistical simulations and Monte Carlo computations.

2.2 Some exact sampling methods
In the sequel, we will assume that a computer can produce for us an independent variable
U ~ Unif(0, 1)

every time we ask it to do so. The crucial part is how to transform one or more copies of
U such that the resulting number is distributed according to a particular distribution that
we want to sample from. In a more general context, how can one exploit the ability of the
computer to generate uniform random variables so that we can obtain random numbers
from any desired distribution?

In the following we will see some exact sampling methods.

2.2.1 Method of inversion

Suppose X ~ P taking values in X C R with cdf F' as defined above: F(z) = P(X < z),
x € R. Recall that F' takes values in [0, 1]. Define the generalised inverse cdf G : (0,1) — R

" G(u) :=inf{x € X : F(x) > u}. (2.1)

Remark 2.1. Define the set S(u) = {z € X : F(x) > u}. We can show that, by right-
continuity of F', S(u) actually attains its infimum, that is the minimum of S(u) ezists and
hence inf S(u) = min S(u), or S(u) = [G(u), 00)".

Proof: If z < G(u), x ¢ S(u) by definition. If z > G(u), then there exists 2’ < z with 2’ € S(u);
since Fis non-decreasing, F(x) > F(z') > u, so x € S(u). Finally, by the right-continuity of F', we have
F(G(u)) =inf F(y) : y > G(u) > u. Therefore G(u) € S(u) and S(u) = [G(u), c0)
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1o Exp(1) : sampling via the method of inversion
. T T T T T T T

pdf
cdf ||
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0.4 -
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Figure 2.1: Method of inversion for the exponential distribution

If X is discrete taking values xq,xs, ..., this definition reduces to G(u) = z;+ where
i* = min{i : F(z;) > u}. In other words, G(u) = z;+ such that

F(ZEZ'*_1> <u< F(ZL’Z*) (22)

If X is continuous with a pdf p(x) > 0 for all z € X, (i.e. F has no jumps and no flat
parts in X'), then F is strictly monotonic in X, its inverse G = F~! can be defined on X,
and we simply have G(u) = F~(u).

The following Lemma enables the method of inversion.

Lemma 2.1. If U ~ Unif(0,1), G(U) ~ P

Proof. Since S(u) = [G(u), ) (see Remark 2.1), we have x > G(u) if and only if F'(z) > u.
Hence, P(X <z)=P(G(U) <z)=P(U < F(z)) = F(z). O

Lemma 2.1 suggests we can sample X ~ P by first sampling U € Unif(0,1) and
then transforming X = G(U). This approach is called the method of inversion. It was
considered by Ulam prior to 1947 (Eckhardt, 1987) and some extensions to the method
are provided by Robert and Casella (2004).

Corollary 2.1. Suppose F' is continuous. If X ~ P, then F(X) ~ Unif(0,1).

Proof. Since we have S(u) = [G(u),00), > G(u) implies F'(x) > u. Moreover, if 2 < G(u)
then F'(x) < u by definition of G. By continuity of F', we have F(G(u)) = u, so F'(z) <u
if and only if + < G(u). Hence P(F(X) < u) = P(X < G(u)) = F(G(u)) = u, and we
conclude that the cdf of F/(X) is the cdf of Unif(0, 1). O
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Geo(0.3): sampling via the method of inversion
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Figure 2.2: Method of inversion for the geometric distribution

Example 2.1. Suppose we want to sample X ~ P = Exp(\) from the exponential distri-
bution with rate parameter A > 0. The pdf of Exp(\) is

)= {2 =0
T) = .
b 0, else
The cdf is
e Mdt =1 — e >0
u=F(x) = Jo Ae © o r=r
0, else
Therefore, we have v = —log(1 —u)/\. So, we can generate U ~ Unif(0,1) and transform

X = —log(1 =U)/\ ~ Exp(X). See Figure 2.1 for an illustration.

Example 2.2. Suppose we want to sample X ~ P = Geo(p) from the geometric distribu-
tion on X = N with success rate parameter p € (0,1) and pmf’

plx)=1—-p)¥p, x=0,1,2....

1

Making use of Y ;o' = 1’1‘5; with o = 1 — p, the cdf at the support points is given by

F(z)=1—(1-p)*.
Given U = u sampled from Unif(0, 1), the rule in (2.2) implies
I-(1-p<u<l—(1-p

2This distribution is used for the number of trials prior to the first success in a Bernoulli process with
success rate p. Another convention is to take the support range as 1,2, ... rather than 0, 1,2 and interpret
X as the number of trials until the successful trial, including the successful one. Then the pmf changes to

p(x)=(1—p)*tpr>1
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Solving the inequality for x we arrive at

log(1—u) log(1 — u)

log(1—p) log(1 —p)

This is nothing but the round-up function written explicitly:

See Figure 2.2 for an illustration.

2.2.2 Transformation (change of variables)

The method of inversion can be seen as a transformation from U to X = G(U). In fact,
one can use transformation in a more general sense than using G by considering a change
of variables via a suitable function g.

Example 2.3. If we want to sample from X ~ Unif(a,b), a < b, we can sample U ~
Unif(0,1) and use the transformation

X =9U):=0b-a)U+a. (2.3)

Transformation can also be used for more complicated situations than in Example 2.3.
Suppose we have an m-dimensional random variable X € X C R™ with pdf px(z) and we
apply a transform to X using an invertible function g : X — ), where ) C R™ to obtain

Y =M,...,Y) = g(X1,..., Xpn)

Since g is invertible, we have X = ¢~ '(Y'). What is the pdf of Y, py(y)? This density can
be found as follows: Define the Jacobian determinant (or simply Jacobian) of the inverse
transformation ¢! as

99~ (y)
J(y) = det ——== 2.4
(1) = det =L (24)
The usual practice to ease the notation is to introduce the short hand notation (yi, ..., ym) =
g(x1,...,z,) and write J(y) by making implicit reference to g as
0x1/0y1 ... 0x1/0ynm
0 0 U
Tw) = det 22 = detail‘h—w; —det| o
4 Yoeeeo Y 0T /0y1 ... 0Ty /OYm

The Jacobian is useful for integration: If we make a change of variables from = — y, we
have to substitute dr = |J(y)|dy. When we apply this for the integral of any function
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¢ : X — R with respect to px(x), we have

/ px (2)p(a)dz = / px (a7 ()™ ) 17(0)]| dy
_ / px (g W) 17| (g™ (4))dy
= / py (W)p(g~ ' (y))dy

where

py(y) =px(g~ ) [J(y)| (2.5)

is the pdf of Y.

Change of variables can be useful when P is difficult to sample from using the method
of inversion but X ~ P can be performed by a certain transformation of random variables
that are easier to generate, such as uniform random variables.

Example 2.4. We describe the Box-Muller method for generating random variables from
the standard normal (Gaussian) distribution N'(0,1). The pdf for N'(u, 0?) is

1 1 2
o(x; p,0%) = e 27
( ) V2mo?
The method of inversion is not an easy option to sample from N(0,1) since the cdf of
N(0,1) is not easy to invert. Instead we use transformation.
The Boz-Muller method generates a pair of independent standard normal random vari-

ables X1, Xo s N(0,1) as follows: First we generate

R ~ Exp(1/2), © ~ Unif(0,27).
and then apply the transformation
X1 = VRcos(®), X,=VRsin(0)

If we wanted to start off from uniform random numbers, we could consider generating
Uy, Us iid- Unif(0, 1) and setting R = —2log(Uy) and © = 27U, so that R, © are distributed

as desired. In other words,

Xy = /—2log(U1) cos(2nls), X =+/—2log(Uy)sin(27Us)

One way to see why this works is to use change of variables. Note that®

(R,0) = (X7 + X3, arctan(X2/X1))) (2.6)

3To be precise, © = arctan(Xy/X1) + 7l(X; < 0) since © € [0,27], but omitting the extra term
7I(X1 < 0) does not change the results.
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Then the Jacobean at (x1,x2) = (1/rcosf,/rsinb) is

or/0xy Or/0xs| 214 219
J(r1, - =2 2.7
122 = o000, o0 oms| = T T W T n 27

Therefore, we can apply (2.5) to get

pX17X2(x17I2) ( ) ( )|J(l’1,l‘2)|
(23 + 23)pe(arctan(zq/x1))|J (21, 22)]|

%(931+3’2) LQ
2

1 1
~Ver Ven

which is the product of pdf of N(0,1) evaluated at x1 and xs. Therefore, we conclude that

X1, Xo "R N(0,1).

("b

Dr
1
2

1.2 1,2
2%1 2%

Multivariate normal distribution: Another important transformation that we should
be familiar with is a linear transformation of a multivariate normal random variable. We
denote the distribution of an n x 1 multivariable normal random variable as X ~ N (u, X)
where p = E(X) is an n x 1 mean vector and

2 = Cov(X) = E[(X — u)(X — p)"]
is an n X n symmetric positive definite’ covariance matriz The (i, j)'th element of ¥ is
0ij = Cov(Xi, X;) = E[(X; — 1) (X — p5)] = E(XiX) — papu;

The pdf of this distribution is (using the same letter as for the pdf of the univariate normal
distribution)

oo %) = s o { 50— S e -0} (29)

where | - | stands for determinant.
Suppose X = (Xi,..., X,,)T ~ N(,X) and we have the transformation

Y =AX +n

where A is an m x n matrix with m < n with rank m°, and 7 is an m x 1 vector. We know
for a fact that a linear transformation of X has to be normally distributed as well. Also,

41n fact, positive semi-definite covariance matrices are also allowed, however the distribution is called
degenerate and it does not have a pdf.

®We constraint A to full row rank matrices since otherwise the resulting covariance matrix for AL AT
is no longer positive definite and Y is degenerate.
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the normal distribution is completely characterised by its mean and covariance. Therefore,
we can work out the mean and the variance of Y in order to identify its distribution.

E(Y) = E(AX + 1)
= AE(X) +n
=Ap+n

Cov(Y) = E([Y — E(V)][Y — E(V)]")
= E([AX +n — (Ap +n)][AX + 1 — (Ap +n)]")
=E(A(X — pu)(X — p)TAT) = ACov(X)AT
=AY A"

Therefore, Y ~ N (Au + n, ALAT).

Example 2.5. The above derivation suggests a way to generate an n-dimensional mul-
tivariate sample X ~ N(u,X). We can first generate i.i.d. normal random variables
Ri,....R, - N(0,1) so that R = (Ry,...,R,) ~ N(0,,1,) where 0, is the n x 1 vector
of zeros and I, is the identity matriz of size n. Then, we decompose ¥ = AAT using the
Cholesky decomposition. Finally, we let X = AR + p. Observe that the mean of X 1is
A0, + = p and covariance matriz of X is AI,LAT = AAT =%, so we are done.

2.2.3 Composition

Let a random variable Z ~ II taking values from the set Z and II has a pdf or pmf shown
as m(z). Suppose also that given z, X|z ~ P, where each P, admits either a pmf or a
pdf shown as p,(x). Then the marginal distribution P is a mizture distribution and in the
presence of pdf’s or pmf’s, we have

p() = {fpz(x)ﬂ(z)dz, if 7(2) is a pdf (2.10)

Yo.p(x)m(2), if n(z)is a pmf

Whether p(x) is pmf or a pdf depends on whether p,(x) is pmf or pdf. The integral/sum
may be hard to evaluate, and the mixture distribution may be hard to sample directly.
But if we can easily sample from II and from each P,, then we can just

1. sample Z ~ 11,
2. sample X ~ P, and
3. ignore Z and return X.

The random number we produce in this way will be an exact sample from P, i.e. X ~ P.
This is the method of composition. Ignoring Z is also called marginalisation, by which we
overcome the difficulty of dealing with the tough integral/sum in (2.10).
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Example 2.6. The density of a mizture of Gaussian distribution with K components with
means and variance values (p1,0%), ..., (ux,0%), and probability weights wy, ..., wx for
its components (such that wy + -+ + wg = 1) is given by

ple) =) wp(x; e, 03).

k=1

To sample from p(x), we first sample the component number k with probability wy (for
ezample using the method of inversion), and given k, we sample X ~ N (juy, o2)

Example 2.7. A sales company decides to reveal the demand D for a product over a
month. However, for privacy reasons, it shares this average by adding some noise to D,
which results in the shared value X. It is given that the distribution of the revealed demand

X has the pdf BV ]
o[ [ -452),
- !

We want to perform a Monte Carlo simulation for this data sharing process. How do we
sample X ~ P?

Although p(x) looks hard, observe that the first term in the sum is the pmf of PO(X)
evaluated at d (can be viewed as the demand) and the second term in the sum is the pdf of
Laplace(d, b) evaluated at x (can be viewed as the noisy demand)®. Therefore, generation
of X is possible by the method of composition as

1. Sample D ~ PO(N),
2. Sample X ~ Laplace(D,b) (equivalent to V ~ Laplace(0,b) and X = D+ V.).
3. Ignore D and return X.
It is an exercise for you to figure out how one can sample from the Poisson and Laplace

distributions.

2.2.4 Rejection sampling

Another common method of obtaining i.i.d. samples from P with density p(z) is rejection
sampling. This method was first mentioned in a 1947 letter by Von Neumann (FEckhardt,
1987), it was also presented a few years later in von Neumann (1951). The method is
available when there exists an instrumental distribution ) with density ¢(z) such that

e ¢(x) > 0 whenever p(x) > 0, and

e There exists M > 0 such that p(z) < Mg(z) for all z € X.
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Algorithm 2.1: Rejection sampling
1 Generate X' ~ @) and U ~ Unif(0, 1).

2 IfU < %, accept X = X'; else go to 1.

The rejection sampling method for obtaining one sample from P can be implemented with
any ¢(z) and M > 0 that satisfy the conditions above as in Algorithm 2.1.

How quickly do we obtain a sample with this method? Noting that the pdf of X’ is
px(z) = q(z), the acceptance probability can be derived as

P(Accept) = /P(AccepﬂX’ = x)px:(z)dx
- [ Sz
= %/p(x)dx
1

M’

(2.11)

which is also the long term proportion of the number accepted samples over the number
of trials. Therefore, taking ¢(x) as close to p(x) as possible to avoid large p(x)/q(x) ratios
and taking M = sup, p(z)/q(x) are sensible choices to make the acceptance probability
P(Accept) as high as possible.

The validity of the rejection sampling method can be verified by considering the dis-
tribution of the accepted samples. Using Bayes’ theorem,

~—~

N

~

Example 2.8. Suppose we want to sample X ~ I'(a, 1) with o > 1, where I'(a, ) is the
Gamma distribution with shape parameter o and scale parameter 3. The density of T'(«a, 1)

is .
x* e
= — > 0.
p(z) T °
As possible instrumental distributions, consider the family of exponential distributions
Qx = Exp(\), 0 < X\ < 1,7 with pdf

o(z) =A™, 2>0.

6The pmf of PO()\) evaluated at k is %, and the pdf of Laplace(u,b) evaluated at z is
% exp (_ \JC;M\)

“For A > 1, the ratio £ (é)) is unbounded in z hence rejection sampling cannot be applied.
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Recall that M has to satisfy p(x) < Mq(z), x € X and therefore given gx(x), a sensible
choice for My is M, = sup, p(x)/qx(x), hence we wish to use \ which minimises the
required My. Given 0 < X\ < 1, the ratio

p(:z:) _ xa—le(A—l)x
qr(z) Al'()

is mazimised at x = (o — 1) /(1 — \), so we have

(a—l)afl e—(a—1)

A~ U=
A AT (av)

resulting in the acceptance probability

p(a) (ﬂl—m>“1ﬁ1Mm1

qx(x) M, “\Ua-1

Now, we have to minimise My with respect to X so that P(Accept) = 1/M, is mazimised.
M)y, is minimised at \* = 1/a®, yielding
aae—(a—l)

M*:W.

Overall, the rejection sampling algorithm we choose to sample from I'(a, 1) is
1. Sample X" ~ Exp(1/a) and U ~ Unif(0, 1).

2. If U < (x/a)* tel/aleta=l “gecept X = X/, else go to 1.

Check Figure 2.3 for the roles of optimum choice for A and M. Also, Figure 2./ illustrates
the computational advantage of choosing A optimally.

2.2.4.1 When p(z) is known up to a normalising constant

One advantage of rejection sampling is that we can implement it even when we know p(x)
and ¢(z) only up to some proportionality constants Z, and Z,, that is, when

o) =22 2,= [ (213)

q(z) = . 2y = /Z]\(az)dm (2.14)

(Usually ¢(z) is fully known in which case the following should be read with g(z) = ¢(x)
and Z, = 1.) It is easy to check that one can perform the rejection sampling method as in
Algorithm 2.2 for any M such that p(z) < Mq(z) for all x € X.

Justification of Algorithm 2.2 would follow from sZimilar steps to those in (2.12). Also,
1 4p

in that case, the acceptance probability would be ;7.
q

8That is why we constrain a > 1; otherwise \* would be greater than 1, yielding an unbounded ratio.
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rejection sampling for I'(2, 1) with optimal choice for A | 4rejection sampling for I'(2, 1) with different values of \
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Figure 2.3: Rejection sampling for I'(2, 1)
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Figure 2.4: Rejection sampling for I'(2,1): Histograms with A = 0.5 (68061 samples out
of 10°) and A = 0.01 (2664 samples out of 10° trials).

Algorithm 2.2: Rejection sampling with unnormalised densities
1 Generate X' ~ @ and U ~ Unif(0, 1).

2 If U < %, accept X = X; else go to 1.
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Example 2.9. Sometimes we want to sample from truncated versions of well known distri-
butions, i.e. where X s contained in an interval with density proportional to the density of
the original distribution on that interval. For example, take the truncated standard normal
distribution N, (0, 1) with density

o(x; 0, DI(|z] < a
p(r) = A5 0 = ) (2.15)
o @(y;0,1)dy
_ @) (2.16)
P
where p(x) = ¢(z;0, D)I(|z| < a) and dy We can perform rejection

P f o(y;
sampling using q(x) = ¢(x;0,1), (that is q(z) = (x)
I(|z| < a) < 1, we can choose M = 1. Since Z,
v = [, oly; 0, 1)dy.
The rejection sampling method for this distribution reduces to sampling from'Y ~ ¢
and accepting X =Y if |Y| < a, which is intuitive.

an d =1). Since p(x)/¢(x;0,1) =
= the acceptance probability s

Example 2.10. The unknown normalising constant issue mostly arises in Bayesian in-
ference when we want to sample from the posterior distribution. The posterior density of
X given'Y =y is proportional to

pX\Y(CU‘Z/) o px (2)pyx (ylz) (2.17)

where the normalising constant py (y) = [ px(x 2)py|x (y|z)dz is usually intractable. Sup-
pose we want to sample from pX|y(x|y) When px |y (x|y) is not the density of a well known
distribution, we may be able to use rejection sampling. If we can find M > 0 such that
pyix(ylz) < M for all x € X, and the prior distribution Px with density px(x) is easy to
sample from, then we can use rejection sampling with Q with q(x) = px(x).

1. Sample X' ~ @Q and U ~ Unif(0, 1),

2. If U < pyx(y|X")/M, accept X = X'; otherwise go to step 1.

2.2.4.2 Squeezing

The drawback of rejection sampling is that in practice a rejection based procedure is
usually not viable when X' is high-dimensional, since P(Accept) gets smaller and more
computation is required to evaluate acceptance probabilities as the dimension increases.
In the literature there exist approaches to improve the computational efficiency of rejection
sampling. For example assuming the densities exist, when it is difficult to compute ¢(x),
tests like u < + qg % can be slow to evaluate. In this case, one may use a squeezing function

s: X — [0,00) such that q(i) is cheap to evaluate and (2 is tlghtly bounded from above

1 s(z) p(z)
by 1. For such an s, not only u < W (o) would guarantee u < M OL

but also if u < ]\1/’ then u < %Zg) would hold with a high probability. Therefore,

hence acceptance,

~
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in case of acceptance evaluation of % would largely be avoided by checking u < ﬁ;gi;

first. In Marsaglia (1977), the author proposed to squeeze p(x) from above and below by
q(z) and s(z) respectively, where ¢(x) is easy to sample from and s(x) is easy to evaluate.
There are also adaptive methods to squeeze 7 from both below and above; they involve
an adaptive scheme to gradually modify ¢(x) and s(z) from the samples that have already
been obtained (Gilks, 1992; Gilks and Wild, 1992; Gilks et al., 1995).
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Exercises

1. Use change of variables to show that X defined in (2.3) in Example 2.3 is distributed
from Unif(a, b).

2. Suggest a way to sample from PO(A) using uniform random numbers.

3. Suggest a way to sample from Laplace(a,b) using uniform random numbers. (Hint:
Notice the similarity between the Laplace distribution and the exponential distribu-
tion.)

4. Show that the modified rejection sampling method described in Section 2.2.4.1 for
unnormalised densities is valid, i.e. the accepted sample X ~ P, and it has the

acceptance probability f?w as claimed. The derivation is similar to those in (2.11),
(2.12).

Z

5. Write your own function that takes a vector of non-negative numbers w = [w; ... wg]
of any size and outputs a matrix X (of the specified size, sizel x size2) of i.i.d.
integers in {1,..., K}, each with probability proportional to wy (i.e. their sum may
not be normalised to 1). In MATLAB, your function should look something similar
to [X] = randsamp(w, sizel, size2)

6. Learn the polar rejection method, another method used to sample from AN(0,1).
Write two different functions that produce i.i.d. standard normal random variables
as many as it is specified (as an input to the function): one using the Box-Muller
method and the other using the polar rejection method. Plot the histograms of 10°
samples that you obtain from each function; make sure nothing strange happens in
your code. Compare the speeds of your functions. Which method is faster? Why do
you think is the reason?

7. Write your own function for generating a given number N of samples (specified as an
input argument) from a multivariate normal distribution A (u,Y) with given mean
vector p and covariance matrix ¥ as inputs.

8. Derive the rejection sampling method for Beta(a,b) a,b > 1 using the uniform dis-
tribution as the instrumental distribution. Write a function that implements this
method. Is it still possible to use the uniform distribution as () when a < 1 or b < 17
Why or why not?



Chapter 3
Monte Carlo Estimation

Summary: This is a small chapter on the use of Monte Carlo to estimate certain quan-
tities regarding a given distribution. Specifically, we will look at the importance sampling
method for Monte Carlo integration.

Let’s go back to the beginning and consider the expectation in (1.3) once again

P(g) = Ep(p(X)) = /X o(@)p(e)da.

In order to estimate P(y) by the plug-in estimator (1.8)

Plole) = 3 30X, (3.1

we need i.i.d. samples from P and in the previous chapter we covered some exact sampling
methods for generating X® ~ P, i=1,...,N.

However, there are many cases where X ~ P is either impossible or too difficult,
or wasteful. For example, rejection sampling uses only about 1/M of generated random
samples to construct an approximation to P. In order to generate N samples, we need on
average N M iterations of rejection sampling. The number M can be very large, especially
in high dimensions, and rejection sampling may be wasteful.

3.1 Importance sampling

In contrast to rejection sampling, importance sampling uses every sample but weights each
one according to the degree of similarity between the target and instrumental distributions.
We describe the importance sampling method for continuous variables where P has a pdf
p(z) - the discrete version should be easy to figure out afterwards:

Suppose there exists a distribution ¢ with density ¢(z) such that ¢(xz) > 0 whenever
p(x) > 0. Given p(z) and ¢(z), define the weight function w: X — R

_Jp(x)/q(x), q(z) >0,
v {0 q(z) = 0. (32)

26
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The idea of importance sampling follows from the importance sampling fundamental iden-
tity (Robert and Casella, 2004): We can rewrite P(y) as

P(¢) = En(p(X)) = /X (x)p(x)dz
_ p(x)
- [ ew)iatayis

- /X (2)w(e)q(x)dz
— Eo(p(X)w(X)) = Q(pw)

where pw stands for the product of the functions ¢ and w. This identity can be used with

a ) which is easy to sample from, which leads to importance sampling given in Algorithm
3.1

’U

Algorithm 3.1: Importance sampling
1 fori=1,...,N do
| Sample X ~ @, and calculate w(X ) according to (3.2).

3 Calculate the approximation of the expectation P(y) as

PE(9) = 3 3 e(XDpu(x), (3:3)

The weights w(X @) are known as the importance sampling weights. Note that Pf(y)
is another plug-in estimator but for different distribution and function, namely it is the
plug-in estimator for @ (pw). Therefore the estimator in (3.3) is unbiased and justified by
the strong law of large numbers and the central limit theorem, provided that Q(pw) =
Eq (p(X)w(X)) and Vg [w(X)e(X)] are finite.

Example 3.1. Suppose we have two variables (X,Y) € X x Y with joint pdf pxy(x,y).
As we recall, we can write the joint pdf as

px.y(x,y) = px(@)py|x (y|z)

In the Bayesian framework where X 1is the unknown parameter and'Y s the observed vari-
able (or data), px(x) is called the prior density and it is usually easy to sample from, and
py|x(y|z) is the conditional density of data, or the likelihood, which is easy to compute.'

In fact, this is how one usually constructs the joint pdf in Bayesian framework: First define the prior
X ~ px(z), then define the data likelihood Y'|X = 2 ~ py|x(y|z), so that the px y(z,y) is constructed
as above. When the starting point to define the joint density is to define the prior and the likelihood, it is
notationally convenient to define the marginal and condltlonal pdfs p(r) := px (v) and g(y|x) := py|x (y|r)

and write p(z,y) = p(x)g(y|z), p(zly) o« p(z)g(ylz), = [ w(@)g(ylz)dz, ete.
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In certain applications, we want to compute the evidence py(y) at a given value y of
the data. We can write py as

py(y) Z/pr,y(x,y)dﬂc (3.4)
— [ px@prix(ulois (35)
= Ep, (pyx (y]X)) (3.6)

where the last line highlights the crucial observation that given y, the likelihood can be
thought as a function ¢(z) = py|x(y|lz) and py(y) can be written as an expectation of
(X)) with respect to the prior with density px(x). Therefore, py(y) can be estimated using
a plug-in estimator where we sample XM, ..., XWN) ~ py(x) and estimate py (y) as

N
1 ,
py(y) = N ZPY|X(?J|X(Z)), XWX~ py().
i=1

However, we do not need to sample from px(x). In fact, we can use importance sampling
with an importance density q(x).

1 px (X W) (4) 1) (N)
PY(:U)%NZIWPHX(ZAX )7 XV, 00X NCI(JC)-

Being able to approrimate a marginal distribution as in py (y) will have an important role
later on when we discuss sequential importance sampling methods.

3.1.1 Variance reduction

As we have freedom to choose (), we can control the variance of importance sampling
(Robert and Casella, 2004).

Vo [PR®)] = Ve [w(X)p(X)]
=+ QW) ~ QMup))
= - Q) — P(p)).

Therefore, minimising Vg [Pf5(¢)] is equivalent to minimising Q(w?¢?), which can be
lower bounded as

Q(w¢?) > Q(wle])* = P(l¢])*
using the Jensen’s inequality. Considering Q(w?p?) = P(wp?), this bound is attainable if
we choose ¢ such that it satisfies

w2 _ Pl
()~ Telo)l

r € X, p(x) #0.
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This results in the optimum choice of ¢ to be

a(a) = pl) J';’}(,gj")

for points € X such that ¢(x) # 0, and the resulting minimum variance is given by

minVo [PR()] = 5 (P - PO

Note that this minimum value is 0 if p(x) > 0 for all x € X. Therefore, importance
sampling in principle can achieve a lower variance than perfect Monte Carlo. Of course,
if we can not compute P(p) already, it is unlikely that we can compute P(|p]). Also, it
will be rare that we can easily simulate from the optimal () even if we can construct it.
Instead, we are guided to seek a @) close to the optimal one, but from which it is easy to
sample.

Example 3.2. We wish to implement importance sampling in order to approzimate E(¢(X))
where X ~ P = N(u,0?). Instead of sampling from P directly, we want to sample from
Qr = N(u,0?/k). Wewant to choose the best k for ¢ in terms of the variance of the impor-
tance sampling estimate. Recall that minimising V¢, [P@f (go)} 18 equivalent to minimising

Qk(szOQ) where wi(x) = p(x)/qr(z).

Qk(wiSOQ):/Qk(x)

X qr()?

= /X p(z) o(x)dx

qr(z)

The ratio p(x)? 18
qx ()

p(x)Q 1 —(e—p)2/02 V 2102k (@—p)?
- e e2 o
qk (x) 2mo? \/E
= —1 @_%(Q_k)%ﬁ

VEV27ro?

This ratio diverges when k > 2, and unless p(x)?* balances it the second moment Qy(w?p?)
diverges. Therefore, let us confine k to k € (0,2). In that case, we can rewrite

p(l’)Q - 1 Y 2—k 7%(27]{) (1*5)2
= (& o
a(x) k(2 —k) V2r0?
1

= m%—k(iﬂ)

Therefore,

L Q) =

WD = e ieh
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When o(z) =z and p = 0, Qa_x(¢?) = Eq, , (X?) = % Therefore, we need to minimise

2
LT gy,
k(2—k)2—Fk
The minimum is attained at k = 1/2 and is
Vo, (PY(p)) = S {o®(2 — k)™3271/2)} =0 7698"—2
Q1/2 IS N k:1/2 : N

The variance of the plug-in estimator P () for P(p) is %2, which is larger!

Effective sample size: One approximation of the importance sampling estimator is
proposed in Kong et al. (1994) to be

1

Vo [Bs(9)] = Ve [p(OH{1 + Vo [w(X)]}

= Vp [Pic(9)] {1+ Vo [w(X)]}.

This approximation might be confusing at the first instance since it suggests that the vari-
ance of importance sampling is always greater than that of perfect Monte Carlo, which we
have just seen is not the case. However, it is useful as it provides an easy way of monitoring
the efficiency of the importance sampling method. Consider the ratio of variances of the
importance sampling method with N particles and perfect Monte Carlo with N’ particles,
which is given according to this approximation by

Va [Pljg<90>} - N’

o o7 = v+ Vo [wX)]}

Ve [Plcle)] N
The number N’ for which this ratio is 1 would suggest how many samples for perfect
Monte Carlo would be equivalent to N samples for importance sampling. For this reason
this number is defined as the effective sample size (IKong et al., 1994; Liu, 1996) and it is
given by

Ny = N .
14+ Vg [w(X)]

Obviously, the term Vg [w(X)] itself is usually estimated using the samples X1 ... X®)
with weights w(X @), ..., w(X™) obtained from the importance sampling method.

3.1.2 Self-normalised importance sampling

Like rejection sampling, the importance sampling method can be modified for the cases

when p(z) = I%“:) and/or ¢(x) = %Z) and we only have p(z) and ¢(x). This time, letting
p) &
w(z) = | awr 4@ >0
0, q(z) =0,
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observe that

and

Therefore, we can write the importance sampling fundamental identity in terms of p and

q as
P(y) = & (pw) _ Q(wy)
Zy/Zq Q (w)
The importance sampling method can be modified to approximate both the nominator, the
unnormalised estimate, and the denominator, the normalisation constant, by using Monte
Carlo. Sampling XM, ..., X from @, we have the approximation

1 ZN (2) (4) N
L o(X ) w(X W) . ,
Pg(p) = =5 . =) Whp(Xx®). (3.7)
% Zf\il w(X D) zzl
where o
W@ — ;U(X—)
23:1 w(XW)

are called the normalised importance weights as they sum up to 1. The resulting method,
which is called self-normalised importance sampling is given in Algorithm 3.2: Being the
ratio of two unbiased estimators, estimator of the self-normalised importance sampling is
biased for finite N. However, its consistency and stability are provided by a strong law of
large numbers and a central limit theorem in Geweke (1989). In the same work, the variance
of the self normalised importance sampling estimator is analysed and an approximation
is provided, from which it reveals that it can provide lower variance estimates than the
unnormalised importance sampling method. Also normalised importance sampling has
the nice property of estimating a constant by itself, unlike the unnormalised importance
sampling method. Therefore, this method can be preferable to its unnormalised version
even if it is not the case that P and () are known only up to proportionality constants.

Self-normalised importance sampling is also called Bayesian importance sampling in
Geweke (1989), since in most Bayesian inference problems normalising constant of posterior
distribution is unknown.
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Algorithm 3.2: Self-normalised importance sampling
1 fori=1,...,N do
t Generate X ~ @, calculate w(X®) = %XU)).

s for:=1,...,N do

G) _ _ wXW)
L Set W = ST WX )

5 Calculate the approximation to the expectation

N
Py (p) =) Wip(x)

=1

Example 3.3. Let us consider the posterior distribution in Example 2.10

pxy (]y) o< px(ﬂf)pmx(ylﬂf)

and the unknown normalising constant is py (y pr py|X (y|x)dx. Given the data
Y =y, we want to calculate the expectation Ofgo X — R with respect to pxy (x|y)

Px(plY =y) =E(p(X)]Y =y) = /pxw(xly)w(x)dx-

Since we know px|y(xly) only up to a proportionality constant, we use self-normalised
importance sampling. With the choice of Q with density q(x), self-normalised importance
sampling becomes

1. Fori=1,...,N; generate X ~ Q, calculate

pX(X(i))pY|X(y|X(i))

w(X®) = g(X @)

w(x(i>)
i w(X )

3. Approzimate E(p(X)|Y = y) = SN, Whp(X®),

2. Fort=1,...,N; set W@ =

If we choose q(x) = px(x), i.e. the prior density, then w(x) = py|x(y|z) reduces to the
likelthood. But this is not always a good idea as we will see in the next example.

Example 3.4. Suppose we have an unknown mean parameter X € R whose prior dis-
tribution 1is represented by X ~ N(u,0?). Conditional on X = z, n data samples
Y =(Y,...,Y,) € R are generated independently

Yi, ..., Y| X =2 " Unif(z — a,z + a).
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We want to estimate the posterior mean of X givenY =y = (y1,...,yn), i.e. E(X|Y =
y) = fpxw(ﬂy)mdx, where

x|y (x]y) o< px(x)py|x (y|r)

n

The prior density and likelihood are px (z) = ¢(z; p, 02) and py|x (y|z) = TT7-; 5= Lo—awra) (¥i),
so the posterior distribution can be written as

1 n
pX\Y(xly) X ¢($, 22 02) (2@)" H ]I(:cha,:rJra)(yi)
=1

Densities px(x) and pxy(z,y) versus x for a fired Y =y = (y1,...,yn) with n = 10
generated from the marginal distribution of Y with a = 2, p =0, and 0® = 10 are given in
Figure 3.1. Note that the second plot is proportional to the posterior density.

We can use self-normalised importance sampling to estimate E(X|Y = y). The choice
of the importance density is critical here: Suppose we chose () to be the prior distribution
for X, i.e. qlx) = ¢(z;pu,0?). This is a valid choice, however if a is small and o* is
relatively large, it is likely that the resulting weight function

1 n
(2(1)” H ]I(x—a,x—i—a) (yz) .
=1

will end up being zero for most of the generated samples from Q) and it will be @ for few
samples. This results in a high variance in the importance sampling estimator. What is
worse, it is possible to have all weights to be zeros and hence the denominator in (3.7) can
be zero. Therefore the estimator is a poor one.

Let Ymax = max;y; and ymin = min;y;. A careful inspection of pxy(x|y) reveals that
given y = (Y1, .- -,Yn), X must be contained in (Ymax — @, Ymin + ). In other words,

w(x) =

TE (Ymax — @ Ymin + @) S —a<y;<x+a, Yi=1,...,n

Therefore, a better importance density does not waste its time outside the interval (Ymax —
a, Ymin + @) and generate samples in that interval. As an ezample, we can choose QQ =
Unif(Ymax — @, Ymin + @). With that choice, the weight function will be

b(w31,0%) oy
w(z) = T atsmmeime)? & € (Umax = @ Ymin + a)
0, else

Note that since we are using the self-normalised importance sampling estimator and hence
we normalise the weights W) = w(X(i))/Zj.V:l w(XD), we do not need to calculate the
constant factor (2a + Ymin — Ymax)/(2a)" for the weights.

Figure 3.2 compares the importance sampling estimators with the two different im-
portance distributions mentioned above. The histograms are generated from 10000 Monte
Carlo runs (10000 independent estimates of the posterior mean) for each estimator. Ob-
serve that the estimates obtained when the importance distribution is the prior is more
wide-spread, exhibiting a higher variance.
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0.1 Px‘(x) | 5 x1 08 pX,Y‘x, y) = px(‘x)pY x| ,‘()
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Figure 3.1: px(z) and pxy(z,y) vs x for the problem in Example 3.4 with n = 10 and
a=2

i%gortance distribution is prior: variance: 0.00089 im%%rtance distribution is uniform: variance: 0.00002
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Figure 3.2: Histograms for the estimate of the posterior mean using two different impor-
tance sampling methods as described in Example 3.4 with n = 10 and a = 2.
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Exercises

1. Consider Example 3.2, where importance sampling for N'(u, 0?) is discussed.

e This time, take g = 0 and p(x) = 22, Find the optimum k£ for this ¢ and
calculate the gain due to variance reduction compared to the plug-in estimator
Piic(¢)-

e Implement importance sampling (e.g., in MATLAB) for both ¢(z) = x and
o(z) = 2?, and verify that in each case the variance of the IS estimator is
lower than that of the plug-in estimator PJo(¢). Verify also that the k = 1/2
estimator is inferior for calculating the second moment, and likewise the k = 1/3

estimator is inferior for the first moment.

2. This example is based on Project Evaluation and Review Technique (PERT), a
project planning tool.? Consider the software project described in Table 3.1 with
10 tasks (activities), indexed by j = 1,...,10. The project is completed when all
of the tasks are completed. A task can begin only after all of its predecessors have
been completed. The project starts at time 0. Task j starts at time S5}, takes time Tj

Task Predecessors mean duration 6;
Planning None 4
Database Design 1
Module Layout

Database Capture

Database Interface

Input Module

Output Module

GUI Structure

I/O Interface Implementation
Final Testing

O 00~ O ULk W N —.

OO W W Wk N

O N W W O =

o
©

—_
)

Table 3.1: PERT: Project tasks, predecessor-successor relations, and mean durations

and ends at time E; = S; +T; . Any task j with no predecessors (here only task 1)
starts at S; = 0. The start time for a task with predecessors is the maximum of the
ending times of its predecessors. For example, Sy = Fy and Sy = max(Es, Eg, E7).
The project as a whole ends at time FEy.

e Using predecessor-successor relations in Table 3.1, draw a diagram (for example,
an acyclic directed graph) that shows the predecessor-successor relations in this
example, with a node for each activity.

2The example is largely taken from http://statweb.stanford.edu/~owen/mc/Ch-var-is.pdf The
original source can be reached at http://optlab-server.sce.carleton.ca/POAnimations2007/PERT.html.
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e Write a MATLAB function that takes duration times 73,5 = 1,...,10 and
outputs the completion time for the project.

e Assume 7, ~ Exp(1/6;) independent exponentially distributed random vari-
ables with means ¢; given in the final column of the table. Simulate this project
(i.e. task durations and completion time) and generate N = 10000 independent
realisations of the completion time. Plot the histogram of completion times and
estimate the mean completion time.

e The completion time Fjo can be seen as a function of task times X = (71, ...,Ty),
and the function is what you just coded above. Now suppose that there will
be a severe penalty should the project miss a deadline in 70 days time. Derive
the Monte Carlo estimator for P(Eyy > 70) = E(I(Eyy > 70)) and implement
it M = 1000 times with N = 10000 samples. Out of the M = 1000 samples,
calculate the sample variance of PJ«(¢) with ¢(X) = I(Ey, > 70)

e This time, estimate the same probability using importance sampling, taking ()
the distribution of independent task times that are exponentially distributed
with means \; (instead of 6;), that is

XO = (19 TY ~ Exp(1/A1) x ... x Exp(1/A10)

Write down the expression for PY (¢) in terms of A;’s and 6;’s and Tj(i)’s. Try
Aj = kb; for various values of x to see if you can come up with a better estimator,
that is one with lower variance, than the plug-in estimator P« ().

3. This is a simple example that illustrates the source localisation problem. We have a
source (or target) on the 2-D plane whose unknown location

X = (X(1),X(2)) € R?

we wish to find. We collect distance measurements for the source using three sensors,
located at positions sy, sg, and s3, see Figure 3.3. The measured distances ¥ =
(Y1,Y5,Y3), however, are noisy with independent normally distributed noises with

equal variance:®

Y| X ::UNN(|\:U—SZ-|],UZ), i=1,2,3,

where || - || denotes the Euclidean distance. Letting r; = ||z — s;||, the likelihood
evaluated at y = (y1, y2, y3) given = can be written as

3

pyix(ylz) = H O(yi;Ti,05) (3.8)

i=1

3In this way we allow negative distances, which makes the normal distribution not the most proper
choice. However, for the sake of ease with computations, we overlook that in this example.
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Figure 3.3: Source localisation problem with three sensors and one source

We do not know much a priori information about X, therefore we take the prior
distribution X as the bivariate normal distribution with zero mean vector and a
diagonal covariance matrix, X ~ N(0y,0215), so that the density is

px(z) = ¢(x(1);0,07)¢(2(2); 0, 07). (3.9)

See Figure 3.4 for an illustration of prior, likelihood, and posterior densities for this
problem.

Given noisy measurements, Y = y = (y1,%2,¥y3), we want to locate X, so we are
interested in the posterior mean vector

EXY =y) = [EXMY =y), E(X2)Y =y)].

Write a function that takes y, positions of the sensors si, S, s3, the prior and
likelihood variances o2 and 03, and the number of samples N as inputs, implements
self-normalised importance sampling (why this version?) in order to approximate
E(X|Y = y) and outputs its estimate. Try your code with s; = (0,2), so = (=2, —1),
s3 = (1,-2), 11 = 2, yo = 1.6, y3 = 2.5, 02 = 100, and 05 = 1 which are the values
used to generate the plots in Figure 3.4.
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Likelihood term p(y1 | x) Likelihood term p(y2 | x) Likelihood term p(y3 | x)
-6 -6

-6
-4

-5 0 5
x(2)

Prior pX(x)

x(2)

Figure 3.4: Source localisation problem with three sensors and one source: The likelihood

terms, prior, and the posterior. The parameters and the variables are s; = (0,2), sy =
(—2,-1), s3=(1,-2), y1 = 2, yo = 1.6, y3 = 2.5, 02 = 100, and 02 =1



Chapter 4

Bayesian Inference

Summary: In this chapter, we provide a brief introduction to Bayesian statistics. Some
quantities of interest that are calculated from the posterior distribution will be explained.
We will see some examples where one can find the exact form of the posterior distribution.
In particular, we will discuss conjugate priors that are useful for deriving tractable posterior
distributions. This chapter also introduces a relaxation in the notation to be adopted in the
later chapters.

4.1 Conditional probabilities

Recall Bayes’ rule from Appendix A.3. Consider the probability space (2, F,P). Given
two sets A, B € F, the conditional distribution of A given B is

P(ANB) P(A)P(B|A)

PAIB) = 55 =~ b (4.1)

Here we see some examples where Bayes’ rule is in action to calculate posterior probabili-
ties.

Example 4.1 (Conditional probabilities of sets). A pair of fair (unbiased) dice are
rolled independently. Let the outcomes be Xy and X.

o [t is observed that the sum S = X1+ Xy = 8. What is the probability that the outcome
of at least one of the dice is 37

We apply the Bayes rule: Define the sets A = {(X1,X5) : X1 = 3or Xo = 3}.
B = {(X1, X5) : S =8}, so that the desired probability is P(A|B) = P(AN B)/P(B).

B =1{(2,6),(3.5),(4,4),(5,3),(6,2)}, ANB=1{(3,5),(53)}

Since the dice are fair, every outcome is equiprobable, having probability 1/36. There-

fore,
_P(ANB)  2/36 2
PAIB) =5 =53 5

o [t is observed that the sum is even. What is the probability that the sum is smaller
than or equal to 47 Similarly, we define the sets A = {(X1, Xs) : X1 + Xy < 4}.

39
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B = {(X1,X5) : Xi + Xy is even}. Explicity, we have

B = {(X1, X5) : X1, Xy are both even} U {(X, X3) : X1, X5 are both odd}.
ANnB=1{(1,1),(1,3),(3,1),(2,2)}.

Therefore, ( ) )
P(AN B 4/36 2
P(A|B) = P(B)  3/6x3/6+3/6x3/6 9

Example 4.2 (Model selection). There are two coins in an urn, one fair and one biased
with probability of tail p = 0.3. Someone picks up one of the coins at random (with half
probability for picking up either coin) and tosses it n times and reports the outcomes:
D= (H,T,H HT H H HT,H). Conditional on D, what is the probability that the fair
dice was picked up?

We have two hypotheses (models): Hy: The coin picked up was the fair one, Hy: The
coin picked was the biased one. The prior probabilities for these models are the same:
P(H,) = P(Hy) = 0.5. The likelihood of data, that is the conditional probability of the
outcomes 1s:

1/2%0, 1=1,
Fr(L— g, i=2,

P(D|Hi) = {

where np and ng are the number of times the coin showed tail and head, respectively. From
Bayes’ rule, we have

P(D)  P(D|H.)P(H:) + P(D|Hz)P(H2)
B 1/2 x 1/210
T 1/2x 1/210 4 1/2 x pnr(1 — p)na
1/210
1/210 4 prr (1 — p)ra
and, of course, P(Hy|D) = 1 — P(H,|D). Substituting p = 0.3 and ny = 3, we have
P(H,|D) = 0.3052 and P(H,|D) = 0.6948.

4.2 Deriving Posterior distributions

In this section, we study posterior distributions and discuss their use. We introduce the
notion of conjugacy, a very important tool for deriving exact posterior distributions for
some likelihood models. Then, we will look at some useful inferential quantities that are
calculated from the posterior distribution.

When random variables X € X,Y € Y with joint pdf/pmf px y(z,y) are considered,
the conditional pdf/pmf px)y (z|y) is

pxy (2, y) _ px(ﬂf)pY|X(y|$)
py () py ()

pxpy (zly) = (4.2)
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4.2.1 A note on future notational simplifications

It may be tedious to keep the subscripts in pdf’s or pmf’s such as px vy, px|y, etc. Formally,
this is necessary to indicate what random variables are considered and what probability
distribution exactly we mean. However, it is common practice to drop the cumbersome
subscripts and use p(x,y), p(z), p(z|y), etc. whenever it is clear from the context what
distribution we mean. We will also adopt this simplification in this document. For example,
we will frequently write Bayes’ rule as

p(@)p(yl|z)

p(zly) = o)

It is also common to use densities as well as distributions to indicate the distribution of
a random variable. For example, all the expressions below mean the same thing: X is
distributed from the distribution P, whose pdf or pmf is p(x)

X ~ P, X Np()7 X N])(ZE), T~ P> INp(')7 INp(QZ)

In the rest of this document, we will use the aforementioned notations interchangeably,
choosing the most suitable one depending on the context.

When the statistical model is prone to misunderstandings in case p is used for every-
thing, perhaps a nicer approach than using p generically from the beginning is to start
with different letters such as f, g, h, i1, etc. for different pdf’s or pmf’s when constructing
the joint distribution for the random variables of interest.

Example 4.3. Consider random variables X,Y, Z, U and assume that'Y and Z are con-
ditionally independent given X, and U 1is independent from X given Y and Z; see Figure
4.1. In such a case, it may be convenient to construct the joint density by first declaring
the density for X, pu(x). Next, define the conditional densities f(y|z) and g(z|x) for Y
gwen X and Z gwen X. Finally define the conditional density for U given Y and Z,
h(uly, z). Now, we can generically use the letter p to express any desired density regarding
these varitables. To start with, the joint density is

p(x,y, z,u) = p(x) f(ylz)g(z|lz)h(uly, 2)

Once we have the joint distribution p(x,y, z,u), we can derive anything else from it in
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oy

Figure 4.1: Directed acyclic graph showing the (hierarchical) dependency structure for
XY, Z,U.

terms of the densities we defined p, f, g, h. Some examples:
plyrz0) = [ ployzudo = [ pla)f@lo)g(elo)huly, do = huly. ) [ n(e) folo)g(elo)dz
ple) = [ play.udydsdu = [ p(e)fol0)g(:loluly. 2)dydzdu = o)

mmmwz%%gﬂzﬂwwmwmm@

plulz) = mmmm@wz/ﬂwwwwwmw@w

p(@)p(ulr)  plz)p(ulz)
p(u) [ w(@)p(ulz)dz

The dependency structure of this model can be exemplified with

p(zlu) =

valu(l'), Z’l’,ng<2|l‘), u|w,y,z~h(~|y,z) ete.
or in terms of densities

p(z) = pu(r), plzlr,y) =pzlz) = g(zlz), pulr,y,2) = puly, z) = h(uly, 2), ete.

4.2.2 Conjugate priors

Consider the variables X, Y and Bayes’ theorem for p(z|y) in words,
posterior o prior X likelihood.

In Bayesian statistics, the usual first step to build a statistical model is to decide on the
likelihood, i.e. the conditional distribution of the data given the unknown parameter. The
likelihood represents the model choice for the data and it should reflect the real stochastic
dynamics/phenomena of the data generation process as accurately as possible.

For convenience, it is common to choose a family of parametric distributions for the
data likelihood. With such choices z in p(y|z) becomes (some or all of the) parameters of
the chosen distribution. For example, X = (u,0?) may be the unknown parameters of a
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normal distribution from which the data samples Y7, ...,Y,, are assumed to be distributed,
ie. p(yrnlx) = T, &(yis 1, 0%). As another example, let X = « be the shape parameter

of the gamma distribution I'(«, 8) and p(y1..|z) =[], % and [ is known.
Bayesian inference for the unknown parameter requires assigning a prior distribution
to it. Given the family of distributions for the likelihood, it is sometimes useful to consider
a certain family of distributions for the prior distribution so that the posterior distribution
has the same form as the prior distribution but with different parameters, i.e. the posterior
distribution is in the same family of distributions as the prior. When this is the case,
the prior and posterior are then called conjugate distributions, and the prior is called a

conjugate prior for the likelihood p(y|x).

Example 4.4 (Success probability of the Binomial distribution). A certain coin
has P(T) = p where p is unknown. The prior distribution is X = p ~ Beta(a,b). The
coin is tossed n times, so that if the number of times it brought a tail is Y the conditional
distribution for 'Y is Y|p ~ Binom(n, p). We want to find the posterior distribution of p
given Y = k successes out of n trials.

The posterior density is proportional to

(1 —2)t nl

Bla,b)  Kkl(n— k)!xk(l —a) (43)

p(zly) o< p(z)p(y|z) =

where B(a,b) = [2°7'(1 —z)"du.

Before continuing with deriving the expression, first note the important remark that
our aim here is to recognise the form of the density of a parametric distribution for x in
(4.3). Therefore, we can get rid of any multiplicative term that does not depend on x. That
is why we could start with the joint density as p(z|y) o p(x,y); in fact we can do more
simplification

p(:E|y) x ZECH_k_l(l . ‘,E)b-&-n—k—l

Since we observe that this has the form of a beta distribution, we can conclude that the
posterior distribution has to be a beta distribution

XY =k ~ Beta(ag)y, by|y)

where, from similarity with the prior distribution, we conclude that agy, = a + k and
b$|y =b+n—k.

Example 4.5 (Mean parameter of the normal distribution). [t is believed that
Yi.n = y1.n are samples from a mormal distribution with unknown u and known variance
o%. We want to estimate p from y1.,,. The prior for X = p is chosen as N(0,02%), the

conjugate prior of the normal likelithood for the mean parameter. The joint density can be
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written as

p(zly) o< p(x,y) = p(x)p(y|z)

O-.Z'
X exp {—% [x2 (0% + %) — Qmé ;y,] }
Since we observe that this has the form of a normal distribution, we can conclude that the
posterior distribution has to be a normal distribution
X[Vim = 1 ~ Nty 0%)
for some pig, and aily. In order to find i), and aiw, compare the expression above with

d(x;m, K?) o< exp {—% [:p2$ — 2075 + 7}';—22] } Therefore, we must have

1 a\"' u 1 < 1 na\'1
2 zly - _ .

52 52
9% ¢ zly

Example 4.6 (Variance of the normal distribution). Consider the scenario in the
previous example above but this time p is known and the variance o* is unknown. The
prior for X = o2 is chosen as the conjugate prior of the normal likelihood for the variance
parameter, i.e. the inverse gamma distribution ZG(«, B) with shape and scale parameters
a and 3, having the probability density function

p(z) = %xal exp <_§) |

The joint density can be written as

p(zly) o< p(x,y) = p(x)p(y|z)

5
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Comparing this expression to the density of p(x), we observe that they have the same form
and therefore,
XD/ln = Yi:n ~~ Ig<04x|ya 6:(:|y)

for some g, and By,. From similarity, we can conclude

n
Qgly = & +

1

Example 4.7 (Multivariate normal distribution). Let the likelihood for Y given X is
chosen as Y|X =z ~ N (Ax, R) and the prior for the unknown X is chosen X ~ N (m, S).
The posterior p(x|y) is

p(xly) o p(x,y) = p(x)p(y|r)
1

1 . 1 1 B
= g 5 S e | g e { 50— AR )

1
X exp {—Q(xTSla; —omP S e 4 2T ATR T Ax — 2yTR1A:c)}
1
= exp {—5 [2"(ST + AR A)z — 2(m" ST + yT R A)a] }
1 _ _
X G(@; Myly, Saly) X €XP {—5 [xTSxéx — Zm;ﬂysx‘;x} }
where the posterior covariance s
Sx‘y = (S_l + ATR_IA)_I
and the posterior mean is

My = Sapy (M7 S~ +y " RTA)T = 5,,(S™'m + ATR™y).

Computing the evidence: We saw that when conjugate priors are used for the prior,
then p(z) and p(z|y) belong to the same family, i.e. their pdf/pmf have the same form.
This is nice: since we know p(x), p(y|z), and p(z|y) exactly, we can compute the evidence
p(y) for a given y as

(y) = p(x,y)  plx)pylz)

plzly)  plely)
Example 4.8 (Success probability of the Binomial distribution - ctd). Consider
the setting in Example 4.4. Since we know pxy(x|y) and pxy(x,y) ezactly, the evidence
py (y) fory =k can be found as

e '(1=2)f~1  p k ek
B(a,f)  K(n—kNL (1—x)

pY<k) = gotk—1(1_z)B+n—h—1 (4'4)
B(a+k,+n—k)
n! Bla+k,f+n—k) (45)

T Kl(n—k)! B(a, B)
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which is the pmf, evaluated at k, of the Beta-Binomial distribution with trial parameter n
and shape parameters o and 3.

4.3 Quantities of interest in Bayesian inference

In Bayesian statistics, the ultimate goal is the posterior distribution p(x|y) of the unknown
variable given the available data Y = y. There are several quantities one might be inter-
ested; all of those these quantities are rooted from p(z|y). The following are some examples
of such quantities.

4.3.1 Posterior mean

If we want to have a point estimate about X, one quantity we can look at is the mean
posterior

E(X[Y = y) = / plaly)dz

Other than being an intuitive choice, E(X|Y'), as a random function of Y, is justified in
the frequentist setting as well, due to the fact that E(X|Y") minimises the expected mean
squared error

MSE = E (X = X)) = [ (@ = X(0) Ppla,)dady

where X (V) is the estimator for X and the expectation is taken with respect to the joint
distribution of X, Y.

Theorem 4.1. X(Y) = E(X|Y) minimises MSE.

In general, if want to estimate ¢(X) given Y, we can target the posterior mean of ¢

E(p(X)[Y = y) = / paly)p(@)dz,

which minimises the expected mean squared error for p(X)

E ([p(X) — ¢(V)]?) = / (o(x) — 3(y))*p(, y)dady.

Although it has nice statistical properties as mentioned above, the posterior mean may
not always be a good choice. For example, suppose the posterior is a mixture of Gaussians
with pdf p(z|y) = 0.5¢(z; —10,0.01)+0.5¢(x; 10,0.01). The posterior mean is 0 but density
of p(z|y) at 0 is almost 0 and the distribution has almost no mass around 0!
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4.3.2 Maximum a posteriori estimation

Another point estimate that is derived from the posterior is the maximum a posteriori
(MAP) estimate which is the maximising argument of p(x|y)

Inap = argmax p(zly) = arg maxp(z, y).

Note that this procedure is different than maximum likelihood estimation (MLE), which
yields the maximising argument of the likelihood

IMLE — arg glgp(ylw),

since in the MAP estimate there is the additional factor due to prior p(x).

4.3.3 Posterior predictive distribution

Assume we are interested in the distribution that a new data point Y,,,; would have, given
a set of n existing observations Yi., = y1.,. In a frequentist context, this might be derived
by computing the maximum likelihood estimate Zypg (or some other point estimate) of X
given y.,, and then plugging it into the distribution function of the new observation Y,
so that the predictive distribution is p(yn+1|ZmLE)-

In a Bayesian context, the natural answer to this is the posterior predictive distribu-
tion, which is the distribution of unobserved observations (prediction) conditional on the
observed data p(y,1|y1.). In order to find the posterior predictive distribution, we make
use of the entire posterior distribution of the parameter(s) given the observed data to yield
a probability distribution rather than simply a point estimate. Specifically, we compute
P(Yn+1|y1.n) by marginalising over the unknown variable z, using its posterior distribution:

P(Ynt1|y1:m) = /p(yn+1,w|y1;n)dx
= /p(yn+1|x,ylm)p(JCIyl;n)dx

In many cases, Y,y is independent from Yi., given X. This happens, for example,
when {Y;};>; are i.i.d. given X, that is Y;| X = x ~ p(y|z), ¢ > 1. In that case, the density
above reduces to

P ly1) = / Do |2)p(tlyrn)d

Note that this is equivalent to the expected value of the distribution of the new data point,
when the expectation is taken over the posterior distribution, i.e.:

p(ynJrl‘yl:n) = E[p(yn+1’X)|}/in = yl:n]-
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Conjugate priors and posterior predictive density: We saw that when conjugate
priors are used for the prior, then p(x) and p(z|y) belong to the same family, i.e. their
pdf/pmf have the same form. This implies that, when Y;’s are i.i.d. conditional on X, the
posterior predictive density p(yni1|y1.,) has the same form as the marginal density of a
single sample

ply) = /p(m)p(y|x)dx.

Example 4.9 (Success probability of the Binomial distribution - ctd). Consider
the setting in Example J.4. Given the prior X ~ Beta(a, §) and Y = k successes out of n
trials, what is the probability of having Z = r successes out of the next m trials?

Here Z 1is the next sample that is to be predicted. We can employ the posterior predictive
probability for Z. We know from the derivation of Fxample 4.8 that Z will be distributed
from the Beta-Binomial distribution with parameters m (trials), o = o+ k and f' =
B4+ n —k since the prior and the posterior of X are in the same form and Z given X = x
and Y given X = x are both Binomial.

m! B +r,f +m—r)
rl(m —r)! B(o/, 5)

pzy (r|k) =
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Exercises

1. Consider the discrete random variables X € {1,2,3} and Y € {1, 2, 3,4} whose joint
probabilities are given in Table 4.1

pxy(z,y) |ly=1 y=2 y=3 y=4|px(x)
r=1 | 1/40 3/40 4/40 2/40
r=2 | 5/40 7/40 6/40 5/40
r=3 | 1/40 2/40 2/40 2/40

py(y)

Table 4.1: Joint probability table

e Find the marginal probabilities px(z) and py(y) for all z = 1,2,3, y = 1,2, 3,4
and fill in the rest of Table 4.1.

e Find the conditional probabilities pxy(x|y) and py|x(y|z) for all x = 1,2,3,
y =1,2,3,4 and fill in the relevant empty tables.

pxpy(zly) [y=1 y=2 y=3 y=4

r=1
xr =2
r=3

pyix(ylr) ly=1 y=2 y=3 y=4

r=1
xr =2
r=3

2. Show that the gamma distribution is the conjugate prior of the exponential distri-
bution for, i.e. if X ~ I'(er, ) and Y| X = 2 ~ Exp(z), then X|Y =y ~ I'(agy, Bely)
for some g, and B,),. Find o), and 3, in terms of o, 3, and y.

3. Prove Theorem 4.1 [Hint: write the estimator as X (V) = E(X|Y)+(X (Y)-E(X|Y))
and consider conditional expectation of the MSE given Y = y first. You should

A

conclude that for any y, X (y) — E(X|Y = y) should be zero.]

4. Suppose we observe a noisy sinusoid with period 7" and unknown amplitude X for n
steps: Y[X =z ~ N(y; f(,t),07), for t = 1,...,n where f(t;x) = xsin(2nt/T) is
the sinusoid. The prior for the amplitude is Gaussian: X ~ N(0,02).

e Find p(z|y1.,) and p(yin).
e What is distribution of f(n + 1, X) given Yi.,, = y1.,,7
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e Find p(yn+1) and p(Yni1|y1.n). Compare their variances. What can you comment
on the difference between the variances?

e Generate your own samples Y., up to time n = 100, with period T = 40,
o7 = 100, o7 = 10. Calculate p(z|y1n); Plot p(Yns1) and p(Yni1lya) on the
same axis.



Chapter 5

Markov Chain Monte Carlo

Summary: In this chapter, we will see an essential and vast family of methods in Monte
Carlo, namely Markov chain Monte Carlo methods, for approzimately sampling from com-
plex distributions. We will start the chapter with a review of discrete time Markov chains,
which s required for understanding the working principles of Markov chain Monte Carlo
methods. Then, we will see two most commonly used Markov chain Monte Carlo methods
wn the literature: Metropolis-Hastings and Gibbs sampling methods.

5.1 Introduction

Remark 5.1 (Change of notation). So far we have used P and p to denote the distri-
bution and its pdf/pmf we are ultimately interested in. We will make a change of notation
here, and denote the distribution as well as its pdf/pmf as w. This change of notation is
necessary since p will be used generically to denote the pdf/pmf of various distributions.

We have already discussed the difficulties of generating a large number of i.i.d. samples
from 7. One alternative was importance sampling which involved weighting every gener-
ated sample in order not to waste it, but it has its own drawbacks mostly due to issues
related to controlling variance. Another alternative is to use Markov chain Monte Carlo
(MCMC) methods (Metropolis et al., 1953; Hastings, 1970; Gilks et al., 1996; Robert and
Casella, 2004). These methods are based on the design of a suitable ergodic Markov chain
whose stationary distribution is . The idea is that if one simulates such a Markov chain,
after a long enough time the samples of the Markov chain will approximately distributed
according to m. Although the samples generated from the Markov chain are not i.i.d.,
their use is justified by convergence results for dependent random variables in the litera-
ture. First examples of MCMC can be found in Metropolis et al. (1953); Hastings (1970),
and book length reviews are available in Gilks et al. (1996); Robert and Casella (2004).

5.2 Discrete time Markov chains

In order to adequately summarise the MCMC methodology, we first need reference to
the theory of discrete time Markov chains defined on general state spaces. Discrete time
Markov chains also constitute an important part of the rest of this course, especially when
we discuss sequential Monte Carlo methods. The review made here is very brief and limited

51
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by the relation of Markov chains to the topics covered in the course. For more details one
can see Meyn and Tweedie (2009) or Shiryaev (1995); a more related introduction to Monte
Carlo methods is present in Robert and Casella (2004, Chapter 6) and Cappé et al. (2005,
Chapter 14), Ticrney (1994) and Gilks et al. (1996, Chapter 4).

Definition 5.1 (Markov chain). A stochastic process {X,}n>1 on X is called a Markov
chain if its probability law is defined from the initial distribution n(z) and a sequence
of Markov transition (or transition, state transition) kernels (or probabilities, densities)
{M,(2'|x)}n>2 by finite dimensional joint distributions as

p(x1, .o @) = n(a) Ma(zalz1) - .. My (2n|T0-1)
for alln > 1.

The random variable X; is called the state of the chain at time ¢ and X is called
the state-space of the chain. For uncountable X, we have a discrete-time continuous-
state Markov chain, and 7(-) and M, (-|z,_;) are pdf’s'. Similarly, X is countable (finite
or infinite), then the chain is a discrete-time discrete-state Markov chain and 7(-) and
M, (-|x,_1) are pmf’s. Moreover, when X = {xy,...,x,,} is finite with m states, the
transition kernel can sometimes be expressed in terms of an m x m transition matrix
Mn(i’j) = P(‘Xn = j’Xn—l = Z)

The definition of the Markov chain leads to the characteristic property of a Markov
chain, which is also referred to as the weak Markov property: The current state of the
chain at time n depends only on the previous state at time n — 1.

p(xn|x1:n—1) - p<$n|5€n—1) - Mn(xn—laxn)

From now on, we will consider time-homogenous Markov chains where M, = M for all
n > 2, and we will denote them as Markov(n, M).

Example 5.1. The simplest examples of a Markov chain are those with a finite state-
space, say of size m. Then, the transition rule can be expressed by an m X m transition
probability matriz M, which in this example is the following

1/2 0 1/2
M= |1/4 1/2 1/4
0 1 0

Also, the state-transition diagram of such a Markov chain with m = 3 states is given in
Figure 5.1, where the state-space is simply {1,2,3}.

'In fact, there are exceptions where the transition kernels do not have a probability density; and this is
indeed the case for the transition kernel of the Markov chain of the Metropolis-Hastings algorithm which
we will see in Section 5.3. However, for the sake of brevity we ignore this technical issue and with abuse
of notation pretend as if we always have a density for M, (:|z,—1) for continuous states
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N

Figure 5.1: State transition diagram of a Markov chain with 3 states, 1,2, 3.

p p

Figure 5.2: State transition diagram of the symmetric random walk on Z.

Example 5.2. Let X = 7Z be the set of integers, X1 =0, and for n > 1 define X,, as
Xn = Xn—l + Vna

where V,, € {=1,1} withp =P(V,, =1) =1-P(V, = —1) = 1 — q. This is a random
walk (of step-size 1) on Z and it is a time homogenous discrete-time discrete state Markov
chain with n(z1) = do(x1) and

et {7 0
When p = q, the process is called a symmetric random walk.
Example 5.3. Let X =R, X; =0, and for n > 1 define X,, as
X=X 1+ V,,

but this time V,, € R with V,, ~ N(0,0%). This is a Gaussian random walk process on R
with normally distributed step sizes, and it is a time homogenous discrete-time continuous
state Markov chain with n(x) = do(x1) and

M(a'lx) = ¢(a’; 2, 0%).
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Example 5.4. A generalisation of the Gaussian random walk is the first order autoregres-
sive process, or shortly AR(1). Let X = R the set of integers, X; = 0, and for n > 1
define X,, as

Xn = CLXn_l + Vn,

for some a € R, and V,, € R with V,, ~ N(0,0%). AR(1) is a time homogenous discrete-
time continuous state Markov chain with n(x1) = do(x1) and

M(2|z) = ¢(2'; ax, 0?).

When |a| < 1, another choice for the initial distribution is X1 ~ N(0, %), which is the
stationary distribution of {X;}>1. We will see more on the stationary distributions below.

5.2.1 Properties of Markov(n, M)

For MCMC, we require the Markov chain to have a unique invariant distribution 7 and to
converge to . Before discussing that, we need to review some fundamental properties of a
discrete time Markov chain to understand when the existence of an invariant distribution
and convergence to it are ensured. Those properties will be discussed in specific to discrete-
state Markov chains only, for sake of simplicity and delivering the intuition behind the
concepts. Although for general state-space Markov chains similar concepts also exist, they
are more complicated and with less intuition, due to which we mostly omit them from our
review.

5.2.1.1 Irreducibility

In a discrete state Markov chain, for two states x, 2’ € X, we say = leads to 2’ and show
it by x — 2’ if the chain can travel from z to 2’ with a positive probability, i.e.

In>1st P(X,=2'1X;=2)>0

If both x — 2’ and 2’ — x, we say = and =’ communicate and we show it by = <> x’.

A subset of states C' C X is called a communicating class, or simply class, if (i) all
z,x’ € C' communicate, and (i) = € C, x > y together imply y € C, too (that is, there is
no such y ¢ C such that z <> y for some = € C).

A communicating class is closed if x € C' and x — y imply y € C, that is there is no
path with positive probability from outside the class to any of the states of the class.

Definition 5.2 (Irreducibiliy). A discrete state Markov chain is called irreducible if the
whole X 1s a communication class, i.e. all its states communicate.

For general state-spaces, we need to generalise the concept of irreducibility to ¢-
wrreducibility.

Example 5.5. Figure 5.3 shows two chains that are not irreducible. In the first chain, the
communication classes are {1,2,3} and {4,5}; both are closed. In the second chain, the
communication classes are {1,2} and {3,4}; the first one is closed and the second one is
not.
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1/2
1/2 s '
1 3 (4)
1/4
14 1/4 1/2
1
g
1/2 3/4
1/2
1/2 1 1/4 1/2
1/2
2 4
1/2 1/4

Figure 5.3: State transition diagrams of two Markov chains that are not irreducible.
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5.2.1.2 Recurrence and Transience

In the discrete state-space, we say that a Markov chain is recurrent if every of its states is
expected to be visited by the chain infinitely often, otherwise it is transient. More precisely,
define the return time

7, =min{n >1: X, =z}

Definition 5.3 (Recurrence). We say the state x € X is recurrent if
P(r, <oo|X;=2)=1 (5.1)

or equivalently > >°  P(X,, = z|X; = x) = co. If a state is not recurrent, it is called
transient.

If M is irreducible, then either every state is recurrent (and M is said to be recurrent)
or every state is transient (and M is said to be transient).

Example 5.6. The random walk on integers in Example 5.2 is an irreducible chain. It
can be shown that, in the symmetric case when p = q = 1/2, the chain is recurrent; if
p # q, the chain is transient.

Definition 5.4 (Positive recurrence and null recurrence). We say a state ©x € X is
positive recurrent if

E(7,]X; =2) < o0 (5.2)
(Note that (5.2) is a stronger condition than (5.1).) If a recurrent state is not positive

recurrent, it is called null recurrent.

If M is irreducible and recurrent, then either every state is positive recurrent (and M
is said to be positive recurrent) or every state is null recurrent (and M is said to be null
recurrent).

To talk about recurrence in general state-space chains, instead of states we consider
accessible sets in relation to ¢-irreducibility.

Example 5.7. It can be shown that the random walk on integers in Example 5.2 1s a null
recurrent chain for p=q =1/2.

5.2.1.3 Invariant distribution

A probability distribution 7 is called M-invariant if

m(z) = /’/T(IL’/)M<Z"$,)dl’/

where we have assumed that {X;};>; is continuous (hence 7 is a pdf). When {X;};>; is
discrete (hence 7 is a pmf), this relation is written as

m(z) =) (o) M(z|2))

w/
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The expressions on the RHS of the two equations above are short-handedly written as wM,
so that for invariant = we have 7 = 7M. In fact, when X = {xy,...,2,,} is finite with
M(i,j) = P(X, = j|Xp—1 =) and 7 = [x(1) ... m(m)], we can indeed write 7 = 7 M
using notation for vector matrix multiplication.

Theorem 5.1 (Existence and uniqueness of invariant distribution). Suppose M is
wrreducible. M has a unique invariant distribution if and only if it is positive recurrent.

Example 5.8. The chain in Example 5.1 has the invariant distributionm = [1/4 1/2 1/4].
By solving i = pM, it can be shown that w is the only invariant distribution, so the chain
18 positive recurrent.

Example 5.9. The random walk on integers in Example 5.2 is irreducible. Therefore, it
does not have an invariant distribution since it is not positive recurrent for any choice of

p=1-gq

Example 5.10. The Markov chain on top of Figure 5.5 has two invariant distributions
T=[1/4 1/2 1/4 0 0] and7 =1[0 0 0 1/3 2/3] although every state is positive
recurrent. Note that the chain is not irreducible with two isolated communication classes,
that is why Theorem 5.1 is not applicable and uniqueness may not follow.

Example 5.11. The Markov chain at the bottom of Figure 5.3 is neither irreducible nor all
of its states are positive recurrent (the states of the second class are transient). However,
it has a unique invariant distribution, namely ™ = [1/3 2/3 0 0}. Note that for this
chain Theorem 5.1 is not applicable since the chain is not irreducible.

5.2.1.4 Reversibility and detailed balance

One useful way for spotting the existence of an invariant probability measure for a Markov
chain is to check for its reversibility, which is a sufficient (but not necessary) condition for
existence of a stationary distribution.

Definition 5.5 (reversibility). Let M be a transitional kernel having an invariant dis-
tribution and assume the associated Markov chain is started from w. We say that M 1is
reversible if the reversed process { X, _m}o<men 15 also Markov(mw, M) for alln > 1.

According to the definition above, M is reversible with respect to 7 if the backward
transition density of the process { X, },>1 with X; ~ 7 is the same as its forward transition
density, i.e.

p(@n—1)p(@n|Tn-1) P(xn—1) M (2y|T0-1)
Tn_1|Tn) = = = M(xp_1]x,).
plenifn) p(an) T M@ en i i)
This immediately leads to the necessary and sufficient condition for reversibility of M is
the detailed balance condition.
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Proposition 5.1 (detailed balance). We say a Markov kernel M is reversible with
respect to a probability distribution m if and only if the following condition, known as the
detailed balance condition, holds:

m(z)M(ylr) = m(y)M(zly), w,y€X.
Also, then 7 is an invariant distribution for M.

Being a sufficient condition for stationarity, the detailed balance condition is quite
useful for designing transition kernels for MCMC algorithms.

5.2.1.5 Ergodicity

Let m, be the distribution of X, of a Markov chain {X,,},>; with initial distribution n and
transition kernels M. We have mi(x1) = n(z1) and the rest can be written recursively as
T = Tp_1 M, or explicitly

7Tn<xn) = /7Tn—1(xn—l)M($n|$n—1)dxn—l
for continuous state chains, or

Tn(Ty) = Z Tn-1(Tn-1) M (2| Tn-1),

Tp_1EX

for discrete state chains, which reduces to
Ty = Tp_1M

when the state space is finite and m and M are considered as a vector and a matrix,
respectively.

In MCMC methods that aim to approximately sample from 7, we generate a Markov
chain {X,,},>1 with invariant distribution 7 and hope that for n large enough X, is ap-
proximately distributed from 7. This relies on the hope that 7, converges to 7.

We have shown the conditions for a unique stationary distribution of a Markov chain.
Note that having a unique invariant distribution does not mean that the chain will converge
to its stationary distribution. For that to happen the Markov chain is required to have
aperiodicity, a property which restricts the chain from getting trapped in cycles.

Definition 5.6 (aperiodicity). In a discrete state Markov chain, a state x € X is called
aperiodic if the set
{n>0:P( X1 =2|X; =2)}

has no common divisor other than 1. Otherwise, the state is periodic and its period is the
greatest common divisor of state x. The Markov chain is said to be aperiodic if all of its
states are aperiodic.
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If the Markov chain is irreducible, then aperiodicity of one state implies the aperiodicity
of all the states.

Definition 5.7 (ergodic state). A state is called ergodic if it is positive recurrent and
aperiodic.

Finally, the definition of ergodicity for a Markov chain follows.

Definition 5.8 (ergodic Markov chain). An irreducible Markov chain is called ergodic
if it is positive recurrent and aperiodic.

Ergodic chains ensure that the sequence of distributions {7, },>1 for {X,},>1 converge
to the invariant distribution 7.

Theorem 5.2. Suppose {X,}n>1 is a discrete-state ergodic Markov chain with any initial
distribution  and Markov transition kernel M with invariant distribution m. Then,

lim 7, (z) = 7(x) (5.3)

n—oo

In particular, for all x,z’ € X,

lim P(X, = z|X; =2') = n(x)

n—oo
Example 5.12. The Markov chain illustrated in Figure 5.4 is irreducible and positive re-
current; so it has a unique invariant distribution, which is ™ = [1/3 1/3 1/3}. Howevwver,
it 1is periodic with period 3, and as a result m, does not converge to m unless n = w. Indeed,
one can show that for n = [n(1) n(2) n(3)], we have

T, =nM" = [np(mod(n —1,3) + 1) n(mod(n—1,3)+2) n(mod(n—1,3)+3)].

i @

Figure 5.4: An irreducible, positive recurrent, and periodic Markov chain.
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5.3 Metropolis-Hastings

As previously stated, an MCMC method is based on a discrete-time ergodic Markov chain
which has its stationary distribution as 7. The most widely used MCMC algorithm up to
date is the Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970).

The Metropolis-Hastings algorithm requires a Markov transition kernel () on X for
proposing new values from the old ones. Assume that the pdf/pmf of Q(-|x) is ¢(+|z) for
any x. Given the previous sample X,,_; a new value for X,, is proposed as X' ~ Q(-|X,,_1).
The proposed sample X' is accepted with the acceptance probability a(X,,_1, X’), where
the function a: X x X — [0, 1] is defined as

m(2')q(z|2’)

o) = min {1, T

}, r, 7 € X.

If the proposal is accepted, X,, = X' is taken. Otherwise, the proposal is rejected and
X, = X,,_1 is taken.

Algorithm 5.1: Metropolis-Hastings

1 Begin with some X; € X.

2 forn=23,...do

3 Sample X' ~ Q(-|X,—1).

4 Set X,, = X’ with probability

a(Xn_l,X’):min{L 7(X")q(X,1|X') }

T(Xp-1) (X[ Xn1)

else set X,, = X,,_1.

The ratio in the acceptance probability

is called the acceptance ratio, or the acceptance rate.

The invariant distribution of the Metropolis-Hastings algorithm described exists and it
is 7. In order to show this, we can check for the detailed balance condition. According to
Algorithm 5.1, the transition kernel M of the Markov chain from which the samples are
obtained is

M(ylz) = q(y|z)a(z,y) + pr(2)0(y),

where p,(x) is the rejection probability at z and

pr(x) = [1 —/q($’|x)a(x,x')dx' , or p.x)= [1 —Zq(az'|x)a($,x')
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depending on the nature of the state-space. For all z,y € X', we have
m(z)M(ylr) = m(z)q(y|r)o(z,y) + 7(2)pr ()02 (y)

)9,
(el mind 1 W)
= rtolaole)min {1 WXL 4 20y, (015.0)
)
0

= min {7 (2)q(y|z), 7(y)a(z|y)} + 7(2)p,(2)
) y(7)

| )a(
= min {7 (y)q(zly), 7(x)q(ylx)} + 7w (y)p-(y)
which is symmetric with respect to x,y, so w(z)M(y|z) = 7(y)M (z|y) and the detailed
balance condition holds for = which implies that M is reversible with respect to m and 7
is invariant for M.

Note that, as long as discrete-state chains are considered, existence of the invariant
distribution 7 for M ensures the positive recurrence of M. There are also various sufficient
conditions for the M of the Metropolis-Hastings algorithm to be irreducible and aperiodic.
For example, if @ is irreducible and a(z,y) > 0 for all z,y € X, then M is irreducible.
If p.(z) > 0 for all  or @ is aperiodic then M is aperiodic (Roberts and Smith, 1994).
More detailed results on the convergence of Metropolis-Hastings are also available, see e.g.
Tierney (1994); Roberts and Tweedie (1996) and Mengersen and Tweedie (1996).

Historically, the original MCMC algorithm was introduced by Metropolis et al. (1953)
for the purpose of optimisation on a discrete state-space. This algorithm, called the
Metropolis algorithm, used symmetrical proposal kernels @), that is ¢(a'|x) = g(x|2’).
When a symmetric proposal is used, the acceptance probability involves only the ratio
of the target distribution evaluated at x and 2,

()
m(x)

The Metropolis algorithm was later generalised by Hastings (1970) such that it permitted
continuous state-spaces and asymmetrical proposal kernels, preserving the Metropolis al-
gorithm as a special case. A more historical survey on Metropolis-Hastings algorithms is
provided by Hitchcock (2003).

Another version is the independence Metropolis-Hastings algorithm, where, as the name
suggests, the proposal kernel @) is chosen to be independent from the current value, i.e.
q(2'|x) = q(2’), in which case the acceptance probability is

]|

m(z)q(z')

ﬂ

a(z, ') = min {1, } it g(a')e) = q(zfa).

a(z,2") = min {1,

5.3.1 Toy example: MH for the normal distribution

This is a toy example where 7(z) = ¢(x; u, 0%) for which we do not need to use MH since
we can obviously sample from N (u,0?) easily. But for the sake of example assume that
we have decided to use MH to generate approximate samples from 7.

For the proposal kernel, we have several options:
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e Symmetric random walk: We can take ¢(2'|x) = ¢(2'; z, 02), that is 2’ is proposed
from the current value x by adding a normal random variable with zero mean and

variance o, or Q(-|x) ~ N (z,07). Since

q(a'lx) = ¢(2's 2, 02) = ¢(a; ', 07) = q(x]a’),

this results in the acceptance ratio

/ /
r(o,a') = m(w )Q(fvllx)
m(x)q(a'|x)
o5 p,07)
(5 1, 02)
1~ gem(a/—p)?
 Ver2C ¥
L e (aw)?
Voro?

— ooz [@ =)= (—p)?]

The choice of 03 is important for good performance of MH. We want the Markov
chain generated by the algorithm to mix well, that is we want the samples to forget
the previous values fast. Consider the acceptance ratio above:

— A too small value for 02 will result in the acceptance ratio r(z,x’) being very
close to 1, and hence the proposed values will be accepted with high probability.
However, the chain will be very slowly mixing, that is the samples will be highly
correlated; because any accepted sample z’ will most likely be only slightly
different than the current x due to a small step-size of the random walk.

— A too large value for 02 will likely result in the proposed value z’ to be far
from the region where m has most of its mass, hence 7(z’) will be very small
compared to 7(x) and the chain will likely reject the proposed value and stick
to the old value x. This will create a sticky chain.

Therefore, the optimum value for 03 should be neither too small or too large. See
Figure 5.5 for the both bad choices and one in between those. This phenomenon of
having to choose the variance of the random walk proposals neither too small nor
too big is also valid for most distributions than the normal distribution.

e Another option for the proposal is to sample 2’ independently from z, i.e. ¢(2'|x) =
q(z'). For example, suppose we chose q(z) = @(z; jiq, 07 ). Then the acceptance ratio
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Figure 5.5: Random walk MH for 7(z) = ¢(z;2,1). The left and middle plots correspond
to a too small and a too large value for 02, respectively. All algorithms are run for 50000
iterations. Both the trace plots and the histograms show that the last choice works the
best.

is

) (5 g, 02)
T /w?) (2'; g, 02)

-5z [(x’*u)zf(w*u)Qh#g (2" —1q)? = (z—p1q)?]

See Figure 5.6 for examples of MH with this choice.

e Another alternative is to use a gradient-guided proposal. We may want to ‘guide’ the
chain towards the high-probability region of m(x); one proposal that can be chosen

for that purpose is
q(z'[z) = o(2"; g(), 07)

where the mean for the proposal g(z) is constructed by using the gradient of the
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Figure 5.6: Independence MH for 7(z) = ¢(z;2,1).

logarithm of the target density,

Jlog m(x)
=y
gla) =z +y—3-
Here, v is a step-size parameter that needs to be adjusted. For w(z) = ¢(z; i, 0?),
g(xz) = v — & (z — p). The acceptance ratio for this choice of proposal becomes

r(z,a') = @ ==l (et 2 o) (o4 2 -]

See Figure 5.7 for examples of MH with this choice.

Example 5.13 (Normal distribution with unknown mean and variance). We have
observations Y1,...,Y, ~ N(z,s) and z and s are unknown. The parameters x = (z,s)
are a priori independent with z ~ N (m, k?) and s ~ ZG(«, 3), so that the prior density is

1 1 2 [ 8
— _ — =5 (z—m) —a—1_-£
plx) =pz)p(s) = ——=e 22 s
Given the data Yi., = y1.,, we want to run the MH algorithm to sample from the posterior
distribution w(x) = p(x|y1.n,), which is given by

n

() = p(lyra) < p@)p(yralz) = p(2)p(s) [ [ Swii . )

=1

For this problem, mw(x) indeed lacks a well-known form, so it is justified to use a Monte
Carlo method for it.
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Figure 5.7: Gradient-guided MH for n(z) = ¢(z;2,1).

To run the MH algorithm, we need a proposal distribution for proposing ' = (2',s'). In

this example, given x = (z,s), we decide to propose z' ~ ./\/(z,ag) and s ~ZG(a, ), i.e.

we use a random walk for the mean component and the prior distribution for the variance
parameter. With this choice, the proposal density becomes

The acceptance ratio in this case s

m(x)q(x|z")

m(x)q(z'|x)

p(2)p(s') [TTizy p(yil2', 8")] ¢(2; 2, a2)p(s)
p(2)p(s) [ITiz1 p(yilz, 8)] 6(2'; 2, 05)p(s')

o m ) T, 6l 2, )

¢(z;m, 12) [ 12y d(yi; 2, )

See Figure 5.8 for results obtained from this MH algorithm.

r(z,x') =

Example 5.14 (A changepoint model). In this example, we consider a changepoint
model. In this model, at each time t we observe the count of an event Y;. All the counts
up to an unknown time T come from the same distribution after which the distribution
changes. We assume that the changepoint T is uniformly distributed over {1, ... ,n} where
n s the number of time steps. The two different distributional regimes up to 7 and after T
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Figure 5.8: MH for parameters of N'(z,s). 0 =1, a =5, f = 10, m = 0, x* = 100.

are indicated by the random variables \;, i = 1,2, which are a priori assumed to follow a

Gamma distribution
)\i NF(O&,ﬁ), 1= 1,2

Under regime i, the counts are assumed to be identically Poisson distributed

\ PO()\l), 1 S t S T
CTPOMN), T<t<n

A typical draw from this model is shown in Figure 5.9. The inferential goal is, given
Yi.n = Y10, to sample from the posterior distribution of the changepoint location T and the
intensities A1, Ay given the count data, i.e., letting x = (7, A1, Aa), the target distribution is
7(x) = p(7, A1, A2|y1.n) which is given by

P(T, A1; Aayin) o p(T, Aty A2y Y
= p(7, AL, A2)p(Y1n | T, A1, A2)
= p(7)p(M)Pp(A2)p(Y1:n T, A1, A2)
1 BeNaTle=Bh gayaTle=fre T o=di\Ue B omhe \U

=0 Tl (o) (54)

| |
— dr I Y

Two choices for the proposal will be considered. Let ' = (7', N[, A}).

e The first one is to use an independent proposal distribution, which is the prior dis-
tribution for x

q(@'z) = q(a’) = p(z') = p(r', A}, A)).
This leads to the acceptance ratio being the ratio of the likelihoods

:p(ylznh—/a )‘/17 )‘/2)
p(yl:n|7—> )\1’ )\2)

r(z,z")
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example of data generated by a changepoint model
T T T T T T T

15 - .

gL

changepoint model with parameters 7 = 30, A\; = 10 and Ay = 5.

e The second choice is a symmetric proposal,

1 1
q(a'|z) = §]IT+1(T/) + 511771(7/) O(N1; A1, 03)B(Ag; Ao, 03).-
The first factor involving T indicates that we propose either ™' =7+ 1 or 7 =7 —1
both with probability a half. Since q(z'|z) = q(z|z’), the acceptance ratio reduces to
the ratio of the posteriors

:p(Tla >‘/17 >‘/2|y1:n>
p<7—7 >\17 >\2|y1:n)

=147yt =143 v
o B0 ) (ﬁ) - (X2> -

r(z,x)

A1 A2
o\ / N Yr+1
€ Ay <)\_/1> ) =7 + 17
X 2
Y ' A\ Yr
(& Ag+A1 ()\_’2) , T, =7 —1.
1

Figure 5.10 illustrates the results obtained from the two algorithms. The initial value
for T is taken |n/2| and for Ay and Ay we start from the mean of y1.,. As we can see,
the symmetric proposal algorithm is able to explore the posterior distribution much more
efficiently. This is because the proposal distribution in independence MH, which is chosen
as the prior distribution, does not take neither the posterior distribution (hence the data)
nor the previous sample into account, and as a result it has a large rejection rate. The
independence sampler would become even poorer if n were larger so that the posterior would
be more concentrated in contrast to the ignorance of the prior distribution.

Example 5.15 (MCMC for source localisation). Consider the source localisation
scenario in Question 3 of Ezxercises in Chapter 3. From the likelihood and the prior in
(3.8) and (3.9), the posterior distribution of the unknown position is

3

p(zly) o (x(1);0,05)¢(2(2);0,07) | [ d(yis i, o7) (5.5)

i=1
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Figure 5.10: MH for parameters of the Poisson changepoint model

Due to the non-linearity in the r; = ||z — 55| = [(z(1) — s:(1))% + (2(2) — 54(2))4"?,
i = 1,2,3, p(zly) does not admit a known distribution. We use the MH algorithm to
generate approximate samples from p(x|y). We use a symmetric random walk proposal
distribution with q(2'|x) = ¢(a'; x, 0213), so that q(2'|x) = q(x|2"). The resulting acceptance
rate

(1);0,02)6('(2); 0,02) TT;, ¢ (yis 1, 03)
¢(x(1);0,02)p(x(2); 0,02) [T, & (ys; 74, 02)

where v, = ||’ — s;||, i = 1,2,3 is the distance between the proposed value x' and the
location i ’th source s;. Figure 5.11 shows the samples and their histograms obtained from
10000 iterations of the MH algorithm. The chain was started from X; = (5,5) and its
convergence to the posterior distribution is illustrated in the right pane of the figure where
we see the first a few samples of the chain traveling to the high probability region of the
posterior distribution.

5.4 Gibbs sampling

The Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990) is one of the most
popular MCMC methods, which can be used when X has more than one dimension. If X
has d > 1 components (of possibly different dimensions) such that X = (X;,..., Xy), and
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Figure 5.11: MH for the source localisation problem.

one can sample from each of the full conditional distributions m (1| X151, Xx+1.4), then the
Gibbs sampler produces a Markov chain by updating one component at a time using 7y ’s.

One cycle of the Gibbs sampler successively samples from the conditional distributions
m,...,Tq by conditioning on the most recent samples.

Algorithm 5.2: The Gibbs sampler:
1 Begin with some X; € X.

2 forn=2,3,...do

3 for k=1,...,d do

4
L Xt ~ T (| Xn k=1, Xne1 kt1:d) -

For an x € X, let v = (x1.4-1,%Tk11.q) for & = 1,...,d denotes the components of
z excluding xy, and let us permit ourselves to write x = (xg,x_x). The corresponding
MCMC kernel of the Gibbs sampler can be written as M = MM, ... My, where each
transition kernel M), for k =1,...,d can be written as

My (y|lz) = m(yrl2—1)02_, (Y—r)

where y = (y1,...,yq). The justification of the transitional kernel comes from the re-

versibility of each M) with respect to m, which can be verified from the detailed balance
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condition as follows.

m(x) My (ylz) = 7(x) T Ykl v )00, (Y1)

(
() mr(@r]x )T (Ye| -1 )00, (Y—k)
(
(

Ve () (e y0),  (20)
y) My (zly), (5.6)

where the third line follows the second since 6, , (y_x) allows the interchange of x_; and
y_k. Therefore, the detailed balance condition for M, is satisfied with 7 and 7 M, = w. If
we apply My, ..., M, sequentially, we get

™
™
™
™

TM=nM,...Myg= (rM)Msy...Mg=7My...My=...=m,

so 7 is indeed the invariant distribution for the Gibbs sampler.

Gibbs sampling as a special Metropolis-Hastings algorithm: An insightful inter-
pretation of (5.6) is that each step of a cycle of the Gibbs sampler is a Metropolis-Hastings
move whose MCMC kernel is equal to its proposal kernel which results in the acceptance
probability being 1 uniformly. Indeed, if the k'th component of X is to be updated with
Qi = My, i.e. if we propose the new value y as

ar(ylr) = My (y|z) = T (yrlz—1) 02, (Y-1),

the acceptance ratio ay(x,y) for this move is

TWarely) | _ [ () Mi(zly)
w(m)qkw)} B {1’ w(x)Mk<y|x>}

i =i,

as shown in (5.6).

Reversibility of each M, with respect to m does not suffice to establish proper conver-
gence of the Gibbs sampler, as none of the individual steps produces a irreducible chain.
Only the combination of the d moves in the complete cycle has a chance of producing
a ¢-irreducible chain. We refer to Roberts and Smith (1994) some simple conditions for
convergence of the classical Gibbs sampler. Note, also, that M is not reversible either,
although this is not a necessary condition for convergence. A way of guaranteeing both
¢-irreducibility and reversibility is to use a mixture of kernels

d d
Mﬁ:ZBkMk’a 5k>07 k’Zl,...,d, Zﬁkzl
k=1

k=1

provided that at least one M}, is irreducible and aperiodic. This choice of kernel leads to
the random scan Gibbs sampler algorithm. We refer to Tierney (1994), Robert and Casella
(2004), and Roberts and Tweedie (1996) for more detailed convergence results pertaining
to these variants of the Gibbs sampler.
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Example 5.16. Suppose we wish to sample from a bivariate normal distribution, where

m(x) =

1 { 2?2 + 22 — 2p11 79
——exp{ — .
27(1 — p?) 2(1 = p?)

}, pe(—1,1).

The full conditionals are

(z1 — pr2)?

21— )

therefore m(x1|xy) = é(x1; pra, (1 — p?)) and X1| Xy = 9 ~ N(pxo, (1 — p)?). Similarly,
2

we have X3| X1 = x1 ~ N(pxy1, (1 — p)?). So, the iteration t > 2 of the Gibbs sampling
algorithm for this m(x) is

m(x1]z2) oc w(21, 22) o exp {—

o Sample X1 ~ N (pXi-12,(1 — p)?),
o Sample X5 ~ N(pX,1,(1— p)?).

Example 5.17 (ex: Normal distribution with unknown mean and variance). Let
us get back to the problem in Example 5.15 where we want to estimate the mean and the
variance of the normal distributions N'(z, s) given samples yi, . .., yn generated from it. Let
use the same prior distributions for z and s, namely z ~ N'(m, k?) and s ~ ZG(a, B). Note
that these are the conjugate priors for those parameters; and when one of the parameters
1s given, the posterior distribution of the other one has a known form. Indeed, in Fxamples
4.5 and 4.6, we derived these full conditional distributions. Example 4.5 can be revisited
(but this time with a non-zero prior mean m) to see that

Z|5; Y1:in ~~ N(uz\s,ya O-,z\s,y)

1 n\ ! 1 n\ 1< m
2 _
Ozls,y — (F + ;) v HMazlsy = <§ + g) (g Zz:l:yz‘ + ?)

and from Example 4.6 we can deduce that

where

S’Z, Y1:n = Ig(as|z,ya ﬂs|z,y)
where

n 1 <&
Aslzy — & + 57 ﬁs\z,y = 6 + 5 Z(yl — 2)2.
=1

Therefore, Gibbs sampling for Z,S given Y1., = y1.n, 1S

-1 -1
o Sample thv./\f<(ni2+5tnl> (ﬁZLyﬂr;’l—z),(,@%Jrsﬁl) )

o Sample S, ~IG (a+ 2,8+ 1> 0 (vi — Z:)?).
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Data augmentation: Data augmentation is an application of the Gibbs sampler. It is
useful if

1. there is missing data, and/or

2. the likelihood is intractable (hard to compute or does not admit conjugacy, etc), but
given some additional unobserved (real or fictitious) data it would be tractable.

Let yops denote the observed data and yn;s the missing data (sometimes yy,;s is called a
latent variable).We suppose we can easily sample x from the posterior given the augmented
data (Yobs, Ymis)- Also, that we can sample yps, conditional on y,ps and X (this only involves
the sampling distributions). Then we can use the Gibbs sampler of the pair (z, ymis). Then
we perform Monte Carlo marginalisation: If in the resulting joint distribution for x, ys
given yons we simply ignore yn,is, we shall have our sample from the posterior of x given
Yobs alone.

Example 5.18 (Genetic linkage). Genetic linkage in an animal can be allocated to one
of four categories, coded 1,2, 3, and 4, having respective probabilities

(1/2 4+ 6/4, (1 — 6)/4, (1 — 6)/4,0/4)

where 0 is an unknown parameter in (0,1). For a sample of 197 animals, the (multi-
nomial) counts of those falling in the 4 categories are represented by random variables
Y = (Y1, Y,,Y3,Y)), with observed values y = (y1,y2,ys, y4) = (125, 18,20, 34). Suppose we
place a Beta(a, 8) prior on 0. Then,

() = 6l) x (5 + g) (%) (g) TR

~~
Multinomial likelihood

o (2 + 9)125(1 o 9)38+ﬂ71634+a71 (57)

How can we sample from this? We can use a rejection sampler (probably with a very high
rejection probability) or MH for this posterior distribution; in this example we seek for a
suitable Gibbs sampler. Note that the problematic part in (5.7) is the first one; should it
be like one of the others, the posterior would lend itself into a Beta distribution.

Suppose we divide category 1, with total probability 1/2 + 0/4, into two latent sub-
categories, a and b, with respective probabilities 0/4 and 1/2. We regard the number of
animals Z falling in subcategory a as missing data. If, as well as the observed data y, we
are given Z = z, we are in the situation of having observed counts (z,125 — z,18,20, 34)
from a multinomial distribution with probabilities (6/4,1/2,(1 —0)/4,(1—0)/4,0/4). The
resulting joint distribution is

posposn=(3) (1) (4 rase ey
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This easily leads to the posterior distribution

6|z, y ~ Beta(z + 34 + «, 38 + ). (5.9)
Also, simple properties of the multinomial distribution yield
0/4
Z|0,y ~ Bi 125, ——— 1
16,y 1nom< 5,1/2+0/4) (5.10)

So we can now apply Gibbs sampling, cycling between updates given by (5.9) and (5.10).

Example 5.19 (A changepoint model, ctd.). Consider the changepoint problem in
Ezxample 5.1/, with the same likelihood and priors. It is possible to run Gibbs sampling
algorithm for 7,1, Ag. Observing (5.4), where the full posterior distribution is written as
proportional to the full joint distribution

1 BN Lo BM gapa—le=fla T p—dipve I o=Aa \Ue
(T, A1, A2y Yin) = - . 2 ! .

Y

e rw M =
from which we can derive all the full conditionals
)\1|T7 >\27 Y1:n ™~ I <Oé + Zyta 5 + T)
t=1
)\2|T7 >\17y1:n ~T <Oé + Z Z/nﬁ +n— T)
t=7+1
T|A1, A2, Y1, ~ Categorical(ay, . . ., a,)

where the probabilities in the Categorical distribution (which is simply the discrete distri-
bution with probabilities ay, . .., ay,, the generalisation of the Bernoulli distribution to the
case of multiple (here, n) outcomes) are

. i ) no
e~ /\?t:l yte—(n—z))\g )\g:t:z+1 Yt

a; =

j n
S L lein )\12121 Yt p—(n—j)Ae )\ZZ:t:j+1 yt]
]:

5.4.1 Metropolis within Gibbs

Having attractive computational properties, the Gibbs sampler is widely used. The require-
ment for easy-to-sample conditional distributions is the main restriction for the Gibbs sam-
pler. Fortunately, though, replacing an exact simulation Xy ~ 7 (-|Xp—1.1:6—1, Xn—1k+1:4)
by a Metropolis-Hastings step in a general MCMC algorithm does not violate its valid-
ity as long as the Metropolis-Hastings step has the correct invariant distribution. The
most natural alternative to the Gibbs move in step k where sampling from the full condi-
tional distribution 7 (-|z_) is not directly feasible is to use Metropolis-Hastings move that
updates xz; by using a Metropolis-Hastings kernel that targets m(-|z_x) (Ticrney, 1994).
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Exercises

1. Consider the toy example in Section 5.3.1 for the MH algorithm for sampling from
the normal distribution N (p, 0?).

e Modify the code so that it stores the acceptance probability at each iteration in
a vector and returns the vector as one of the outputs. In the next part of the
exercise, you will use the last T" — ¢, samples of the vector to find an estimate
of the overall expected acceptance probability

a(o,) = /oz(x,x')ﬂ(x)qaq(x’|x)dxdx'.

where g5, (2'|7) = ¢(2';2,07).

e Choose 4t = 0, 0> = 1, and 0, = 1. Run the MH algorithm (provided in SU-
Course) 100 times, each with 7" = 10000 iterations with the symmetric proposal
with various values for the proposal variance. For each run ¢ =1,...,100, use
the samples Xl(l), e ,X}l) to calculate the mean estimate

T
4 1 :
(2) _ ()
1% <O-q>_T_tb ZXt
t=tp+1
where t;, = 1000 is the burn-in time up to when you ignore the samples generated
by the algorithm. Similarly, calculate an estimate a(?(o,) of a(a,) in a similar

way using the last T" — ¢, samples.

e Report the sample variance of (9 (04)’s: This is approximately the variance of
the mean estimate of the MH algorithm that uses T' — t;, samples. We wish this
variance to be as small as possible. Also, report the average of a(i)(aq)’s.

e Repeat above for o, = 0.1,0.2,...,9.9,10, and generate two plots: (i) sample
variance of u(a,)’s vs o, and (ii) average of a¥(o,)’s vs o,. From the first
plot, suggest the (approximately) optimum value for o, and report the estimate
of a(o,) for that o,.

2. Design and implement a symmetric random walk MH algorithm and the Gibbs sam-
pling algorithm for the genetic linkage problem in Example 5.18 with hyperparame-
ters a = 3 = 2.

3. Implement the Gibbs sampler in Example 5.17 with n = 100 and hyperparameters
a=>5and = 10.

4. Consider the changepoint problem in Example 5.14.

e Download UK_coal mining disaster_days.mat from SUCourse. The data con-
sists of the day numbers of coal mining disasters between 1851 and 1962, where
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the first day is the start of the 1851. It is suspected that, due to a policy change,
the accident rate over the years is a piecewise constant with a single changepoint
time around the time of the policy change.

e From the data, create another data vector of length 112, where the i’th element
contains the number of disasters in year i (starting from 1851). Note that some
years are 366 days!

e Implement the MH algorithm (given in SUCourse) for the changepoint model
given the data that you created. Take the priors for 7, A\; and Ay the same as
in Example 5.14, i.e. with hyperparameters o = 10 and § = 1. You can use the
symmetric random walk proposal for the parameters.

e Implement Gibbs sampling algorithm for the same model given the same data
using the same priors. All the derivations you need are in Example 5.19.

5. Suppose we observe a noisy sinusoid with with unknown amplitude a, angular fre-
quency w, phase z, and noise variance o for n steps. Letting = = (a,w, z,07),

Ve ~ N(y;asin(wt + 2),02), t=1,....n.

The unknown parameters are a priori independent with a ~ N(0,02), w ~ I'(a, ),
z ~ Unif(0, 27), o ~ ZG(a,1/13).

e Write down the likelihood of p(y;.,|z) and the joint density p(x, y1.,).

e Download the data file sinusoid_data.mat from SUCourse; the observations
in the file are your data y;.,. Use hyperparameters o2 = 100, a = 8 = 0.01
and design and implement an MH algorithm for generating samples from the
posterior distribution m(x) = p(z|y1.,)-

e Bonus - worth 50% of the base mark: This time, design and implement a
MH within Gibbs algorithm where in each loop contains four steps in each of
which you update one component only, fixing the others, using an MH kernel
that targets the full conditionals. This is an example where you can still update
the components one by one even if the full conditional distributions are not easy
to sample from.



Chapter 6

Sequential Monte Carlo

Summary: This chapter contains a brief and limited review of sequential Monte Carlo
methods, another large family of Monte Carlo methods that are used for many applications
including sequential inference, sampling from complex distributions, rare event analysis,
density estimation, optimisation, etc. In this chapter we will introduce two main meth-
ods, sequential importance sampling, and sequential importance sampling-resampling, in a
generic setting.

6.1 Introduction

Let { X, }n>1 be a sequence of random variables where each X, takes values at some space
X,. Define the sequence of distributions {m,},>1 where m, is defined on X". Also, let
{@n}n>1 be a sequence of functions where ¢, : X" — R is a real-valued function on
X" We are interested in sequential inference, i.e. approximating the following integrals
sequentially in n

Tn(on) = Exr, [pn(X10)] = /Wn(xlm)go(xlm)dxl:n, n=12...

Despite their versatility and success, it might be impractical to apply MCMC algorithms
to sequential inference problems. This chapter discusses sequential Monte Carlo (SMC)
methods, that can provide with approximation tools for a sequence of varying distributions.
Good tutorials on the subject are available, see for example Doucet et al. (2000b) for and
Doucet et al. (2001) for a book length review. Also, Robert and Casella (2004) and Cappé
et al. (2005) contain detailed summaries. Finally, the book Del Moral (2004) contains a
more theoretical work on the subject in a more general framework, namely Feynman-Kac
formulae.

6.2 Sequential importance sampling

The first method which is usually considered a sequential Monte Carlo (SMC) method
is sequential importance sampling (SIS), which is a sequential version of the importance

'In a more general setting X,, takes values at some space X,, which may not be the same set for all n.
Then the sequence of distributions {7, },>1 would be on Z;, = [[;_, X; and we would have ¢,, : Z;, = R.

76
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sampling. First use of SIS can be recognised in works back in 1960s and 1970s such as
Mayne (1966); Handschin and Mayne (1969); Handschin (1970), see Doucet et al. (2000b)
for a general formulation of the method for Bayesian filtering.

Naive approach: Consider the naive importance sampling approach to the sequential
problem where we have a sequence of importance densities {¢,(z1.,)}n>1 where each g, is

defined on X™ such that
71-n(xl:n)

qn (*xl:n) .
It is obvious that we can approximate m,(y,) by generating independent samples from g,
at each n and exploiting the relation

wn(xlzn) =

Wn(QOn) = ElIn [wn(Xln%On(Xln)] .

This approach would require the design of a separate ¢, (z1.,) and sampling the whole path
X1., at each n, which is obviously inefficient.

Sequential design of the importance density: An efficient alternative to the naive
approach is SIS which can be used when it is possible to choose g, (21.,) to have the form

gn(1:0) = q(1) [ [ a(@ilwraa), (6.1)

t=2

where ¢(x7) is some initial density that is easy to sample from and q(z|x1.,_1) are condi-
tional densities which we design so that it is possible to sample from ¢(+|z1.;_1) for any z1,;_4
and ¢ > 1. This selection of ¢, leads to the following useful recursion on the importance
weights

7Tn(l’lzn)

W T = —

n( 1-71) Qn(xlzn)
— 7Tn<£L'1;n) anl(xlznfl)
qnfl(xl:n71>q<$n‘x1:nfl) anl(xl:n71>

7Tv@(j"l:?@)

Tn—1 (xl:nfl)Q(xn‘x1:n71> .

(6.2)

= Wp—1 (xlznfl)

We remark that the sequence of distributions are usually known up to a normalising con-

stant as .
Tn (xlsn>
)
.
where we know 7,,(x1.,) for any xy., but not Z,, . Hence, from now on we will only consider

self-normalised importance sampling where 7, _; and m, are replaced by 7, ; and 7, in
calculation of (and the recursion for) w,(x1.,) in (6.2).

71—n(lﬂl:n) =
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Approximation to m,: As long as self-normalised importance sampling is concerned,
given the samples and their weights, it is practical to define the weighted empirical distri-
bution

N
xln . Z X(l) :L‘l n)7 (63)
as an approximation to m,, where W, ,2=1,...,N are the self-normalised importance
weights
A X(i)
W = wn(X.0) (6.4)

Z =1 wn(X(Z))

This is another way of viewing the self-normalised importance sampling: The self-normalised
importance sampling approximation of the desired expectation m,(¢,) is actually the exact
expectation of ¢ with respect to 2. This expectation is given by

N
)= Wilen(X1,
=1

Note that this is indeed the same as the self-normalised importance sampling estimate, see
(3.7) for example.

The SIS algorithm: In many applications of (6.2), the importance density is designed
in such a way that the ratio
T (T1:0)
Tn-1(T1:0-1)q(Tn|T1:0-1)
is easy to calculate (at least up to a proportionality constant if we use the unnormalised
densities). For example, this may be due to the design of ¢(x,|z1.,—1)’s in such a way that
the ratio depends only on x,,_; and x,,. Hence, one can exploit this recursion by sampling

only X,, from ¢(-|z1.,,—1) at time n and updating the weights with a small effort.
)

1in—1

More explicitly, assume a set of N > 1 samples, termed as particles, X;. O with weights

wnf1(X1(;n,1) and normalised weights Wéfl fori=1,..., N are available at time n — 1, so
that we have

7T $1 1 E (1) $1:—1-
m— 1Xl1 n)

The update from 72 | to 7Y can be performed by first sampling X0~ q(-|X1(f21_1) and
computing the weights w,, at points Xl(l,)l = (X{?l_l,XT(f)) using the update rule in (6.2),
and finally obtain the normalised weights WY using (6.4).

The SIS method is summarised in Algorithm 6.1. Being a special case of importance
sampling approximation, this SIS approximation 7 (¢,,) has almost sure convergence to
7, for any n (under regular conditions) as the number of particles N tends to infinity; it
is also possible to have a central limit theorem for 7 (¢,,) (Geweke, 1989).
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Algorithm 6.1: Sequential importance sampling (SIS)

1 forn=1,2,...do

2 fori=1,...,N do
3 if n =1 then
4 sample Xl(l) ~ q(+), calculate w; (Xl(l)) =m (Xl(l))/Ch(sz))-
5 else
6 if n > 2 sample Xy(f) ~ q<'|X1(,:L21—1)7 set X&)L = (XS/ZL—l?XT(LZ))’ and
calculate
(4)
7 % ﬂ-n(X :n)
wn<X1(2L) = wnfl(Xl(:r)z—l) @) : ) v@)
Tn-1(X1m_1)a(Xn" [ X110 1)
7 fori=1,...,N do
8 Calculate
Wéz‘) _ ;un(Xf?L)(‘) ‘
Zi:l wn(Xl?n)

Optimal choice of importance density: As in the non-sequential case, it is important
to choose {¢, }n>1 such that the variances of {7 (,,) }n>1 are minimised. Recall that in the
SIS algorithm we restrict ourselves to {g,(z1.,) }n>1 satisfying (6.1), therefore selection of
the optimal proposal distributions suggested in Section 3.1 may not be possible. Instead,
define the incremental importance weights as.

71—n(xlzn)
Tn—1 ($1:n71)Q($n|$1:n71) ‘

wn|n—1(x1:n) =

A more relevant motivation for those {g,(z1.,)}n>1 satisfying (6.1) might be to minimise
the variance of wy,—1(X1.,) conditional on X, ;.

Note that the objective of minimising the conditional variance of wy,—; is somehow
more general in the sense that it is not specific to ¢,,. It was shown in Doucet (1997) that
q°P"(xp|71.,—1) by which the variance is minimised is given by

_ 7Tn<x1:n)
f’n—n(xl:n)dxn.
Before Doucet (1997), the optimum kernel was used in several works for particular ap-

plications, see e.g. Kong et al. (1994); Liu and Chen (1995); Chen and Liu (1996). The
optimum kernel leads to the optimum incremental weight

(6.5)

qopt(xn‘x1:n71> = 77n(£n|x1:n71)

opt (xm): 7Tn(1‘1:n—1) _fﬂ-n(xlzn)dxn

w = .
nin—1 Tn-1(T1.0-1) Tp—1(T1:m—1)

(6.6)

which does not depend on the value of z,,.



CHAPTER 6. SEQUENTIAL MONTE CARLO 30

6.3 Sequential importance sampling resampling

Weight degeneracy: The SIS method is an efficient way of implementing importance
sampling sequentially. However; unless the proposal distribution is very close to the true
distribution, the importance weight step will lead over a number of iterations to a small
number of particles with very large weights compared to the rest of the particles. This
will eventually result in one of the normalised weights to being ~ 1 and the others being
~ 0, effectively leading to a particle approximation with a single particle, see Kong et al.
(1994) and Doucet et al. (2000b). This problem is called the weight degeneracy problem.

Resampling: In order to address the weight degeneracy problem, a resampling step is
introduced at iterations of the SIS method, leading to the sequential importance sampling
resampling (SISR) algorithm.

Generally, we can describe resampling as a method by which a weighted empirical
distribution is replaced with an equally weighted distribution, where the samples of the
equally weighted distribution are drawn from the weighted empirical distribution.

x ° o o

Figure 6.1: Resampling in SISR. Circle sizes represent weights.

In sequential Monte Carlo for {7,,(21.,) }n>1, resampling is applied to 72 (z1.,_1) before
proceeding to approximate 7, (x1.,). Assume, again, that m,_1(x1.,_1) is approximated by

xln 1 E 1 X(Z) . xl:n—1>7

We draw N independent samples X 1(2_1, i=1,...,N from 7V

n—1»

such that

P(X{ = X0 ) =W, =1, N

m—1 m—1

Obviously, this corresponds to drawing N independent samples from a multinomial distri-
bution, therefore this particular resampling scheme is called multinomial resampling. Now
the resampled particles form an equally weighted discrete distribution

~N
7Tn71 ‘lenfl N E (5X(Z) xl:nfl)a

1Iin—1
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We proceed to approximating 7, (1., ) using 7Y | (x1.,_1) instead of 7Y | (x1.,_1) as follows.
After resampling, for each i = 1,..., N we sample X\” ~ q(-|X{fT)%1), weight the particles
X{) = (X{) 1, X\") using

1n

WD o wag 1 (X15)

n

(@) N
o 7I-n(‘)(lzn> W(z) — 1.
0 iy =
Tn-1 (X1 1)a(Xn 1in—1 i=1

The SISR method, also known as the particle filter, is summarised in Algorithm 6.2.

Algorithm 6.2: Sequential importance sampling resampling (SISR)

1 forn=1,2,..., do
2 if n =1 then
3 fori=1,...,N do
4 t sample X}Z) ~q ()
5 fori=1,...,N do
6 Calculate
; X(i)
Wl() X —Wl( %Z))
¢ (X17)
7 else
8 Resample from {X 1(?21_1}193 ~ according to the weights {W,,El_)l}lgig ~ to get
resampled particles {)N(fi)%l}lgig ~ with weight 1/N.
9 for i=1,...,N do
10 | Sample X7 ~ g(|X{) ), set X3 = (X0, X1)
11 for i=1,...,N do
12 Calculate
Wy o ()Wn(Xl(;)lz) @
Tn-1(X1ino1)a(Xn” | X150 1)

Path degeneracy: The importance of resampling in the context of SMC was first demon-
strated by Gordon et al. (1993) based on the ideas of Rubin (1987). Although the resam-
pling step alleviates the weight degeneracy problem, it has two drawbacks. Firstly, since
after successive resampling steps some of the distinct particles for Xi., are dropped in
favour of more copies of highly-weighted particles. This leads to the impoverishment of
particles such that for k& < n, very few particles represent the marginal distribution of
X under m, (Andrieu et al., 2005; Del Moral and Doucet, 2003; Olsson et al., 2008).
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Hence, whatever being the number of particles, m,(z1.;) will eventually be approximated
by a single unique particle for all (sufficiently large) n. As a result, any attempt to perform
integrations over the path space will suffer from this form of degeneracy, which is called
path degeneracy. The second drawback is the extra variance introduced by the resampling
step. There are a few ways of reducing the effects of resampling.

e One way is adaptive resampling i.e. resampling only at iterations where the effective
sample size drops below a certain proportion of N. For a practical implementation,
the effective sample size at time n itself should be estimated from particles as well.
One particle estimate of N.g,, is given in Liu (2001, pp. 35-36)

~ 1
Negn = ———.
) N 7)2
POARRIAS

e Another way to reduce the effects of resampling is to use alternative resampling
methods to multinomial resampling. Let 1,,(7) is the number of times the i’th parti-
cle is drawn from 7 (z1.,) in a resampling scheme. A number of resampling methods
have been proposed in the literature that satisfy E[I,(i)] = N W but have differ-
ent V[I,,(i)]. The idea behind E[I,,(i)] = NW\” is that the mean of the particle
approximation to m,(y,) remains the same after resampling. Standard resampling
schemes include multinomial resampling (Gordon et al., 1993), residual resampling
(Whitley, 1994; Liu and Chen, 1998), stratified resampling (Kitagawa, 1996), and
systematic resampling (Whitley, 1994; Carpenter et al.; 1999). There are also some
non-standard resampling algorithms such that the particle size varies (randomly) af-
ter resampling (e.g. Crisan et al. (1999); Fearnhead and Liu (2007)), or the weights
are not constrained to be equal after resampling (e.g. Fearnhead and Clifford (2003);
Fearnhead and Liu (2007)).

e A third way of avoiding path degeneracy is provided by the resample-move algorithm

(Gilks and Berzuini, 2001), where each resampled particle Xl(z,)l is moved according
to a MCMC kernel K, whose invariant distribution is m,(x1.,). In fact we could
have included this MCMC move step in Algorithm 6.2 to make the algorithm more
generic. However, the resample-move algorithm is a useful degeneracy reduction
technique usually in a much more general setting. Although possible in principle, it
is computationally infeasible to apply a kernel to the path space on which current

particles exist as the state space grows at evert iteration of SISR.

e The final method we will mention here that is used to reduce path degeneracy is block
sampling (Doucet et al., 2006), where at time n one samples components X,,_r,1., for
L > 1, and previously sampled values for X,,_;1.,_1 are simply discarded. In return
of the computational cost introduced by L, this procedure reduces the variance of
weights and hence reduces the number of resampling steps (if an adaptive resampling
strategy is used) dramatically. Therefore, path degeneracy is reduced.



Chapter 7

Bayesian inference in Hidden Markov
Models

Summary: One main application of sequential Monte Carlo methods is Bayesian opti-
mum filtering in hidden Markov models (HMM). We will first introduce HMMs. Then
we will see exact sequential inference techniques for finite-state space HMMs and linear
Gaussian HMMs, where we do not need SMC methods for certain distributions of interest.
Then, we will move on to the general case where the HMM can be non-linear and/or non-

Gaussian, see sequential Monte Carlo methods in action for sequential inference in such
HMDMs.

7.1 Introduction

HMMs arguably constitute the widest class of time series models that are used for mod-
elling stochastic behaviour of dynamic systems. In Section 7.2, we will introduce HMMs
using a formulation that is appropriate for filtering and parameter estimation problems.
We will restrict ourselves to discrete time homogenous HMMs whose dynamics for their hid-
den states and observables admit conditional probability densities which are parametrised
by vector valued static parameters. However, this is our only restriction; we keep our
framework general enough to cover those models with non-linear non-Gaussian dynamics.

One of the main problems dealt within the framework of HMMs is optimal Bayesian
filtering, which has many applications in signal processing and related areas such as speech
processing (Rabiner, 1989), finance (Pitt and Shephard, 1999), robotics (Gordon et al.,
1993), communications (Andrieu et al.; 2001), etc. Due to the non-linearity and non-
Gaussianity of most of models of interest in real life applications, approximate solutions
are inevitable and SMC is the main computational tool used for this; see e.g. Doucet et al.
(2001) for a wide selection of examples demonstrating use of SMC. SMC methods have
already been presented in its general form in the previous chapter, we will present their
application to HMMs for optimal Bayesian filtering in Sections 7.3 and 7.3.4.

83



CHAPTER 7. BAYESIAN INFERENCE IN HIDDEN MARKOV MODELS 84

Figure 7.1: Acyclic directed graph for HMM

7.2 Hidden Markov models

We begin with the definition of a HMM. Let {X}}:>1 be a homogenous Markov chain with
state-space X, initial density n(z1) and transition density f(z¢|z:—1). Suppose that this
process is observed as another process {Y;};>; on Y such that the conditional distribution
on Y; given all the other random variables depends only on X; and has the conditional
density ¢(y¢|x:). Then the bivariate process { X, Y;}+>1 is called a HMM. For any n > 1,
the joint probability density of (Xi.,, Y1.,) is given by

n

P(T1ims Y1) = 77(551) H f(iﬁt‘l't—l) Hg(yt’xt) (7.1)

t=2 t=1
N o\ g
Vv

VvV
latent Markov process observations

Figure 7.1 shows the diagram for the HMM.

The joint law of all the variables of the HMM up to time n is summarised in (7.1) from
which we derive several probability densities of interest. One example is the evidence of
the observations up to time n which can be derived as

p(ylzn) = /p(%mym)d%n- (7.2)

Another important probability density, which will be pursued in detail, is the density of

the posterior distribution of X;., given Yi., = y1.,, which is obtained by using the Bayes’

theorem

p<m1:n7y1:n) (73)
p(ylzn)

In the time series literature, the term HMM has been widely associated with the case
of X being finite (Rabiner, 1989) and those models with continuous X" are often referred
to as state-space models. Again, in some works the term ‘state-space models’ refers to
the case of linear Gaussian systems (Anderson and Moore, 1979). We emphasise at this
point that in this text we shall keep the framework as general as possible. We consider
the general case of measurable spaces and we avoid making any restrictive assumptions
on n(x1), f(z¢xi—1), and g(y|z;) that impose a certain structure on the dynamics of the

p(xlzn ’yl:n) -
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HMM. Also, we clarify that in contrast to previous restrictive use of terminology, we will
use both terms ‘HMM’ and ‘general state space model’ to describe exactly the same thing.

Example 7.1 (A finite state-space HMM for weather conditions). Assume that
the weather condition in terms of atmospheric pressure is simplified to have two states,
“Low” and “High”, and on day t, X, € X = {1,2} denotes the state of the atmospheric
condition in terms of pressure, where 1 stands for “Low” and 2 stands for “High”. Further
{Xi}i>1 is modelled as a Markov chain with some initial distribution n = [n(1),n(2)], and
transition density

0.3 0.7

F= [0.2 0.8]
where F(i,j) = P(Xi1 = j| Xy = 4) = f(jli). What we observe is not the atmospheric
pressure but, whether a day is “Dry”, ”"Cloudy”, or "Rainy”, and these conditions are

enumerated with 1, 2, and 3, respectively. Let Y; € Y = {1,2,3} is the observed weather
condition on day t. It is known that low pressure is more likely to lead clouds or precipita-
tion than high pressure, and assumed that given Xy, Y; is conditionally independent from
Y141 and Xy14_1. The conditional observation matrix that related X; to Yy is given by

0.3 0.4 03
G:bﬁOBQJ

where G(i,7) = P(Y; = j| Xy = 1) = g(j|i). Then, {Xt,Y:}is1 forms a HMM, and since X
18 finite, it is called a finite state-space HMDM.

Example 7.2 (Linear Gaussian HMM). A generic linear Gaussian HMM {X;,Y;},
where X; € R%  and Y, € R% are vector valued hidden and observed states, can be defined
via the following generative definitions for the random variables {X;,Y;}:

Xi~ N, D), Xo=AX, 1+ U, U, ~N(0,S), t>1 (7.4)
Y, = BX,+ Vi, Vi~N(0,R), (7.5)

Here, A, B are d, xd, and d, x d, matrices, and S and R are d, xd, and d, xd, covariance

matrices for the state and observation processes, respectively. In terms of densities, this
HMM can be described as

n(x1) = ¢(xy; pa, X)), f@dwey) = d(we; Ave 1, S),  g(yelwe) = ¢(ys; Bay, R). (7.6)

Example 7.3 (A partially observed moving target). We modify the source localisation
problem in Example 5.15 by adding to the scenario that the source is moving in a Markovian
fashion: The motion of the source is modelled as a Markov chain for its velocity and
position. Let V;, = (Vi(1),Vi(2)) and P, = (Pi(1), P,(2)) be the velocity and the position
vectors (in the xy plane) of the source at time t and assume that they evolve according to
its following stochastic dynamics: Vi(i) ~ N(0,0%,),

‘/1(7') NN(Oval?v)v P1(2> ~ N<070§p>7 1=1,2,
Vi(i) = aViea (8) + Ui(i),  Poi) = Pioa (i) + AViea (4) + Z4(3),  i=1,2.
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where U, "% N(0,02) and Z,(i) VS N(0,07). This model dictates that the velocity in each
direction changes independently according to an autoregressive model with the regression
parameter a and driving variance o> and the position is the previous position plus the
previous velocity multiplied by the factor A which corresponds to the time interval between
successive time stepst —1 and t, plus some noise which counts for the discretisation error.

Let Xy = (Vi, By). Xy is a Markov chain with transition density

2 2

fladwia) = ] o(wi(i); avia (8), 02) [ [ 6(u0); Avea (6) + pia (i) 03)

i=1 =1

or, in matrix form

Q

0
0
0

o e O

2
0‘p

cold, o
o, oo

a
0
f(xt|$t—1) = ¢(F$t—la Ex), F = A
0

o O O

A

The observations are generated as before, i.e. at each time t three distance measurements
(R, Reg, Ry s) with

Ry =[(P(1) = Si(1)* + (Ri(2) = Si(2))]%, i =1,2,3,

2

Y and these

from three different sensors are collected in Gaussian noise with variance o
measurements form Y; = (Yi1,Y:2,Yi3)

Yii=Rii+ Eriy By = N(0,02), i=1,2,3.
so that

3
g(ulee) = [ (i i oy).
=1

This is an example to a non-linear HMM due to the non-linearity in its observation dy-
namics.

7.3 Bayesian optimal filtering and smoothing

In a HMM, one is usually interested in sequential inference on the variables of the hidden
process {X;};>1 given observations {Y;};>1 up to time n. For example, one pursues for the
sequence of posterior distributions {p(z1.4|y1:)},~,, where p(z1.|y1) is given in equation
(7.3). Tt is also straightforward to generalise p(x1.|y1.+) to the posterior distributions of
X1.p for any ¢ > 1. For ¢/ > ¢t we have

p(xlzt”ylzt) :p(xlzt’ylzt) H f(x‘r’x‘rfl);

T=t+1
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whereas for ¢ < t the density p(z1.4|y1+) can be obtained simply by integrating out the
variables xy 1.4, i.e.

p(l’lzt"ylzt) = /p(l'lzt’yl;t)dxtfﬂzt-

7.3.1 Filtering, prediction, and smoothing

From a Bayesian point of view, the probability densities p(x1.,/|y1.,) are complete solutions
to the inference problems as they contain all the information about the hidden states Xi.,
given the observations v;.,. For example, the expectation of a function ¢, : X — R
conditional upon the observations y;., can be evaluated as

E [Qpn(Xln’)I}/ln - yl:n] - /w($1:n’)p(xl:n’|y1:n)dx1:n’-

However, one can restrict their focus to a problem of smaller size, such as the marginal
distribution of the random variable X, & < n’, given y;.,. The probability density of such
a marginal posterior distribution p(zx|y1.,) is called a filtering, prediction, or smoothing
density if k = n, k > n and k < n, respectively. Indeed, there are many cases where one
is interested in calculating the expectations of functions ¢ : X — R of X}, given y;.,

E [@(Xk)“/l:n = y1:n] = /@(%)p(ﬂﬁk’ylzn)dm-

Although once we have p(x1.,/|y1.,) for n’ > k the marginal density can directly be obtained
by marginalisation, the recursion in (7.24) may be intractable or too expensive to calculate.
Therefore it is useful to use alternative recursion techniques to effectively evaluate the
marginal densities sequentially.

7.3.1.1 Forward filtering backward smoothing

Here, we will see the technique called forward filtering backward smoothing that combines
the recursions for the filtering and one-step prediction densities as well as a backward
recursion for smoothing densities.

Forward filtering (and prediction): We start with p(zi|yo) := p(z1) = n(z;) and

T](xl)g(yﬂxl).

Plorln) = p(y1)

where p(y1) = [n(2})g(y1|2})dz,. Given the filtering density p(z¢—1]y14-1) at time ¢ — 1
and the new observation y; at time ¢, the filtering density at time ¢ can be obtained
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recursively in two stages, which are called prediction and update. These are given as

p(l’t|y1:t—1) = /p(l"t|"l?t—1ayl:t—l)p(fl?t—l|ylst—1)d$t—1

:/f<$t|xt1)]9(%1‘3/1:151)(1%1, (7.7)
T o PWelwe, yrie—1)p(we|Y10-1)
placdyr) = P(Yelyr:e-1)
_ 9l ze)p(2e|yr:e-1)
 pwlpa) (78)

where this time we write the normalising constant as

P(Ye|yr4—1) = /p($t|y1:t1)g<yt’$t)dxt- (7.9)

Actually, (7.9) is important for its own sake, since it leads to two important quantities:
First, given yi.,, the posterior predictive density for Y, is simply p(yni1|y1.n), which
can be calculated from p(z,11|y1.n). Secondly, (7.9) can be used to calculate the evidence

recursively.
n

p(yl:n) = Hp(yt|y1:t—1) = p(ylzn—1>p<yn‘y1:n—l)- (7-10)
t=1
The problem of evaluating the recursion given by equations (7.7) and (7.8) is called the
Bayesian optimal filtering (or shortly optimum filtering) problem in the literature.

Backward smoothing: Once we have the forward filtering recursion to calculate the
filtering and prediction densities p(x;|y1.;) and p(z|y14-1) for t = 1,...,n, where n is the
total number of observations, there are more than one ways of performing smoothing in a
HMM to calculate p(z¢|y1.n), t = 1,...,n. We will see the one that corresponds to forward
filtering backward smoothing. As the name suggests, backward smoothing is performed via
a backward recursion in time, i.e. p(z|y1.,) is calculated in the order t = n,n —1,..., 1.
Now let us see how one step of the backward recursion works: Given p(xi41|y1.,), we find
p(z¢|y1.n) by exploiting the following relation

p(mt\ym) = /p(xt,$t+1|?/1:n)d$t+1

= /p($t+1|y1;n)p($t|$t+1, ylzn)dItH. (7.11)

which can be written for any time series model. Thanks to the particular structure of the
HMM, given X,,1, X; is conditionally independent from the rest of the future variables
(try to see this from Figure 7.1). Hence

P(@e|yre) f(Tega]2e)
P(es1]ye)

P(e|Ter1, Y1) = P(Te|Tes1, Y1) = (7.12)
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In fact, one can derive this analytically as

(@] Tes1, Y1) = P(Te|Tey1s Yits Yer1m)
_ P(@e|Y1:0)P(T 515 Yes 1| Te, Y1:t)
P(Teg1, Yer1n|Y1:e)
- (Y1) P(Teg1| e, Y1) P (Yo 1in | Teg1, e, Y1ae)
a P(@e1|Y1:)P(Yer 10| Ter 15 Y1t)
_ p@e|yre) f(ea|ze) p(Yesrm|Ter)
P(@e1|Y1:0)P(Yer 10| Tes1)
_ p(e|yie) f(weg1]20)
p(mtJrl‘yl:t)

where the last expression is indeed exactly p(x¢|zii1,y1.,). Substituting this into (7.11),
we have

P(@e|yie) f (e |we)
Telyrm) = x n dx 7.13
p(Te]y1:0) /P( t+1[Y1:n) (e |yre) t+1 ( )

which involves the filtering and prediction distributions that we have calculated in the
forward filtering stage already.

There are cases when the optimum filtering problem can be solved exactly. One such
case is when X is a finite countable set (Rabiner, 1989). Also, in linear Gaussian state-
space models the densities in (7.7) and (7.8) are obtained by the Kalman filter (I<alman,
1960).

7.3.1.2 Sampling from the full posterior

In order to sample from the posterior distribution p(x1.,|y1.,), we can exploit the following
factorisation:

1
p($1;n|y1:n) :p<xn|y1:n> H p(xt|~rt+1:n7y1:n)

t=n—1
1

:p($n|y1:n) H p(xt|xt+11y1:t) (7-14)

t=n—1

where the second line is crucial and it follows from the specific dependency structure
of the HMM. Equation (7.14) suggests that we can start sampling X,, from the filtering
distribution at time n, and go backwards to sample X,,_1, X,, o, ..., X1, using the backward
transition probabilities. Note that one needs all the filtering distributions up to time n in
order to perform this backward sampling. That is why the algorithm that executes this
scheme to sample from p(x1.,|y1.,) is called forward filtering backward sampling.
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7.3.2 Exact inference in finite state-space HMMs

In a finite state-space HMM, as exemplified in Example 7.1, X, takes values from a finite
set X of size k, and for simplicity we assume that the states are enumerated from 1 to k,
implying X = {1,...,k}. Define the 1 x k vectors oy, B, v for t = 1,...,n that represent
the filtering, prediction, and smoothing probabilities, respectively:

Oét(i) ::P(Xt:il}/l:t:ylzt)a izl,...7k7 tzl,...,n

Bt(l) = ]P)(Xt:ilyvlztfl :ylztfl)a izl:"'aka t:17"'7n

%) =P(Xy =i|Yim =tm), i=1,...0k, t=1,...,n
The forward filtering backward smoothing algorithm for a finite-state HMM is given in
Algorithm 7.1. The recursions given in the algorithms are simply the discrete versions of

Equations (7.7), (7.8), and (7.13). In order to keep track of p(y:|yi.:—1) (hence p(y1.¢)) as
well, one can include the following (with the convention p(y1|yo) = p(y1))

yt|ylt 1 Zﬁt

Algorithm 7.1: Forward filtering backward smoothing in finite state-space HMM
Input: Observations y;.,, HMM transition and observation probabilities 7, f, ¢
Output: oy, B, 7, t=1,...,n

Forward filtering

1 fort=1,...,ndo
2 Prediction: If ¢t = 1, set 51(i) = n(i), i = 1,..., k; else

k
= aa()fly), i=1,...k
j=1

Filtering:

(i) = kﬁt(i)g(‘ytm =1,k
> =1 Be(3)9(weld)

Backward smoothing

s fort=n,...,1do
4 Smoothing: If t = n, set v,(i) = o, (i), i = 1,..., k; else

: MGl
Z 5t+1(j), =1,...,k
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Forward filtering backward sampling: For the finite state-space HMM, the backward
transition probabilities are given as
. . ay(4) f (j4)
P(Xe = i|Xep1 =5, Yie = Y1) = — 5
( t ‘ t+ t t) ﬁt+1(])
The resulting forward filtering backward sampling algorithm for finite state-space HMMs
to sample from the full posterior p(x1.,|y1.,) is given in Algorithm 7.2.

Algorithm 7.2: Forward filtering backward sampling in finite state-space HMM
Input: Observations y;.,, HMM transition and observation probabilities n, f, g
OUtput: Xl:n ~ p(xlznlylzn)~

Forward filtering
1 Perform forward filtering in the first part ot Algorithm 7.1 to obtain «y, 5,
t=1,...,n.
Backward sampling
fort=n,...,1do
2 L Smoothing: If t = n, sample X,, = ¢ with probability «, (i), i = 1,...,k; else,
ot (1) f(@e+1]i) i=1,.... k.

given X1 = x;1 sample X; = ¢ with probability Beri(or)

7.3.3 Exact inference in linear Gaussian HMMs

Consider the linear Gaussian HMM in Example 7.2, where the initial, state transition, and
observation distributions are given in Equations 7.4 and 7.5, which are repeated here

Xl NN(Ml,El), Xt:AXt_1+Ut, UtNN(O,S), t> 1

Y, = BX,+V;, Vi~N(0,R)
Since this is a linear and Gaussian HMM, the filtering, prediction, and smoothing distri-
butions have to be Gaussian as well. For any k£ and n, let the mean and the covariance of

the posterior distribution of X}, given Yi., = yi., be pig, and Py, respectively. Then, we
denote the distributions of interest as

XY = yra ~ N (e, Po), t=1,...,n,
Xl Y11 = yri—1 ~ N(,Ltt|t—1, Pyi-1), t=1,...,n,
Xt|Y1:n:ylanN(Mﬂn,Ptm)a t=1,...,m;
or, in terms of densities,
p(@elyre) = o2 pge, Pige) t=1,...,n,
P(@elyra—1) = A(@e; paje—1, Poje—1), t=1,...,n,
P(xe|y1n) = &(T4; ftjns Pojn) t=1,...,n.

Moreover, as we will see, the mean and the covariance of these distributions are tractable.



CHAPTER 7. BAYESIAN INFERENCE IN HIDDEN MARKOV MODELS 92

Forward filtering: The prediction update from (p—1j—1, Pi—1ji—1) to (fte—1, Pye—1) can
be deduced from Equation (7.7), but a simpler way of achieving this is noticing that
the update is simply an application of linear transformation of Gaussian variables: Since
X, = AX;_1 + U, and U; is independent from all the other variables and Gaussian, too,
we have

Hijt—1 = E[X Y141 = Y11 (7.15)
= ]E[AXt—l + Ut|Y1:t—1 = yu_l]
=E[AX; 1|Y14o1 = viaa1] F E[U Y11 = y14-1]
= AE[X; 1 |Y1i41 = Y1a—1] + E[UY]
= Aptg_1jp—1 +0
= A,u,t_1|t_1. (716)

For the covariance of the prediction distribution, we have

Pyi—1 = Cov[Xy|Yi4—1 = Yr:4-1]
= Cov[AX; 1 + U|Y14-1 = Y11
= Cov[AX;_1|Y141 = y1u—1] + Cov[Uy|Yi4—1 = y1:4-1]
= ACov[X,_1|Yi_1 = y14_1]AT + Cov[U}]
= AP, AT + S. (7.17)

By using (7.9), we can derive the mean uj;" ., and the covariance P, |of the conditional

tlt—1
density p(y:|y1..—1), which we know to be a Gaussian density. An alternative way is to
derive the moments as above:

:“?|t—1 =EY Y11 = v14—1] = E[BXy + Vi|Yim1 = Y141
= E[BXy|Y1.4-1 = v14-1] + E[Vi|Y14o1 = y1.—1]

= BE[Xt—1|Y1:t—1 - yl:t—l] + E[‘/t]
— By s (7.18)

and

Pty|t—1 = Cov[Yy[Y1:—1 = y1:0-1]
= Cov[BX; + Vi[Y14-1 = y14-1]
= Cov[BXy|Y14-1 = y1:4-1] + Cov[Vi|Yiuo1 = y1:—1]
= BCov[X;_1|Y1:—1 = y14-1]B" + Cov[V}]
= BPt|t—1BT + R. (7.19)

The filtering distribution p(x;|y1.;) can be found by applying the Bayes theorem with
prior p(z¢|y1..—1) and likelihood g(y¢|x;). Since both are Gaussian and the relation between
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Y, and X, is linear, we can apply the conjugacy result for the mean parameter of the normal
distribution in Example 4.7 and deduce

Py = (Pl + B'R™'B)™

tt—1
and
Htjt = Pt|t(Ptﬁ1_1mt|t—1 + B"R™'y,)
Using the matrix inversion lemma' and letting P;ff_l = Py—1 B, we can rewrite
Py = Pyy—1 — f)t|tleT(R + BPt|tleT)_1BPt\tfl
= Fp1 — ]DtTilflPtZ\thl_lljtgftyflT (7.20)
and

Mt = (Pt\tfl — P Py TP T)(Ptﬁl,lllt\tfl + BTR_l?/t)

tle—1"te—1 L1
v - x —lpzy T p— T —1pzy T _
= jup— + Pyl Ry, — PP P P TP e _Pt\fflptll/tfl Pt\tyfl B"R™ 'y,

tt—1 te—11te—1  Tee—1 L
_ zY Y -1 Y -1 pzy TpTp-1 _ pTy Y —1pxy T p—1
= Htjt—1 + Pt\t—lpt\t—l (Pt\t—lR Pt|t—1 B R )y, Pt\t—lpt\t—l Pt\t—l Pt|t—1ﬂt\t—1

= fuft—1 + Pta\:ty—lptz\/t—;l([Bpt\t—lBT + R]Ril - Py TBTR*l)Z/t - P P _lB,U/tlt—l

tlt—1 tt—1" t[t—1
T —1 — — T —1
= fufe-1+ Pt\tyflptl\/tfl (BPtltleTR Pl - Bpt\tleTR 1)yt N Pt\tyﬂptl\/tq 'ulz‘jtfl
T —1 T -1
= fufe—1+ Pt\f—lpﬁtfl Yt — Pt|§£1f)tg|/t71 /‘thl
T —1
= fuft—1 + Pt\?—lpt?\Jt—l (ye — Mij|t—1) (7.21)

Backward smoothing: For backward smoothing, we start from p,, and P,,, which
are already calculated in the last step of the forward filtering recursion, and go backwards
to derive py), and Py, from ji;1 1), and Pyiq),. Observing (7.13) first we need to derive the
backward transition density

P(l’t’ylzt)f(%ﬂ ’fl’t)
P(Te1lyr.)

p($t|$t+1a yl:t) =

This is in the form of the Bayes’ rule, with prior p(z¢|y1..) = ¢(¢; pepe, Pye) and likelihood
f(zei1|z) = d(w441; Ay, S). Since the relation is Gaussian and the prior and likelihood
densities are Gaussian, we know that p(x|xsi1,y1.4) is Gaussian, too,. In order to derive
its mean /i, 4 and covariance ijt +1, we make use of the result in Example 4.7 again to
arrive at

tg\ctJrl = (Pil + ATS*lA)il

tlt

Nf\tﬂ = tTt+1(Rsﬁ1Ntlt + ATS_lftJrl)

'For invertible matrices A, B and any two matrices U and V of suitable size, the lemma states that
(A+UBV) t= Al - A lUB '+ VvA~IU)"lvA~L
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Using the matrix inversion lemma again, and letting I'y,4, = Pt|tATPtjrll| ;» We rewrite those
moments as
PtTt+1 = Ptlt - Ft\t+1APt|t
,uf|t+1 =t + Doer (o1 — phagape)
One can (artificially but usefully) view this relation as follows: given Yi.,, = y1.,, X; can
be written in terms of X;,; as follows:

Xi = pje + Teqr (X1 — pae—1) + By,

where Xt+1|}/i:n = Yin ~~ N(Nt—&-l\napt—i-Hn) and Et|Y1:n = Yin ~~ N(O7Pt:|tt+1) and Et 18

independent from X;,; given Yi.,. From this, we use the composition rule for the Gaussian
distributions to derive ju, and Py, from pi;11),, and Pyq),. Letting , we have

titpn = Elptge + Topeqr (Xegr — fres1)e) + Ee|Yim = Y1)
= pue + Dot (B[ X1 Vi = Y1in) — feg1)e)
= [t + Ft\tJrl(,ut\n - Mt+1|t) (7.22)

and

Pin = Covip + Ty (Xepr — pterage) + Ee[Yin = Y1)
= Ft|t+1COV[Xt+1 - /~Lt+1\t|Y1:n = ylzn]lﬂm + tg\ct+1
= I'y41Cov[ X |Yim = yl:n]rg[t-i-l + P
= Ft|t+1Pt+1|nF£t+1 + Py — D1 APy,
= Py + Ty (Prapn — P Ty (7.23)

The forward filtering backward smoothing recursions are given in Algorithm 7.3. In
order to keep track of p(y;|y1.—1) (hence p(y1.)) as well, one can include the following (with

the convention p(y1|yo) = p(y1))
p(yt!ylzm) = (b(ytS Nf\t_p Ptz\/t—l)

Forward filtering backward sampling: Similar to the finite state-space case, with the
help of backward transition distributions, we can sample from the full posterior p(z1.,|y1.)
in a linear Gaussian HMM by using forward filtering backward sampling, which is given
in Algorithm 7.4.

7.3.4 Particle filters for optimal filtering in HMM

We saw the two cases where the optimum filtering problem can be solved exactly. In
general, however, these densities do not admit a close form expression and one has to use
methods based on numerical approximations. In the following, we will look at the SMC
methodology in the context of general HMMs and review how SMC methods have been
used to provide approximate solutions to the optimal filtering problem.
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Algorithm 7.3: Forward filtering backward smoothing in linear Gaussian HMM

Input: Observations y;.,, HMM transition and observation parameters A, B, .S,
R> M1, El

Output: g1, BPye—1, e, Loty tepns P, t=1,..., 0.
Forward filtering (Kalman filtering)

1 fort=1,...,ndo
2 Prediction: If t = 1, set py0 = p1, Prjo = Xq; else

ftje—1 = Aptg_1je—1
Py = APt71|t71AT +S

Filtering:

Ptzljtﬂ = BPtltleT + R
Mﬁt_l = BMt|t—1
P, = Py BT

T -1
pae = piaje—r + By Py (e — i)y y)
'Ptlt pry Pt‘t—l - Pmy Py 71P‘/Ey T

tlt—1" tt—1 tlt—1

Backward smoothing
sfort=n—-1,...,1do
4 Smoothing:
Py = PpATPLY,
Ptpn = feje + Dejegr (Bepn — fase)
Py = Py + Ty (Prgapn — Pt+1|t)F£t+1
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Algorithm 7.4: Forward filtering backward sampling in linear Gaussian HMM
Input: Observations ¥;.,, HMM transition and observation parameters A, B, S,
R, p1, X
Output: g1, Pyje—1, feje, Prjes ttjns Bipn, £ =1,..., 1.
Forward filtering (Kalman filtering)
1 Perform forward filtering part in Algorithm 7.3 to calculate iy, Py, piye—1, and
Py, t=1,...,n.

Backward sampling
fort=n,...,1do

2 If t = n, sample X, ~ N (tnpn, Pajn); €lse, given X, = 2444, calculate
Ft|t+1 = Pt|tATPt111|t7

PtTt+1 = Pt\t - Ft|t+1APt|t7

Nﬁtﬂ = [t + Pt\t+1($t+1 - Mt+1|t),

and sample X; ~ /\/'(,uﬁtﬂ, P{ftﬂ)-

7.3.4.1 Motivation for particle filters

One approximation to optimum filtering recursion is to use grid-based methods, where
the continuous X is approximated by its finite discretised version and the update rules
are used as in the case of finite state HMMs. Another approach is extended Kalman
filter (Sorenson, 1985); which approximates a non-linear transition by a linear one and
performs the Kalman filter afterwards. The method fails if the nonlinearity in the HMM is
substantial An improved approach based on the Kalman filter is the unscented Kalman filter
(Julier and Uhlmann, 1997), which is based on a deterministic selection of sigma-points
from the support of the state distribution of interest such that the mean and the variance of
the true distribution are preserved by the sample mean and covariance calculated at these
selected sigma-points. All of these methods are deterministic and not capable of dealing
with the most general state-space models; in particular they will fail when the dimensions
or the nonlinearities increase.

Alternative to the deterministic approximation methods, Monte Carlo can provide a
robust and efficient solution to the optimal filtering problem. SMC methods for optimal
filtering, also known as particle filters, have been shown to produce more accurate estimates
than the deterministic methods mentioned (Liu and Chen, 1998; Doucet et al., 2000b;
Durbin and Koopman, 2000; Kitagawa, 1996). Some of the good tutorials on SMC methods
for filtering as well as smoothing in HMMs are Doucet et al. (2000b); Arulampalam et al.
(2002); Cappé et al. (2007); Fearnhead (2008); Doucet and Johansen (2009) from the
carliest to the most recent. One can also see Doucet et al. (2001) as a reference book,
although a bit outdated. Also, the book Del Moral (2004) contains a rigorous review of
numerous theoretical aspects of the SMC methodology in a different framework where a
SMC method is treated as an interacting particle system associated with the mean field
interpretation of a Feynman-Kac flow.
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7.3.4.2 Particle filtering for HMM
Equations (7.1) and (7.3) reveal that we can write p(z1.¢|y1.) in terms of p(x14_1|y1.4—1) as
f(@e]ze—1) g (ye|ze)

p(ytlyLH)
The normalising constant p(y:|y1..—1) can be written in terms of the known densities as

p(T1elyre) = P(T1a—1|Y1:6-1)- (7.24)

P(Yelyrie—1) = /p(l‘lzt1’y1:t1)f(It|$t1)g(yt’$t)d$1;t (7.25)

where by convention p(yilyo) = p(y1) = [ g(y1|z1)n(x1)dxy. The recursion in (7.24) is
essential since it enables efficient sequential approximation of the distributions p(x1.¢|y1.)
as we will see shortly.

With reference to the Monte Carlo methodology covered in Sections 6.2 and 6.3, the
filtering problem in state space models can be considered as a sequential inference problem
for the sequence of probability distributions

7-‘-n('rlzn) = p('rlzn’ylzn)v n > 1.

As we saw in Sections 6.2 and 6.3, we can perform SIS and SISR methods targeting
{mn(21.) }n>1. The SMC proposal density at time n, denoted as ¢, (z1.,|y1.n), is designed
conditional to the observations up to time n and state values up to time n — 1; and in the
most general case it can be written as

qn(xlzn’ylzn) = Q(ml‘yl) H q<xt’x1:t717 yl:t)
t=2
= qnfl(wlznfl’yl:nfl)Q(xn’xlznfla yl:n) (726)

In fact, most of the time the transition densities q(z¢|1.4—1, y1.¢) only depends only on the
current observation y; and the previous state x; 1,

Q(xn’xlznfly yl:n> = Q(xn|xnfla yn)

Therefore, we can write

Gn(T1n|Y1:n) = q(z1|y1) Hq To|Ti-1, Ye) (7.27)
t=2

If we wanted to perform SMC using the target distribution 7, directly, then we would have
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to calculate the following incremental weight at time n

7Tn(l‘lzn) _ p(mlzn|y1:n)
Tn—1 (xl:n—l)Q(xn|xn—17 yn) p($1:n—1 |y1:n—1)Q(xn|xn—l7 yn)
p(xlsnvylzn) p(ylzn—l)

p($1:n—17 ylzn—l)Q($n|$n—la yn) p(yl:n)
_ f(@alzn-1)g(yn|2s) 1
q<xn‘xn*17 yn) p<yn‘yl:nfl)
f(@alzn-1)9(yn|2n)
q(nlTn1,9m)

(7.28)

In most of the applications p(y,|y1.,—1) can not be calculated, hence the ratio above is not
available. For this reason, instead of m,(x.,) SMC methods use the joint density of Xj.,
and Y7., as the unnormalised measure for importance sampling

%n(xl:n) - p(xlz'm yl:n);

where the normalising constant is p(y1.,), the likelihood of observations up to time n.
Define the incremental importance weight

f(@alTn-1)9(ynl|n)
Q(xn’xn—hyn) .

wn\n—1<xn717 xn) =
The importance weight for the whole path Xj., is given by

wn(xlzn) = wnfl(x1:n71>wn|n—1 (Q:nfb xn)v

We present the SIS algorithm in Algorithm 7.5 and SISR algorithm (or the particle
filter) for general state-space models in Algorithm 7.6, reminding that SIS is a special
type of SISR where there is no resampling. As in the general SISR algorithm, we can use
an optional resampling scheme, where we do resampling only when the estimated effective
sampling size decreases below a threshold value. In the following we list some of the aspects
of the particle filter.

7.3.4.3 Filtering, prediction, and smoothing densities

Although the particle filter we presented in Algorithm 7.6 targets the path filtering distri-
butions 7, (21.,) = p(Z1.n|y1.m); it can easily be modified, or used directly, to make inference
on other distributions that might be of interest. For example, consider the one step path
prediction distribution

ﬂ'ﬁ(xliTJ = p(xlznh/l:nfl)-

There is the following relation between 7, and 72.

9(Yn|Tn)

T (@1m) = Tn1(Trn-1) f (@nltn-1),  TnlT1n) = 7Tﬁ(m")p(ynlym_l)'
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Algorithm 7.5: SIS for HMM

1 forn=1,2,...do
2 fori=1,...,N do

3 if n =1 then
i ; x® x ()
4 sample Xl() ~ ¢q(+), calculate w1(X1( )) = %
5 else
6 if n > 2 sample X3 ~ g(-|X{1)_,), set X{1) = (X{})_;, X{"), and
calculate

SO gyl X))

(4) (@)
wn(Xlzn) = wﬂfl(Xl ) i i
(X ’X( 1 yn)

m—1

fori=1,...,N do
8 Calculate

Algorithm 7.6: SISR (Particle filter) for HMM

1 if n =1 then

2 fori=1,...,N do

3 t sample Xl(l) ~q()

4 fori=1,...,N do

Calculate

n(Xl(”)g(ylle@)'
a(X{"|y)

Wl(i) x

6 else

7 | Resample from {X{i)l_l}lgiSN according to the weights {WT(Li_)l}lgiSN to get
resampled particles {Xﬁ%il}lSiSN with weight 1/N.

8 for i=1,...,N do

o || Sample X ~ (1K, 52, set X0, = (R, X&)

10 for i=1,...,N do

11 Calculate

FER X g(wal Xi)

W
SR, 4
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Therefore, it is easy to derive approximations to these distributions from each other: ob-
taining 72" from 7 | requires a simple extension of the path Xi., 1 to X1, through f;
this is done by sampling X conditioned on the existing particles paths X{QL_I, respec-
tively for i = 1,..., N. Whereas; obtaining 7 from 72 requires a simple re-weighting of
the particles according to g(yn,|z,).

As a second example, the approximations to the marginal distributions 72 (z;) are

simply obtained from the k’th components of the particles, e.g.

N N
N (1) = D W0 (w1a) = m (21) = D W60 (7).
=1 =1

Note that the optimal filtering problem corresponds to the case k = n. Therefore, it may
be sufficient to have a good approximation for the marginal posterior distribution of the
current state X,, rather than the whole path X7.,. This justifies the resampling step of the
particle filter in practice, since resampling trades off accuracy for states X with k£ < n
for a good approximation for the marginal posterior distribution of X,,.

7.3.4.4 Estimating the evidence

A by-product of the particle filter is that it can provide unbiased estimates for unknown
normalising constants of the target distribution. For example, when SISR is used, an
unbiased estimator of p(yi.,) can be obtained as

n N
1
(i) ~ p" (Y1n) || > w1 (X, X7).

t:l i=1

7.3.4.5 Choice of the importance density

The choice of the kernel ¢ for the importnce distribution in the particle filter is important
to ensure effective SMC approximation. The first genuine particle filter in the literature,
proposed by Gordon et al. (1993), involved sampling from the transition density of Xj.,,
hence taking

q(Tn|Tn-1,yn) = f(Tn|Tn-1)

and the resulting particle filter with this particular choice of ¢ is called the bootstrap filter.
With this choice, the particles are weighted by how they fit to the observation, i.e. by the
observation density,

f(@n]2n1)9(Ynlr,)
f(@n]2n1)

wn|n71(xnfl7 xn) = = g(Qn‘xn)
The optimal choice that minimises the variance of the incremental importance weights is,
from equation (6.5),

qopt(xn|xn—1’ yn) = p(xn|$n—la yn)



CHAPTER 7. BAYESIAN INFERENCE IN HIDDEN MARKOV MODELS 101

This results in the optimal incremental weights to be

wZﬁ—l@n—la Tn) = P(Yn|Tn-1),

which is independent from the value of z,,. First works where ¢°?" was used include Kong
et al. (1994); Liu and Chen (1995); Liu (1996).

Another interesting choice is to take q(x,|z,_1,yn) = q(zn|yn), which can be useful
when observations provide significant information about the hidden state but the state
dynamics are weak. This proposal was introduced in Lin et al. (2005) and the resulting
particle filter was called independent particle filter.

Example 7.4 (Linear Gaussian HMM). This is an illustrative example that is designed
to show both SIS and SISR (particle filter) algorithms applied to sequential Bayesian in-
ference in the following linear Gaussian HMM

n(x) = ¢(x;0,03), f(a'lx) = ¢(a';ax,02), glylr) = dly; bz, o}).

where Xy € R and Y; € R and hence a, b, o5, 02, and o] are all scalars.
In this example, we first generated yi., with n = 10 using a = 0.99, b = 1, 02 = 1,
02 = 1 and o} = 4. Our task is to run and compare and contrast the SMC' algorithms,

namely SIS and SISR, for sequential approximation of

7T1($1) = P($1|y1), ce ,7T10(5171:10) = p($1:10|y1:10)

Since the HMM here is linear and Gaussian, the problem is analytically tractable, m’s are
all Gaussian, and we can find those m;’s without any need to do Monte Carlo, for example
using the Kalman filter. We use SIS and SISR merely for illustrative purposes.

We ran SIS in Algorithm 7.5 with ¢, (x1) = n(x1) and q(x,|Tn—1,Yn) = f(@n|Tn_1) for
n > 1 so that wn|n 1(Zn_1,2n) = g(yn|xn), which does not depend on xz,_1, and hence
W, x g(yn|X ) for all n > 1. Top row of Figure 7.2 shows the initialisation phase, both
before and after weighting the initially generated particles X1( ), e ,X{N whose locations
are shown on the y-azis and weights are represented with the sizes of the balls centred around
their values. The red curve represents the incremental weight function wi(x1) = g(y1|z1)
vs o1 (located on the y-axis). Some of the later steps of SIS are shown Figure 7.2, from the
second row on. Starting from the second row, each row shows (i) the particles and their
weights from the previous time, (ii) The propagation and extension of the particles for the
new time step, and (iii) Update of the particle weights. Note that, due to out particular
choice of the importance density q(x|ze—1,v:), the incremental weights wy—1 (i1, 24) =
9(yt|x) depend only on the current value x;, so for this example it is actually possible
to show it as a function of x;, which we have done by the red curve in the plots. Note
that the szze of the ball around the value of a particle represents the weight of the whole
path X . Also, notice the weight degeneracy problem in the SIS algorithm, since there is
no resamplmg procedure. At time t = 10, we have effectively only one useful particle to
approximate mio(x1.10) = p(Z1.10|Y1:10), which is not a good sign.
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Figure 7.2: SIS: propagation and weighting of particles for several time steps. Each row
shows (i) the particles and their weights from the previous time, (ii) The propagation and
extension of the particles for the new time step, and (iii) Update of the particle weights.
Notice the weight degeneracy problem.
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Neaxt, the SISR algorithm, or the particle filter, in Algorithm 7.6 for the same problem.
The initialisation is just the same as in SIS, see the top row of Figure 7.5. The remaining
plots in Figure 7.3 shows some later steps of SISR. Starting from the second row, each
row shows (1) the particles and their weights from the previous time, (ii) the resampling
and propagation and extension of the particles for the new time step, and (iii) Update of
the particle weights. Notice how the weight degeneracy problem is alleviated by resampling:
there are distinct particles having closer weights to each other than in SIS. But several
resampling steps in succession lead the path degeneracy problem: ¥ (z1.10) has only one
support point for xy.

Example 7.5 (Tracking a moving target). We consider the HMM for a moving target
i Example 7.3. Our objective is to estimate the position of the target at timest =1,2,...
given the observations up to time t. With the particle filter, we can approximate my(x1,) =

p($1:t|y1:t) as
$1t ZWt x(® (T1:4)

As discussed already, this approximation can be used to approximate the filtering distribu-
tion

p(@e|yre) = ZW@ x@ (%)

We can use the position components othl = (V;(i), Pt(z)) ’s in order to estimate the current
position from the observations.

N
E[P,(j)Y1e = y1a] = PN (j) = ZWt(Z)Pt(l), j=1,2.

=1

Figure 7.4 illustrates a target tracking scenario depicted above for 500 time steps. On the
top left plot we see the position (in red) and its filtering estimate PtN (in black) given the
sensor measurements on the right plot up to the current time t, with N = 1000 particles.
The lower plots show the performance of the particle filter at each direction separately.

7.3.5 Extensions to HMMs

Although HMMSs are the most common class of time series models in the literature, there
are also many time series models which are not a HMM and are still of great importance.
These models differ from HMMs mostly because they do not possess the conditional inde-
pendency of observations. Here, we give two examples.

e In the first example of such models, the process {X,},>1 is still a Markov chain;
however the conditional distribution of Y,,, given all past variables X;., and Yi., 1,
depends not only on the value of X,, but also on the values of past observations
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Figure 7.3: SIRS: resampling, propagation and weighting of particles for several time
steps. Each row shows (i) the particles and their weights from the previous time, (ii) the
resampling and propagation and extension of the particles for the new time step, and (iii)
Update of the particle weights. Notice the path degeneracy problem: 7Y (z1.10) has only

one support point for x;.
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Figure 7.4: Particle filter for target tracking

ie. Yi.,_1. If we denote the probability density of this conditional distribution
9n(Yn|Tn, Y1.n—1), the joint probability density of (Xi.,, Y1.,) is

p(ﬂfl:mylzn) = yl‘xl Hf $t|33t 1 gt ytfﬂft,ylt 1)
t=2

If Y,, given X, is independent of the past values of the observations prior to time
n — k, then we can define g, (Yn|Tn, Y1:n—1) = 9(Yn|Tn, Yn—tm—1) for all n.

These models have much in common with basic HMMs in the sense that virtually
identical computational tools may be used for both models. In the particular context
of SMC, the similarity between these two types of models is more clearly exposed
in Del Moral (2004) via the Feynman-Kac representation of SMC methods, where
the conditional density of observation at time n is treated generally as a potential
function of x,.

In another type of time series models that are not HMM the latent process { X, }n>1
is, again, still a Markov chain; however observation at current time depends on all the
past values, i.e. Y, conditional on (Xj.,,Y7.,_1) depends on all of these conditioned
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random variables. Actually, these models are usually the result of marginalising an
extended HMM. Consider the HMM {(X,,, Z,.), Y5, }n>1, where the latent joint process
{Xn, Zn}n>1 is a Markov chain such that its transitional density can be factorised as

f(xna anxn—la Zn—l) = fl(xn|xn—1)f2(zn|xna Zn—l)-

and the observation Y,, depends only on X, and Z,, given all the past random variables
and admits the probability density g(y,|zn, 2,). Now, the reduced bivariate process
{Xn, Yn}n>1 is not a HMM and we express the joint density of (Xi.,, Y1.,) as

n

P(T1n, Y1:n) = n(x1)p1(ya|z1) H fr(@dze—0)pe(Yelz e, yre—1)
t=2

where the density p;(y:|T1.4, y1.4-1) is given by

pt(ytlxlztayl:t—l) = /p(zlst—llxlst—layl:t—l)fZ(ZtlxtyZt—l)g(yt|$taZt)dzlzt- (7-29)

The reason {X,,, Y, },>1 might be of interest is that the conditional laws of Z;.,, may
be available in close form and exact evaluation of the integral in (7.29) is available.
In that case, it can be more effective to perform Monte Carlo approximation for the
law of Xj., given observations Yi.,, which leads to the so called Rao-Blackwellised
particle filters in the literature (Doucet et al., 2000a).

The integration is indeed available in close form for some time series models. One
example is the linear Gaussian switching state space models (Chen and Liu, 2000;
Doucet et al., 2000a; Fearnhead and Clifford, 2003), where X, takes values on a finite
set whose elements are often called ‘labels’, and conditioned on {X,, }>1, {Zn, Yo }n>1
is a linear Gaussian state-space model.

We note that the computational tools developed for HMMSs are generally applicable to

a more general class of time series models with some suitable modifications.

7.3.6 The Rao-Blackwellised particle filter

Assume we are given a HMM {(X,,, Z,,), Y., }n>1 where this time the hidden state at time
n is composed of two components X,, and Z,. Suppose that the initial and transition
distributions of the Markov chain {X,, Z,},>1 have densities n and f and they can be
factorised as follows

(1, 21) = m(z)n(al2r),  f(@n, 20|Tn-1, 2n-1) = fi(@n|Tn_1) f2(2n]|Tn, 2n-1).

Also, conditioned on (z,, z,) the distribution of observation Y, admit a density g(y, |y, z,)
with respect to v. We are interested in the case where the posterior distribution

Wn(zl:nv Zl:n) = p(xlﬂw Zl:n|y1:n)
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is analytically intractable and we are interested in approximating the expectations

71-TL(SOn) =K [Son(Xlzna Zl:n)D/l:n - yl:n]

for functions ¢, : X" x Z" — R. Obviously, one way to do this is to run an SMC filter for
{7n}n>1 which obtains the approximation 72 at time n as

2 (T2, 21:0) ZW Oix) 70 (T1n; 21:m) ZW(Z

1:n>
However, if the conditional posterior probability distribution

7T2,n(zlzn‘x1:n) = p(zlznlxl:na yl:n)

is analytically tractable, there is a better SMC scheme for approximating 7,, and estimating
Tn(@n). This SMC scheme is called the Rao Blackwellised particle filter (RBPF) (Doucet
et al., 2000a). Consider the following decomposition which follows from the chain rule

p(xlz'm Zl:n|y1:n) - p(xlzn|y1:n)p(zlznlxlzn7 yl:n)

and define the marginal posterior distribution of Xj., conditioned on ., as

7T1,n($1:n) =DM ($1:n|y1;n)-
The RBPF is a particle filter for the sequence of marginal distributions {m ,},>1 which
produces at time n the approximation

N

T (T1:0) Zwlnxma:ln) Swi =1,

i=1

™

and the Rao-Blackwellised approximation the full posterior distribution involves the par-
ticle filter estimate ﬂ{\fn and the exact distribution my,,

WBBVN(xlzna Zl:n) = W{\,[n(xlzn)ﬂ-ln(z11n|x11n>'

Then, the estimator of the the RBPF for m,(¢,) becomes
WTI?B’N(QOH) - Eﬂ‘{\{n |:E7T2,n(-|X¥ZL) |:90n<X1 ns At n>i|i|

N

=S| [l XX st 30

i=1

Assuming ¢(z1.,|Y1:n) = ¢(T10-1|Y1:n-1)q(Tn|T1:n—1, Y1.n) is used as the proposal distribu-
tion, the incremental importance weight for the RBPF is given by

f1(@n]Tn-1)P(Yn|T10ms Y1:n—1)
Q<In|x1:n—17 yl:n)

wl,n|n—1(x1:n) =
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where the density p(y,|T1.n, Y1.n—1) is given by

P (Un|T1m, Y1n—1) = /p(zlm_llxm_l,ym_l)fg(znlxn,zn_l)g(ynlxmzn)dzlm.

Also, the optimum importance density which reduces the variance of w ,,—1 is when the
incremental importance density q(z,|T1.,-1, Y1) is taken to be p(zn|im_1,y1.,) Which
results in wy pjn—1(21.n) being equal to p(yn|T1m—1, Y1:m-1)-

The use of the RBPF whenever it is possible is intuitively justified by the fact that we
substitute particle approximation of some expectations with their exact values. Indeed,
the theoretical analysis in Doucet et al. (2000a) and Chopin (2004, Proposition 3) revealed
that the RBPF has better precision than the regular particle filter: the estimates of the
RBPF never have larger variances. The favouring results for the RBPF are basically due to
the Rao-Blackwell theorem (see e.g. Blackwell (1947)), after which the proposed particle
filter gets its name.

The RBPF was formulated by Doucet et al. (2000a) and have been implemented in
various settings by Chen and Liu (2000); Andrieu and Doucet (2002); Séarkka et al. (2004)
among many.
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Exercises

1. Write your own log_sum_exp function that takes an array of numbers a = [ay, . .., Gy
and returns
log (e +...+¢e"™).

in a numerically safe way. Try your code with
a = [100,500,1000], a = [—1200,—1500, —1200], @ = [—1000, 1000]
Compare each answer with the naive solution which we would have if we typed

directly log(sum(exp(a))).
[Hint: log(e® — €®) = log(e¢ max{abl _ gb—max{abl)y 4 max{a, b}.]
2. Consider the linear Gaussian HMM in Example 7.4.
e Generate hidden states x1., and observations y;., for n = 2000, a = 0.99, b =1,
os=5,02=1, 0524.

e You already have the code for this model that performs the particle filter i.e.
the SISR algorithm with the importance (proposal) density being equal to the
transition density, more explicitly

q1(z1) = n(x1),  @u(@1:0) = Ga-1(T1n-1) f(Tn]|Tn1)

Run the SISR algorithm for y;., with N = 100 this choice of importance density,
and at each time step estimate the mean posterior value E[X;|Y1.; = y1,] from
the particles.

N
XN =3 xPwl.
=1

Calculate the mean squared error (MSE) for X;, that is 1 S (X — a2

e Now, set N = 1000 and calculate the MSE again. Compare it with the previous
one.

e This time take NV = 100 and run the SISR algorithm with the optimum choice
for the importance density which is obtained by

Q(xl) = p(I1|yl)7 Q(xn|xn—layn) = p($n|$n—1,yn)a

Show that this leads to the incremental weight wyjn—1(n—1, %) = P(Yn|Tn-_1)-
(Since this is a linear Gaussian model, both p(x,|x,—1,y,) and p(y,|z,—1) are
available to sample from and calculate, respectively.) Calculate the MSE for X,
and compare it with the previous ones that you found.
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3. Consider the target tracking problem in Example 7.5. It may not be a good modelling
practice to take the noise in the measurements additive Gaussian for two reasons: (i)
One may expect to have a bigger error when a longer distance is measured. (ii) When
the noise is Gaussian, the noisy measurement is allowed to be negative, which does
not make sense. That is why, instead of the existing observation model, consider the
following one with multiplicative nonnegative noise:

Yii = RiiBriy By = N(0,02), i=1,2,3. (7.31)
where In A/ (11, %) denotes the lognormal distribution with location and scale param-
eters  and 2. Tt can be shown that if E;; ~ In N (i, 0%), log E;; ~ N(u, 0?), so we

effectively have
log Yy ~ N (log Ry, 07).

e Generate data according to the new model for n = 500 using 033 =0.1, a = 0.99,
0]2, = 0.001, o2 = 0.01, o2, = 0.01, agp = 4, and the sensor locations being the
same as in the previous examples.

e Write down the new observation density g(y:|x;) according to (7.31).

e Run a particle filter for the data you have generated with N = 1000 particles,
using q(x1|y1) = n(x1) and q(x¢|xi_1,y¢) = f(z]zi—1). Calculate the posterior
mean estimates for the position versus t, E[P,(7)|Y1.: = v14], ¢ = 1,2. Generate
results similar to the ones in Example 7.5.

e Remove one of the sensors and repeat your experiments. Comment on the
results.



Appendix A
Some Basics of Probability

Summary: This chapter provides some basics of probability which is related to the content
of this course. The covered concepts are probability, random variables, cumulative distribu-
tion function, discrete and continuous distributions, probability mass function, probability
density function, expectation, independence, correlation and covariance, Bayes’ Theorem,
and posterior distribution

A.1 Axioms and properties of probability

Let 2 be the sample space and F be the event space. (In a non-rigorous way, you can
think of F as the set of all subsets of 2 as an example.) A probability measure on (Q, F)
is a function P : F — R that satisfies the following azioms of probability.

(A1) The probability of an event is a non-negative and real number:
P(E)eR, P(E)>0, VEEeF.

(A2) Unitarity: The probability that at least one of the elementary events in the entire

sample space will occur is 1
P(Q) = 1.

(A3) o-additivity: A countable sequence of disjoint sets (or mutually exclusive sets) Ey, Es, . ..

(E; N E; =0 for all i # j) satisfies

P (G E) = iIP(Ei)

Any function that satisfies those three axioms can be a probability measure. These axioms
lead to some useful properties of probability that we are familiar with.

(P1) The probability of the empty set:
P(¢) = 0.

(P2) Monotonicity:
P(A) < P(B), VA, BeF:ACB.

111



APPENDIX A. SOME BASICS OF PROBABILITY 112

(P3) The numeric bound:
0<PE)<1, VEcF.

(P4) Union of two sets:

P(AUB)=P(A)+P(B)-P(ANB), VA BEcF.

(P5) Completion of a set:
P(A°) =1-P(A4), VAeF.

A.2 Random variables

Suppose we are given the triple (2, F,P). A real-valued random variable is a function
X:Q0—-R

such that {w € Q: X(w) <z} € F for all z € R. We need this condition since we need
the probability of this set in order to construct our cumulative distribution function.

Cumulative distribution function The probability distribution of X is mainly char-
acterised by its cumulative distribution function (cdf) denoted as F', which is defined as

F(z) =P(X <z)=PH{weQ: X(w) <z}), zek
There are three points to note here:

e The probability distribution of X is induced by P: There is always an implicit ref-
erence to (€2, F,P) when one calculates P(X < z), but we tend to forget it once we
have out cumulative distribution function F' for X. This is because once we know F’,
we know everything about the probability distribution of X and usually we do not
need to go back to the lower level and work with (2, F,P) in practice. However, it
may be useful to know what a random variable is in general.

e The use of < (and not <) is important. Especially for discrete random variables,
this matters a lot.

e Note that X, written in capital letter, represents the randomness in the probability
statement while x is a given certain value in R.

By definition, F' has the following properties:
(P1) F is a non-decreasing function: For any a,b € R, if a < b, then F(a) < F(b).

(P2) F is right continuous (no jumps occur when the limit point is approached from the
right).
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(P3) lim, o F(x) = 0.
(P4) lim, o, F(z) = 1.

Any function that satisfies those four properties can be a cdf. Therefore, the definition
and the properties have an if and only if relation.
All the probability questions about X can be answered in terms of F. Examples:

o P(X € (a,b]) = P(X < b) — P(X < a) = F(b) — F(a)

o P(X =a) = F(a) — lim,_,,- F(z). (the second term is a limit from the left)

o P(X € [a,b]) = P(X € (a,]) + P(X = a) = F(b) — F(a) + [F(a) — lim,_,,- F(z)]
o P(X € (a,b)) = P(X € (a,b]) — P(X = b) = F(b) — F(a) — [F(b) — lim, ;- F(2)]

Depending on the nature of set of values X takes, it can be called a discrete or a
continuous random variable (sometimes neither of them!).

A.2.1 Discrete random variables

If X takes finite or countably infinite number of possible values in R, then X is called a
discrete random variable. The possible values of X may be listed as 1, xs, ..., where the
sequence terminates in the finite case but continues indefinitely in the countably infinite
case.

Let p(z;) := P(X = x;), i = 1,2,... The function p(-) is called the probability mass
function (pmf) of X and has the following properties: p(z;) > 0, ¢ = 1,2,... and
Zi p(xz) =1

It can be shown that, for any z € R,
F(z)= Y p(x).
iix; <x

Hence, the cdf F' of X is a step function where jumps occur at points x; with jump height
being p(z;) = P(X = ;) = F(2;) — F(zi-1).

Some discrete distributions: Some well known distributions with a pmf (hence the cdf
is a step function): Bernoulli B(p), Geometric distribution Geo(p), Binomial distribution
Binom(n, p) Negative binomial NB(r, p), Poisson distribution PO(\).

A.2.2 Continuous random variables

If X takes values on a continuous subset Rx of R (such as R itself, an interval [a,b] or
union of such intervals), then X is said to be a continuous random variable. Furthermore,
if F' for X is continuous (i.e. no jumps), we have

P(X € (a,b)) = P(X € (a,b]) = P(X € [a,b)) = P(X € [a,b]) = F(b) — F(a).
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Also, if F'is right differentiable, we can define the probability density function (pdf) for X

o) = lim 2EEN —F@) _ 0.F()

h—0 h or ' veR.

Since F' is monotonic, we have p(x) > 0 for all z € R. Also, p integrates to 1 i.e.
ffooo p(z)dz = |, By p(z)dx = 1. All probability statements for X can be calculated using
f, such as

b
PX € o) = FO) - Fla) = | pla)ds,

P(X < a) = Fla) = / " ().

—00

From the above equation, we can conclude that P(X = x) = 0 for any x € R, because

A.2.2.1 Some continuous distributions

The following are some well known distributions with a continuous cdf (hence admitting a
pdf): Uniform distribution Unif(a, b), exponential distribution Exp(u), gamma distribution
['(a, B), inverse gamma distribution ZG (o, k), normal (Gaussian) distribution N (p, 0?),
Beta distribution Beta(a, ).

A.2.3 Moments, expectation and variance

If X is a random variable, the n’th moment of X, n > 1, denoted by E(X™), is defined for
discrete and continuous random variables as follows:

Yo xip(x), if X is discrete,

[ a™p(x)dx, if X is continuous.

E(X") := { (A1)

The first moment (n = 1) is called the expectation of X, also sometimes referred to as the
mean of X.

If |[E(X)| < oo, the n'th central moments of X, n > 1, is defined for discrete and
continuous random variables as follows:

Yolzi —E(X)|"p(x;),  if X is discrete,

A2
[ [z —E(X)]"p(z)dz, if X is continuous. (A2)

E([X —E(X)]") := {

The second central moment is the most notable of them and is called the variance of X
and denoted by V(X):
V(X) = E([X — E(X)).
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A useful identity relating V(X) to the expectation and the second moment of X is
V(X) =E(X?) - E(X)2.

Finally, the standard deviation of X is

A.2.4 More than one random variables

Suppose we have two real valued random variables, X : @ — R and Y : 2 — R, both
defined on the same proabability space (€2, F,P).! The joint distribution of X and Y is
characterised by the joint cdf Flyy which is defined as

Fyy(,y) = P(X < 2,Y < y) = P({w € 9 X(w) < 2,Y(w) < y)).
The marginal cdf’s for X and Y can be deduced from Fyy (z,y):

FX(‘r) = lim FX,Y(ny>7 FY(y) = 1:11—>I£10 FX,Y(‘ruy>‘

Y—+00

Discrete variables: For discrete X and Y taking values x;, ¢ = 1,2,... and y;, j =
1,2,..., we can define a joint pmf pyy for X and Y such that

pX,Y(Iivyj> =P(X =2,V = ?/j)

so that for any z,y € R, we have

FX,Y('I7y) = Z pX,Y(xiyyj)'

4,J:%; <x,Y; <y

Expectation of any function g of X, Y can be evaluated using the joint pmf, for example

E(9(X,Y)) = ZPX,Y(% yj)g(l'z', le)-

The marginal pmf’s for X and Y are given as follows:

px(zi) = ZPX,Y(%,?JJ‘), py(y;) = ZPX,Y(xi,yj)a
j i

1(X,Y) together can be called a bivariate random variable. A generalisation of this is a multivariate
random variable of dimension m, such as (X1, Xo, ..., Xm).
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Continuous variables: Similar to the joint pmf defined for discrete X and Y, one can

define the joint pdf for continuous X and Y, assuming F' is right-differentiable,
01 F (x,y)
pxy(z,y) = Tay

so that for any a, b, we have

b a
Fxy(a,b) —/ / pxy (z,y)dzdy

Expectation of any function g of X,Y can be evaluated using the joint pdf,

E(g9(X,Y)) Z/Oo /Oo pxy(z,y)g(x,y)dxdy.

The marginal pdf’s for X and Y can be obtained

o0

px(a) = /Oopx,m,y)dy, py(y) = / Py (@, y)da,

—00 [e.e]

Independence: We say random variables X and Y are independent if for all pairs of
sets A C R, B C R we have

P(X € AY € B)=P(X € A)P(Y € B).

If X and Y are discrete variables taking x;, i = 1,2, ... and y;, 7 = 1,2, ..., then indepen-
dence between X and Y can be expressed as

pxy (i, y;) = P(X =2, Y = y;) = px(xi)py (y;), Vi, Jj
If X and Y are continuous variables, then independence between X and Y can be expressed
as
pX,Y(x7y> :pX(x)pY<y)7 quy € R.

Covariance and Correlation: Covariance between two random variables X and Y,
Cov(X,Y) is given as

Cov(X,Y) := E([X — E(X)][Y — E(Y)])
— E(XY) - E(X)E(Y)

A normalised version of covariance is correlation p(X,Y’). Provided that V(X) > 0 and
V(Y) >0,

(X Y) = SV

OxO0y
When one of V(X) and V(Y) is 0, weset p(X,Y) =1if X =Y and p(X,Y) =0if X #Y.
One can show that
~1<p(X,Y) <L
Absolute value of p(X,Y") indicates the level of correlation. We say two random variables
X, Y are uncorrelated if Cov(X,Y) =0 (hence p(X,Y) = 0).
Note: Independence implies uncorrelatedness, but the reverse is not always true.
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A.3 Conditional probability and Bayes’ rule

Consider the probability space (2, F,P) again. Given two sets A, B € F, the conditional
distribution of A given B is denoted by P(A|B) and is defined as

P(AN B)

PIAIB) = 55

The Bayes’ rule is derived from this definition and it relates the two conditional probabil-
ities P(A|B) and P(B|A):

P(A)P(B|A)
P(B)
This relation can be written in terms of two random variables. Suppose X, Y are discrete
random variables with joint pmf pyy(z;,y;), where x € X = {z1,29,...} andy € Y =

{Y1, Y2, ...} so that the marginal pmf’s are

P(A|B) = (A.3)

px(®) = pxy(.y), pv(y) =) pxyv(zy), Xyl

yey

Then the conditional pmf’s pxy(z|y) and py|x(y|z) are defined as

v (aly) =PIyl - 2D (A1)

and Bayes’ rule relating them together is

px (@)py|x (y]z)
py(y)

pxpy (zly) = (A.5)

When X,Y are continuous random variables taking values from X and ), respectively,
with a joint pdf px y(z,y), similar definitions follow: The marginal pdf’s are

o0

Pﬂ@:/mmW@w@,pﬂwzz_my@MM.

—00 o0

The conditional pdf’s are defined exactly the same way as in (A.4) and (A.5).
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Solutions

B.1 Exercises in Chapter 2

1. We have g : (0,1) — (a,b) with x = g(u) := (b — a)u + a, hence g~* : (a,b) — (0, 1)
with
u=g'(z)=(x-a)/(b—a), w€/ab)

The Jacobian is J(x) = {dg;(x) 7 for all z. We apply the formula in (2.5) for

transformation from U to X to have

px(z) =pulg(2)) ()]

B r—a 1
_pU(b—a)b—a
1
b—a

for x € (a,b). So, we conclude that X ~ Unif(a, b).

2. Probably the best method for generating from PO()) is by the method of inversion.
The cdf at integer values is F(k) = e Zf:o %, so we can generate U ~ Unif(0, 1)
and find the smallest k such that F(k) > U is distributed from PO(A).

One alternative to it is based on the Poisson process: When the interarrival times
of a process are i.i.d. and distributed from Exp(1), the number of arrivals in an

interval of A is PO(\). From this, we can produce F; B Exp(1) and N := max{n :
Yo Ei <A}~ PO(N) (keep generating E;’s until the sum exceeds \). Equivalently,
N =max{n: [\, U; > e *} with U; ~ Unif(0,1) (why?). If X is large this requires
about A uniform variables to generate one point.

3. The pdf of the Laplace distribution Laplace(a,b) is px(z) = % exp <—@>. Notice
that Y = X — a is centred with

This pdf is a two sided version of the pdf of the exponential distribution, where
each side is multiplied by a half so that the integral is 1. Let Z ~ Exp(b) and
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Y = Z with probability 1/2 and Y = —Z with probability 1/2. One can find out
using composition that Y has pdf py(y) given above. Therefore, we can generate
X ~ Laplace(a, b) as follows

e Generate Z ~ Exp(b),
e Set Y = Z or Y = —Z with probability 1/2.
o Set X =Y +a.

4. We have X' is px/(x) = q(z), p(x) = p(z)Z, and q(x) = q(z)Z,, and P(Accept| X' =

1\5272) = %Z"Z Ei) So, the acceptance probability can be derived as

x) =

P(Accept) = /]P’(Accept\X' = z)px/(z)dx

1 Z,p(z)
= e q(z)dx

1 2,

=~z d
MZq/p(x) v
1 2,

T MZ,

The validity can be verified by considering the distribution of the accepted samples.
Using Bayes’ theorem,

1 pr(z)
px(z)P(Accept| X' = x) ()57 7 (@)
= ’ A t = frd g frd .
px () = px(x|Accept) P(Accept) % (1/01) p(x)

8. The pdf of Beta(a,b) is

B xa—1<1 —'lﬂb_l
p($) - 13(&,6)

o 2271 —2)" = p(z), z€(0,1).

We have @ = Unif(0,1) so ¢(x) = 1 and the ratio p(x)/q(x) = p(z).

e First, it can be seen that the ratio is unbounded for a < 1 or b < 1, so ) =
Unif(0, 1) cannot be used.

e When a = b =1, we have the uniform distribution for X so it is trivial.

e Fora > 1 and b > 1 and at least one of them is strictly greater than 1, the first

derivative of p(z) is equal to 0 at = = and the second derivative at that
-1
aib72

1
pr R
value of z is —(a + b — 2)? (=15 + ;&5 ), which is negative, so z* =
maximum point, yielding

p(z)/q(x) < pla”) = (ﬁ) (%>

s a
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so the smallest (hence the best) M we can choose is M* = (aiZiQ)a_l (%)bil.

Hence the rejection sampling algorithm can be applied as follows:
(a) Sample X’ ~ Unif(0,1) and U ~ Unif(0, 1)
(b) If U < (Xl)afl(l_xl)bflb,l, accept X = X', else restart.

( aigi2 )a71 ( ai;iQ )

B.2 Exercises in Chapter 3

1. For p = 0 and ¢(z) = 2, . Find the optimum k for this ¢ and calculate the gain

due to variance reduction compared to the plug-in estimator P{.(¢).
When ¢(z) = 2% and u = 0, Qo_r(p?) = Eq,_,(X?) = % Therefore, we need to
minimise

1 30t
k2 —k)(2—Fk)?

Vo, (Prs () = = 30%(2 — k)22,

The minimum is attained at kK = 1/3 and is

1 o o
V., (P () = I 304(2 — k)22 — B(X?)? = 0.4490

4

o k=1/3

The variance of the plug-in estimator Plo(p) = & S0 X2, X; ~ P, is

E(X*) —E(X?)?2 30t — ot 20%
V(Bo(e)) = BEDBXY 30— ot 270

Therefore the IS estimator provides a variance-reduction factor of ~ 0.22.
2. e For an acyclic directed graph, see for example
http://statweb.stanford.edu/ owen/mc/Ch-var-is.pdf.

e Importance sampling part: The probability P(E,y, > 70) = E(p(X)) where
X = (T,...,Th) and ¢(X) = I(Eyp > 70) can be estimated via importance
sampling by sampling independent X ’s where

XO = (10, 1), T ~ Exp(1/A))

The proposal density for this choice at x = (t1,...,t10) is ¢(x) = H}il %e*tf“j,
J
so the weights will be.

wix) = XD 7 ()
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Therefore, the overall importance sampling estimate is

N 10 N (o)
Pg(y _%ZH 10>7OH9.6($ Glj)T]

i=1 j=1 7

where Efé) is the computed completion time for the i’th sample X @,

B.3 Exercises of Chapter 4

1. The full tables are given below.

pxy(z,y) |ly=1 y=2 y=3 y=4|px(2)
r=1 | 1/40 3/40 4/40 2/40 | 10/40
r=2 | 5/40 7/40 6/40 5/40 | 23/40
r=3 | 1/40 2/40 2/40 2/40 | 7/40
v(y) | 7/40 12/40 12/40 9/40

pxiy(xly) [y=1 y=2 y=3 y=4
=1 1/7  3/12 4/12  2/9
x=2 | 5/7 7/12 6/12 5/9
r=3 /7 2/12 2/12  2/9

pyix(le) ly=1 y=2 y=3 y=
x=1 | 1/10 3/10 4/10 2/10
x=2 | 5/23 7/23 6/23 5/23
r =23 7 2)7  2)T 2T

2. We have px(z) = %fkl@*ﬁwy and py|x (y|z) = ze™*, so
pX|Y<I|y) X Px (x)pY|X(y|I>
= —Fﬁ(a) o e P ey
X $O‘€_(B+y)x’

which is in the same form of the pdf of I'(a + 1, 8 4+ y). Therefore, o, = o + 1 and
ﬁz\y = B +y.

3. Let us define
uly) = E(X|Y = y) = / ep(aly)da
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for brevity (we can define such p since E(X[Y = y) is a function of y only). We can
write any estimator as X (Y) = u(Y) + X (V) — u(Y). Now, the expected MSE is

E((X(Y) - X)?) = / (X(y) — 2)p(x, y)dady
= [ [J k6 - orptetirae] v
_ / [/[,u(y) —z+ X(y) - u(y)]Qp(frly)dx] p(y)dy

Let us focus on the inner integral first.

/ ) — 2+ X () — uly)Pplely)de

= /(u(y) — 2)*p(aly)dz + (X(y) — u(y)? + 2(X (y) — u(y)) /(u(y) — z)p(zly)dz
= [ nt0) = 2Pplaly)ds + (X(0) - ulo)? (B.1)

where the last equation follows since the last term is zero:
/(u(y) — x)p(zly)de = p(y) — /rcp(ﬂy)da: = 0.

The first term in (B.1) does not depend on the estimator X (y) so we have control
only on the second term (X (y) — pu(y))? which is always nonnegative and therefore
minimum when X (y) — u(y) = 0, i.e. X(y) = u(y) = E(X|Y = y). Since this is true
for all 3, we conclude that the estimator X (Y) = E(X|Y), as a random variable of
Y, minimises the expected MSE.

4. e We can use the result in Example 4.7 which states
Y| X =2 ~N(Az,R), X ~N(m,S)= XY =y~ N(mgy, Suy)

where Sy, = (S7' + ATR™PA)~! and my, = Sy, (S~'m + ATR™'y). By obser-
vation, we can see that X is a univariate number with m =0 and S = o2, A is
an n X 1 vector with A(t) = sin(2nt/T), t =1,...,n, and R = 0.1,. Therefore
p(l"yl:n) = ¢(l’, Mgy, Sm|y) with

-1
11
Saly = (F + p Zsm2(27rt/T)> , (B.2)

Y t=1
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and

1« .
Maly = Saly— Z sin(27t/T)y;.

Y t=1

It is possible to derive p(y1.,) from p(y1.,) = p(z, y1.)/P(x|y1m), but there is
an easier way when the prior and the likelihood is gaussian and the relation
between X and Y is linear. One can view

Y=AX+V

where X and A are as before and V' ~ N(0n,071,,). As covered already in
Section 2.2.2; since X and V are gaussian, Y1., ~ N (m,,2,) with

Mn =E(AX + V) = A0, + 0, =0,, %, =Cov(AX +V) = 02AAT + oI,.

o f(n+1,X)=sin(2r(n+1)/T)X and we can view sin(27(n+ 1)/T') as a scalar
constant. Since X|Y1., = Y1 ~ N (my)y, Sepy), we have

f(n+1, X)|Y1i0 = yio ~ N (sin2r(n + 1) /T)myyy, sin®(27(n + 1) /T)S,y,)
e First, let us write
Vol X ~N(f(n+1,X),0,) = N(sin(2r(n+1)/T) X, 07).

The unconditional (marginal) distribution of Y,,;; can be calculated in a similar
way as done for Y7.,. Since the unconditional distribution of X is X ~ A(0, c2),
we have

Y1 ~N(0,sin*(2n(n +1)/T)o2 + o). (B.3)

Conditional on Yi., = y1.,, we have
X‘len = Yin ™~ N(mx\ya Sz|y)

and
Yo |X = 2, Y1 = yrn ~ N(zsin(2r(n + 1)/T), U;)

as before, since Y, is conditionally independent from Yi., given X. We can
use the same mechanism as before and derive

Voi1Yim = yrn ~ N (sin(2m(n+1)/T)myyy, sin®(2m(n+1) /T) S,y +0,). (B.4)

When compare the variances (B.3) and (B.4), we see that the second one is
smaller since S, < 02, see (B.2). The decrease in the variance, hence uncer-

x)

tainty, is due to information that comes from Yi., = y1.,.
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B.4 Exercises of Chapter 7

2. For t > 1, the optimum proposal is

J(@me 1) gyl )
p(ytlwi-1)

Q($t|$t—17 yt) = p(xt|xt—17 yt—l) =

Conditional on z,_;, X; has prior N'(az,_1,07) and Y|X; = xy ~ N (bay, 07). There-
fore, using conjugacy, we have

-1
p(xilee, yer) = Ol pg, 05),  0q = (1/oZ +0%[o]) ", pg = oj(az,1/o5+bys/a}).
The resulting incremental weight is

J(@] 1) g(ye| )
p($t|$t—1a yt)

wt\tfl(xt—hmt) = = p(ye|Te-1),

which only depends on z,_;. It can be checked that Y; = bX; + V;, V; ~ N(0, 05)
given X;_; = x,_; is Gaussian with mean baz,_; and variance b*c} 4 o, i.e.

wt|t—1(xt—1a Ty) = p(Ye|Te—1) = O(ys; baz,_1, bQUi + UZ)-

For t = 1, we get similar results by replacing f(x;|z;—1) with n(x;) and considering
Y) = bX, + V; with Vi ~ N(0, 02). This results in

-1
Q(Q31|y1) Ip(56’1|3/1) = ¢(Q31;Mq703)> 02 = (1/03 + 52/05) y Mg = Uibyt/aj-

and
wi(z1) = p(y1) = ¢(y1; 0, b*0p + 05).

3. Since each Y} ; is lognormal distributed with parameters log R; and 05, we have

(log yt,i—log Ry ;)?
yt |$t H 7y
27[_0 yt A

This result can be reached by transformation of random variables, considering that
the log Y, ; is Gaussian with mean log I?;; and variance 05.
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