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DIFFERENTIALLY PRIVATE ACCELERATED OPTIMIZATION
ALGORITHMS\ast 

NURDAN KURU\dagger , \c S. \.ILKER BIRBIL\ddagger \P , MERT G\"URB\"UZBALABAN\S \P , AND

SINAN YILDIRIM\dagger \P 

Abstract. We present two classes of differentially private optimization algorithms derived from
the well-known accelerated first-order methods. The first algorithm is inspired by Polyak's heavy ball
method and employs a smoothing approach to decrease the accumulated noise on the gradient steps
required for differential privacy. The second class of algorithms are based on Nesterov's accelerated
gradient method and its recent multistage variant. We propose a noise dividing mechanism for
the iterations of Nesterov's method in order to improve the error behavior of the algorithm. The
convergence rate analyses are provided for both the heavy ball and the Nesterov's accelerated gradient
method with the help of the dynamical system analysis techniques. Finally, we conclude with our
numerical experiments showing that the presented algorithms have advantages over the well-known
differentially private algorithms.
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1. Introduction. In many real applications involving data analysis, the data
owners and the data analyst may be different parties. In such cases, privacy of the
data could be a major concern. Differential privacy promises securing an individual's
data while still revealing useful information about a population [11]. It is based on
constructing a mechanism for which output stays probabilistically similar whenever a
new item is added or an existing one is removed from the dataset. Such incremental
mechanisms have been shown to ensure data privacy [12]. Differential privacy is used
within various types of methods in machine learning, such as boosting, linear and
logistic regression, and support vector machines [15, 9, 36, 46].

In this work, we consider the scenario where a data analyst performs analysis
on a dataset owned by another party by means of solving an optimization problem
with (stochastic) first-order methods for empirical risk minimization. There is in
fact a large body of work on differentially private empirical risk minimization [10,
24, 5, 47]. We will specifically focus on privacy-preserving gradient-based iterative
algorithms, which are a popular choice for large-scale problems due to their scalability
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properties [1, 38, 41, 23, 42, 45]. Our contributions specifically regard two gradient-
based stochastic accelerated algorithms, Polyak's heavy ball (HB) algorithm [33] and
Nesterov's accelerated gradient (NAG) algorithm [30], as well as a recent variant of
NAG [2].

Differential privacy can be achieved by adding carefully adjusted random noise to
the input (data), such as in [19]; to the output (some function of data), such as in [9];
or to the iteration vectors of an iterative algorithm, such as in [1, 41, 23, 42, 32]. In this
paper, we focus on the latter case in connection with gradient-based algorithms, where
the iteration vectors of a gradient-based algorithm are revealed at the intermediate
steps. This scenario is particularly relevant, for example, when some assessment
should be done publicly on the convergence of the algorithms, or when the available
data are shared among multiple users. For the latter case, see, e.g., [23], where the
authors tackle distributed learning via empirical risk minimization while protecting
the privacy of data holders, and present an approach based on gradient perturbation.
Although the intrinsic randomness in a stochastic gradient descent (SGD) algorithm
has been shown to provide some level of privacy in a recent study [22], the authors
report high levels of privacy loss for most datasets. That is why most of the studies
in the literature consider adding a suitable noise vector to the gradient at each step.
However, this noise does harm the performance of the algorithm in such a way that it
may even cause divergence. Therefore, the utility of a privacy-preserving algorithm
is always a concern, as in our work.

There has been a great deal of work on improving the utility of gradient-based
algorithms while preserving a given amount of the privacy ``budget"" (a mathematical
definition of this budget is given in section 2). A well-known computational tool
is, for example, subsampling, which is analyzed in a broader context in [5]. Norm
clipping, that is, bounding the norm of the gradient according to a threshold, is
also used to control the amount of noise; see, for instance, [1, 32, 39]. Analytical
developments are also present: The authors of [1] focus on tracking higher moments
of the privacy loss to obtain tighter estimates on the privacy loss. Other forms of
differential privacy are also employed to conduct tighter analysis of the privacy loss
[14, 7, 28, 47, 42]. An example regarding empirical risk minimization is [42] which
considers the l0-constrained sparse learning problem, with applications over linear and
logistic regression, and exploits the zero-concentrated differential privacy [7] for tight
utility analysis.

Contributions. In this paper, we contribute to the existing literature on privacy-
preserving gradient-based algorithms by proposing, and providing a theoretical analy-
sis of, differentially private versions of HB and NAG.

Our first algorithm is a variant of HB, which employs a smoothing approach with
the help of the information from the previous iterations. We use this mechanism
to improve the privacy level by taking the weighted average of the current and the
previous noisy gradients. We give a convergence rate analysis using the dynamical
system analysis techniques for optimization algorithms [26, 21, 16]. Although this kind
of analysis exists for the deterministic HB method [21], to the best of our knowledge,
the case with noisy gradients has not been considered in the literature, except in
[8], where a special case of quadratic objectives is studied for a particular choice of
the stepsize and momentum parameters (corresponding to the traditional choice of
parameters in deterministic HB methods). By expanding on [8, Theorem 12], we
give general results in terms of the error bounds for any selection of stepsize and
momentum parameters.

The main motivation behind our error analysis is to shed light on the effect that
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the free parameters in the algorithm, such as the stepsize and momentum parameters
and the number of iterations, have on the performance. In the typical stochastic
optimization setting, the noise in the gradients is assumed to have a bounded vari-
ance which does not depend on the number of iterations; therefore the performance
bounds obtained for the accuracy of momentum-based algorithms such as NAG or HB
(measured in terms of expected suboptimality of the iterates) with constant param-
eters can improve monotonically as the number of iterations is increased (see, e.g.,
[25, 8, 2]). However, this is not necessarily the case in privacy-preserving versions
of these algorithms. This is because each iteration causes some privacy loss and the
amount of noise in the gradients has to be increased as the total number of itera-
tions increases. Likewise, it is not clear how to set the stepsize and the momentum
parameter for optimum performance of a privacy-preserving version of an algorithm
because of the complex trade-off between the convergence rate and the additive error
due to noise. We address such issues for the differentially private HB algorithm by
providing performance bounds and error rates in terms of the number of iterations
and the momentum parameters. We extend the existing results from the literature
[21, 8] to provide an analysis for general stepsize and momentum parameter choices
for both quadratic objectives as well as for smooth strongly convex objectives for the
HB method under noisy gradients. In particular, tuning the stepsize and the momen-
tum parameters to the level of desired privacy allows us to achieve better accuracy in
the privacy setting compared to the traditional choice of parameters previously used
for the deterministic HB method.

Our second contribution regards differentially private versions of NAG [30]. NAG
can simply be made differentially private by merely adding noise to its gradient cal-
culations. However, how to distribute the privacy-preserving noise to iterations to
ensure optimal performance has not been concretely addressed in the literature. This
question can be reformulated as how to distribute a given, fixed, privacy budget to
the iterations of the algorithm. The relevance of this question is due to the fact that
in each iteration a noisy gradient is revealed, causing privacy loss. We address this
problem for the differentially private versions of NAG. In doing so, we exploit some ex-
plicit bounds in [2] on the expected error of those algorithms when they are used with
noisy gradients. Our findings show that distributing the privacy budget to iterations
uniformly, which corresponds to using the same variance for the privacy-preserving
noise for all iterations, is not the optimal way in terms of accuracy. We formally
substantiate this claim in our work.

We also consider a differentially private version of a recent variant of NAG, the
multistage accelerated stochastic gradient (MASG), introduced in [2] to improve er-
ror behavior. The method is tailored to deal with noisy gradients in NAG, and hence
is quite relevant to our setting in which noise is used to help with preserving pri-
vacy. However, the authors have not considered differential privacy while designing
their algorithm. Techniques similar to NAG will be used for the error analysis of
the differentially private version of MASG. Moreover, our novel scheme of optimally
distributing the privacy budget to the iterations can also be applied to MASG in a
similar manner.

We would like to mention the techniques for, and the scope of, the analysis of
our proposed algorithms. By their nature, the proposed algorithms are stochastic,
where the gradient vector is augmented with privacy-preserving noise at each iteration.
There exist several studies that analyze the convergence of stochastic accelerated
algorithms; for instance, see [27, 20, 35] for works related to stochastic HB, and
[44, 43, 29] for a unified analysis of stochastic versions of gradient descent (GD),
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NAG, and HB methods. We adopt a dynamical system representation approach that
is preferred for analyzing the first-order optimization algorithms [26, 16, 21, 3, 2, 29].
In this approach, the convergence rate is found with respect to the rate of decrease
of a Lyapunov function of the system state of the dynamic system induced by the
algorithm.

Finally, we remark that the given results are satisfied even when the noise that
corrupts the gradient is uncorrelated with the state of the algorithm, provided that
the noise variance can be bounded. The case of uncorrelated noise is evidently more
general than the case of independent noise. In our setting, uncorrelatedness of the
noise in the gradient is ensured by the noise being zero mean with a bounded variance
conditioned on the state of the algorithm. Such characteristics of the gradient noise are
quite relevant to differential privacy for two reasons: First, subsampling is a common
technique used in privacy-preserving algorithms, and the error due to subsampling
has zero mean and its variance is typically dependent on the current iterate of the
algorithm. Second, the variance of the privacy-preserving noise is adjusted by a so-
called sensitivity function of the state of the algorithm, which may be state dependent.

While most of the works for differentially private empirical risk minimization, in-
cluding those mentioned so far, are based on the standard gradient descent algorithm,
[41] considers other gradient-based algorithms (such as mirror descent and stochastic
variance reduced gradient) and presents utility bounds for the solution of the em-
pirical risk minimization problem under various assumptions related to the objective
function. The idea is similar to our idea of benefiting from the accelerated methods.
In addition to employing different algorithms, theoretical analysis, and targeting a dif-
ferent form of privacy (known as (\epsilon , \delta ) differential privacy), our work also differs from
[41] in terms of taking the optimal distribution of the privacy budget into account.

2. Preliminaries. In this section, we present the preliminaries for the gradient-
based optimization algorithms that we consider in the paper, followed by an introduc-
tion of differential privacy and its relation to the presented optimization algorithms.

2.1. Gradient-based optimization. A vast variety of problems in machine
learning can be written as unconstrained optimization problems of the form

(2.1) min
x\in \BbbR d

F (x),

where x \in \BbbR d is a parameter vector of dimension d \geq 1. This paper concerns a
data-oriented optimization problem, where the objective function depends on a given
dataset Y = \{ y1, . . . , yn\} \subseteq \scrY . The objective function in (2.1) is a sum of functions
that correspond to contributions of the individual data points y1, . . . , yn to the global
objective. More specifically, we are interested in objective functions of the form

(2.2) F (x) =
1

n

n\sum 
i=1

f(x; yi),

where f(\cdot ; y) : \BbbR d \mapsto \rightarrow \BbbR for y \in \scrY . These problems arise in empirical risk minimization
in the context of supervised learning [40]. Note that one could write F (x;Y ) in order
to emphasize the dependency of F on Y . However, for the sake of simplicity, we
suppress Y in the notation. In this paper, we further restrict our attention to the
set of strongly convex and smooth (that is, with a Lipschitz continuous gradient)
functions; see Definition A.1 in Appendix A.
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Gradient-based methods are arguably the most popular methods for the opti-
mization problem in (2.1). We define the gradient vectors for the additive functions

\nabla f(x; y) =
\biggl( 
\partial f(x; y)

\partial x1
, . . . ,

\partial f(x; y)

\partial xd

\biggr) \top 

, x \in \BbbR , y \in \scrY ,

so that the (full) gradient \nabla F (x) is given by

(2.3) \nabla F (x) = 1

n

n\sum 
i=1

\nabla f(x; yi).

The iterates of the basic gradient descent method for the solution of (2.1) are given
by

(2.4) xt+1 = xt  - \alpha \nabla F (xt), t \geq 0,

where \alpha is the (constant) learning rate. There are two well-known modifications of the
basic gradient descent method: Polyak's heavy ball (HB) method [33] and Nesterov's
accelerated gradient (NAG) method [30]. Both introduce a momentum parameter
\beta \geq 0 to improve upon the convergence of gradient descent. The update rule for HB
at iteration t is given by

(2.5) xt+1 = xt  - \alpha \nabla F (xt) + \beta (xt  - xt - 1),

whereas the update rule for NAG at iteration t is simply

xt+1 = zt  - \alpha \nabla F (zt),
zt = (1 + \beta )xt  - \beta xt - 1.

(2.6)

There exist stochastic versions of these gradient-based methods that are employed
when either the gradients are noisy or an exact calculation per iteration is too expen-
sive. In the former case, \nabla F (xt) is simply replaced by the noisy gradient, provided
that the noisy gradient is an unbiased estimator of the true gradient. In the second
case, the computationally costly \nabla F (xt) is replaced by a minibatch estimator

(2.7) \nabla FBt
(x) :=

1

m

\sum 
i\in Bt

\nabla f(x; yi),

where Bt is a subset B \subseteq \{ 1, . . . , n\} with | Bt| = m, formed by sampling without
replacement so that \nabla FBt(x) is unbiased.

2.2. Differential privacy. In our subsequent discussion, we will modify the
steps of the gradient-based methods to have privacy-preserving updates. Our setting
is as follows: The data holder makes public the iterates \{ xt\} 0\leq t\leq T for a total of T
iterations. The algorithm is known with all its parameters \alpha (and \beta ). If the data
holder applies the related update of the method directly, the vectors \nabla F (xt) are
revealed. This violates privacy since the revealed terms are deterministic functions of
the data. Therefore, due to privacy concerns, the iterates have to be randomized by
using a noisy gradient.

Differential privacy quantifies the privacy level that one guarantees by such ran-
domizations. A randomized algorithm takes an input dataset Y \in \scrY and returns
the random output AY \in \scrX . Such an algorithm can be associated with a function
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\scrA : \scrY \rightarrow \scrP that maps a dataset from \scrY to a probability distribution \scrA (Y ) \in \scrP such
that the output is random with AY \sim \scrA (Y ). For datasets Y1 and Y2, let h(Y1, Y2)
denote the Hamming distance between Y1 and Y2. This distance indicates the number
of different elements between the two datasets. A differentially private algorithm en-
sures that \scrA (Y1) and \scrA (Y2) are ``not much different"" if h(Y1, Y2) = 1. This statement
is formally expressed by [12] (see Definition A.2 in Appendix A).

Most existing differentially private methods perturb certain functions of data with
a suitably chosen random noise. The amount of this noise is related to the sensitivity
of the function, which is the maximum amount of change in the function when one
single entity of the data is changed (see Definition A.3 in Appendix A). There are
many results proposed in the literature that provide differential privacy for iterative
algorithms. Among those results, we will mainly use three of them concerning Laplace
mechanism, composition, and subsampling. For ease of reference, the corresponding
three theorems are also given in Appendix A.

When privacy is of concern for the optimization problem (2.1), one approach is
to update the parameter xt of iteration t using a noisy (stochastic) gradient vector

(2.8) \widetilde \nabla FBt
(xt) = \nabla FBt

(xt) + \eta t,

where Bt are the indices of full (sampled) data with size m, and \eta t = (\eta t,1, . . . , \eta t,d)
\top 

is a vector of independent noise terms having Laplace distribution with its parameter
value chosen suitably to provide the desired level of privacy. Although the privacy of
an algorithm can be guaranteed in this way, the performance will be affected because
of the noise added at each iteration. In this paper, we analyze the present trade-offs
between accuracy and privacy in gradient-based algorithms and propose accelerated
algorithms with good performance under the differential privacy noise.

Privacy setting. Before proceeding to the algorithms, we concretely state the pri-
vacy setting assumed throughout the paper. This setting has been adopted in many
works; see, e.g., [1, 32, 39]. When an algorithm is run for a total of T iterations,
the entire sequence of the iterates outputted by the algorithm, x0, x1, . . . , xT , is made
available to the adversary, who is any hypothetical entity with unbounded computa-
tional capability who wants to violate the privacy of the sensitive data. Moreover,
the algorithm itself is known with all its parameters (such as \alpha , \beta , and the variance
of the noise added to the gradient). Therefore, the adversary's view is the sequence
of iterates as well as the algorithm details. The dataset y1:n is sensitive, and it is un-
available to the adversary. We also assume that y1:n is constructed with contributions
of personal (private) data from n individuals, where yi is the ith individual's data.

It is worth noting here that revealing x1, . . . , xT is equivalent to revealing the noisy

gradients \widetilde \nabla FB0
(x0), . . . , \widetilde \nabla FBT - 1

(xT - 1) in (2.8), since one sequence can be construc-
ted from the other given the initial point x0 and the algorithm details. That is why in
the subsequent privacy analysis we will focus on the noisy gradients which are easier
to handle in deriving the privacy properties of the algorithms.

3. Differentially private heavy ball algorithm. We start with investigating
a differentially private version of the stochastic HB algorithm, which we will abbreviate
as DP-SHB. The update rule of this algorithm operates on a dataset of size n with
steps

(3.1) xt+1 = xt  - \alpha (\nabla FBt
(xt) + \eta t) + \beta (xt  - xt - 1),

where 0 < \beta < 1 is the momentum parameter of HB, Bt's are i.i.d. random subsamples
of size m \leq n sampled without replacement, and \eta t's are independent random vectors
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having i.i.d. noise components with Laplace(bt(xt)), which is the Laplace distribution
with a zero mean and variance 2bt(xt)

2. Here, differential privacy of (3.1) is sought
through the noisy gradient \nabla FBt

(xt) + \eta t. The minimum value, required for the
parameter bt(xt) of the Laplace distribution to have \epsilon -differential privacy, depends on
the number of iterations T , the subsample size m, and the L1 sensitivity S1(xt) at xt,
where the L1 sensitivity function is defined as

(3.2) S1(x) = sup
y,y\prime \in \scrY 

| \nabla f(x; y) - \nabla f(x; y\prime )| , x \in \BbbR d.

Observing (2.7), we see that changing Y and Y \prime in one data item corresponds to the
existence of a single pair of different values (yi, y

\prime 
i). Hence, the change in F (x) is by

at most S1(x)/n.
Consider the DP-SHB algorithm, where at iteration t, we draw a subsample of

size m from a dataset of size n and add Laplacian noise with parameter bt(xt) to the
minibatch estimator in (2.8). Then, using the result regarding the Laplace mechanism
in Theorem A.1 and the privacy amplification result stated in Theorem A.3, the
privacy loss at the iteration can be shown to be

\epsilon t = \varepsilon (S1(xt), bt(xt), n,m),

where the function \varepsilon : [0,\infty )2 \times \{ (m,n) \in \BbbZ + : m \leq n\} \mapsto \rightarrow \BbbR is given as

(3.3) \varepsilon (S, b, n,m) := ln
\Bigl[ 
(eS/(bm)  - 1)

m

n
+ 1

\Bigr] 
for S, b \in [0,\infty )2;m \leq n \in \BbbZ +.

Note that, for m = n, i.e., under no subsampling, we end up with \varepsilon (S, b, n, n) =
S/(bn). The following proposition uses this fact and states the required amount of
noise variance in order to have an \epsilon -differentially private algorithm after T iterations.

Proposition 3.1. The DP-SHB algorithm in (3.1) leads to an \epsilon -differentially
private algorithm if the parameter bt(xt) of the Laplace distribution Laplace(bt(xt))
for each component of the noise vector \eta t at iteration t is chosen as

bt(xt) =
S1(xt)

m\epsilon 0
,(3.4)

where xt is the output value at iteration t, n is the number of data points,

(3.5) \epsilon 0 = ln
\Bigl[ 
1 + (e\epsilon /T  - 1)n/m

\Bigr] 
,

m is the subsample size, and T is the maximum number of iterations.

Proof. Using the bt(xt) given in the proposition, the privacy loss in one iteration
is \varepsilon (S1(x), bt(xt), n,m) = ln [1 + (m/n) (e\epsilon 0  - 1)] = \epsilon /T . Finally, we apply Theorem
A.2 to conclude that the privacy loss after T iterations is \epsilon .

We are interested in DP-SHB because it lends itself to an interpretation quite
relevant to the differential privacy setting. The noise used in the differentially private
versions of the gradient descent algorithm has to be higher as the number of iterations
grows, i.e., bt(xt) needs to be larger for a larger T . This can be seen from (3.4). One
way to reduce the required noise is to use a smoothed noisy gradient, where the
smoothing is recursively performed on the past and current gradient estimates. This
is indeed how DP-SHB works. The update in (3.1) can be rewritten as

xt+1 = xt  - 
\alpha 

1 - \beta 
\=ut,(3.6)
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where \=ut is a geometrically weighted average of all the gradients up to the current
iteration defined recursively as

\=ut = \beta \=ut - 1 + (1 - \beta ) (\nabla FBt
(xt) + \eta t)(3.7)

with the initial condition \=u0 = (1  - \beta )(\nabla FB0(x0) + \eta 0). We note that a smoothing
strategy similar to that in DP-SHB, which combines minibatching with a noise-adding
mechanism for averaged gradients, has been used in [31], albeit in a different setting,
namely for the purpose of private variational Bayesian inference.

3.1. Analysis of DP-SHB. For analyzing the convergence of DP-SHB, we first
cast it as a dynamical system. We introduce the (random) variable

vt = \nabla F (xt) - \nabla FBt(xt),

which accounts for the error due to subsampling. Using this definition, we can write

xt+1 = xt  - \alpha (\nabla F (xt) + \eta t + vt) + \beta (xt  - xt - 1).(3.8)

Then, the dynamical system representation of DP-SHB becomes

\xi t+1 = [A\otimes Id]\xi t + [B \otimes Id](ut + vt + \eta t),

zt = [C \otimes Id]\xi t,

ut = \nabla F (zt),
(3.9)

where Id is the d\times d identity matrix, \otimes denotes the Kronecker product, and the state
vector \xi t and the system matrices A, B, and C are given as

(3.10) \xi t =

\biggl[ 
xt
xt - 1

\biggr] 
, A =

\biggl[ 
1 + \beta  - \beta 
1 0

\biggr] 
, B =

\biggl[ 
\alpha 
0

\biggr] 
, C =

\bigl[ 
1 0

\bigr] 
.

In our error analysis, we will consider both stochastic and deterministic versions
of HB. In order to do that, we need a uniform bound (in xt) for the conditional
covariance of wt := \eta t + vt given xt (for the case without subsampling, we simply
take vt = 0). Note that, due to independence of \eta t and vt conditional on xt, the
conditional covariance of wt given xt satisfies

Cov(wt| xt) = Cov(\eta t| xt) + Cov(vt| xt).

To handle the contribution to the overall noise by the privacy-preserving noise \eta t, we
make the following assumption.

Assumption 3.2 (bounded L1 sensitivity). The L1 sensitivity function defined
in (3.2) is bounded in x. That is, there exists a scalar constant S1 such that

(3.11) sup
x\in \BbbR d

S1(x) \leq S1.

Assumption 3.2 is common in the differential privacy literature that specifies an
upper bound for error analysis. We note that one can give a particular bound using the
properties of the objective (loss) function. For example, the logistic regression model,
which we will use to show our numerical experiments in section 5, easily admits such a
bound. It turns out that Assumption 3.2 readily guarantees a bound on the variance
of vt, the subsampling noise. The next proposition formally shows this observation.
The proof is given in Appendix B.1.



DIFFERENTIALLY PRIVATE ACCELERATED OPTIMIZATION 803

Proposition 3.3. If Assumption 3.2 holds, the norm of the conditional covari-
ance of wt = \eta t + vt is bounded for all t uniformly in xt as

(3.12) | | Cov(wt| xt)| | \leq \scrE T := \sigma 2
s(m,n) + 2

dS2
1

m2\epsilon 20
,

where \epsilon 0 is given in (3.4) and \sigma 2
s(m,n) is an upper bound on the norm of the covari-

ance of the error due to subsampling given by

(3.13) \sigma 2
s(m,n) =

S2
1

4

1

m

n - m

n - 1
.

Note that \scrE T depends on the total number of iterations T through \epsilon 0, hence the
subscript.

Before going into the detailed technical analysis, we find it useful to provide a
sketch of it. Our purpose is to find an upper bound for the expected suboptimality
\BbbE [F (xt)  - F \ast ], where x\ast is the optimal solution of (2.1) and F \ast := F (x\ast ) is the
minimum value of F . The upper bound we will prove is of the form

\BbbE [F (xt) - F \ast ] \leq \rho 2t\psi 0 + \scrE TR, 0 \leq t \leq T,

for some rate \rho , a nonnegative \psi 0 that is related to the initial point x0, and a nonneg-
ative R. As we will show soon, this bound in the DP setting has interesting aspects:
Note that, as an issue unique to the differential privacy context, the term \scrE T increases
with the total number of iterations, T . This is because for fixed privacy level \epsilon , as
T increases, \epsilon 0 defined in (3.4) decreases. Hence, increasing the number of iterations
T makes the first term \rho 2T\psi 0 smaller; however it leads to an increase in the second
term \scrE TR. This makes the analysis of DP-SHB fundamentally different compared to
the analysis of the standard SHB in the stochastic optimization literature (see, e.g.,
[8, 20, 18]), where the second term is scaled with the fixed noise variance parameter
that does not change with the number of iterations.

For analysis purposes, we define \=F : \BbbR 2d \mapsto \rightarrow \BbbR such that for \xi t =
\bigl[ 
x\top t x\top t - 1

\bigr] \top 
,

we have \=F (\xi t) = F (xt). Also, for a 2\times 2 symmetric positive-definite matrix P and a
positive scalar c, we set the Lyapunov function

VP,c(\xi ) = VP (\xi ) + c( \=F (\xi ) - F \ast )

with VP (\xi ) = (\xi  - \xi \ast )\top [P\otimes Id](\xi  - \xi \ast ). The following proposition, which is constructed
in a similar vein as Proposition 4.6 in [3], allows us to obtain expected suboptimality
bounds depending on the parameters \alpha and \beta as well as the noise level \scrE T and a
convergence rate \rho . A proof is given in Appendix B.2.

Proposition 3.4. Given F \in \scrS \mu ,L(\BbbR d), consider running the DP-SHB algorithm
with constant parameters \alpha and \beta for T iterations and with bt(xt) in Proposition 3.1
so that \epsilon -differential privacy is satisfied. Suppose that Assumption 3.2 holds and
there exist \rho \in (0, 1), a 2\times 2 positive-semidefinite symmetric matrix P , and constants
c0, c \geq 0 such that

(3.14) c0X0 + c[X1 + (1 - \rho 2)X2] \succeq \Phi (A,B, P, \rho ),

where

X0 =

\biggl[ 
2\mu LC\top C  - (\mu + L)C\top 

 - (\mu + L)C 2Id

\biggr] 
, \Phi (A,B, P, \rho ) =

\biggl[ 
A\top PA - \rho 2P A\top PB

B\top PA B\top PB

\biggr] 
,
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the matrices A,B,C are as defined in (3.10), and

X1 =
1

2

\left[   - L\beta 2 L\beta 2  - (1 - L\alpha )\beta 
L\beta 2  - L\beta 2 (1 - L\alpha )\beta 

 - (1 - L\alpha )\beta (1 - L\alpha )\beta \alpha (2 - L\alpha )

\right]  , X2 =
1

2

\left[  \mu 0  - 1
0 0 0
 - 1 0 0

\right]  .
Then, for all 0 \leq t \leq T , we obtain

\BbbE [F (xt) - F \ast ] \leq \rho 2t
1

c
VP,c(\xi 0) +

1 - \rho 2t

1 - \rho 2
Ld\alpha 2

2
\scrE T

\biggl( 
1 +

2P 2
12

P22cL+ 2| P | 

\biggr) 
,(3.15)

where \scrE T is defined as in (3.12), | P | denotes the determinant of P , and we have the
convention 0/0 = 0 for the last factor.

As distinct from the approach in [3], which is developed for the NAG method, the
bound in (3.15) is constructed by adapting the results for the deterministic HB [21] to
the stochastic setting. We also note that the matrix inequality (3.14) is 3\times 3 and can
be solved numerically for \rho and P in practice by a simple grid search over the rate \rho 
and entries of the 2\times 2 matrix P (see, e.g., [21, 26, 8]). Therefore, the right-hand side
of (3.15) that provides performance bounds can be computed numerically in practice.

3.2. Analysis of quadratic objective function case. In this section, we will
present explicit bounds for a quadratic objective function in order to provide more
insight into the interplay among \alpha , \beta , and the number of iterations T . We consider
the following quadratic function:

(3.16) F (x) =
1

2
x\top Qx+ a\top x+ b,

where Q \in \BbbR d\times d is symmetric positive-definite, a \in \BbbR d is a column vector, and b \in \BbbR 
is a scalar. For such a strongly convex quadratic objective function, an exact bound
for the objective error can be presented.

To put it in a differential privacy context, we can assume that the parameters of
F (x) depend on some data Y = \{ y1, . . . , yn\} . For example, F is a sum of functions
f(\cdot ; yi) that are quadratic in x (hence F itself is quadratic in x), and the coefficients
of the quadratic expression for each f(\cdot ; yi) depend on yi. We will assume that the L1

sensitivity of F is such that the required DP noise satisfies \BbbE (\eta t\eta \top t ) = \sigma 2
T Id for some

\sigma 2
T > 0. For simplicity, we assume that no subsampling is performed, i.e., vt = 0.

The optimal values for HB in the nonnoisy setting have been given in [34] as
\alpha HB = 4/(

\surd 
\mu +

\surd 
L)2 and \beta HB = (

\surd 
\kappa  - 1)2/(

\surd 
\kappa + 1)2 where \kappa := L/\mu . However,

those ``optimal"" values may not be the best selection for \alpha and \beta for DP-SHB. There
are two reasons for this. First, due to privacy concerns, noise is inevitable in DP-SHB.
Presence of noise shows as a second additive term in the bound for the error. This
second term is affected by the selection of \alpha . Second, the amount of privacy-preserving
noise increases with the total number of iterations. In general, the error bound is a
sum of two terms. The first of these decreases with the convergence rate \rho of the
algorithm, and the second term is due to privacy-preserving noise. It will be shown
that \alpha and \beta have an influence on both the convergence rate and the multiplicative
constant of the additive error due to noise. We will additionally see that a selection
of the \alpha , \beta pair that improves the rate also increases the additive error term due to
the presence of privacy-preserving noise. Therefore, we can talk about a trade-off
between the convergence rate and the additive noise term in our performance bounds,
which is adjusted by the parameters \alpha and \beta . In that respect, the ``optimal"" choice
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of \alpha and \beta in the nonnoisy setting is typically not the best choice of \alpha and \beta in the
DP setting.

By adapting [8, Theorem 12], which was given for the parameter choices \alpha HB, \beta HB,
we present our result for the error bound given by any pair \alpha , \beta . A proof is given in
Appendix B.3.

Theorem 3.5. Let F \in \scrS \mu ,L(\BbbR d) be a quadratic function given in (3.16). Con-
sider the iterates \{ xt\} 0\leq t\leq T of the DP-SHB method, which is run for T iterations
with noisy gradients \nabla F (xt) + wt where \BbbE (wt| xt) = 0 and \BbbE (wtw

\top 
t | xt) \preceq \sigma 2

T I for
some positive constant \sigma 2

T > 0. If DP-SHB is run with parameters (\alpha , \beta ), then

(3.17) \BbbE [F (xt)] - F (x\ast ) \leq V (\xi 0)C
2
t \rho 

2t + Lm(\alpha , \beta ),

where

m(\alpha , \beta ) =
\sigma 2
T

2

d\sum 
i=1

2\alpha (1 + \beta )

(1 - \beta )\lambda i(2 + 2\beta  - \alpha \lambda i)

with \lambda i's being the eigenvalues of Q. In (3.17), we have

(3.18) \rho = max\{ | a\mu ,+| , | a\mu , - | , | aL,+| , | aL, - | \} ,

where

a\lambda ,\pm =
1 + \beta  - \alpha \lambda \pm 

\sqrt{} 
(1 + \beta  - \alpha \lambda )2  - 4\beta 

2
,

and V (\xi 0) is given by

V (\xi 0) = \BbbE [\| (\xi 0  - \xi \ast )(\xi 0  - \xi \ast )\top \| ] + \sigma 2
T\alpha 

2

1 - \rho 2

with Ct = \scrO (t) being a sequence of scalar coefficients, provided that \rho < 1.

Theorem 3.5 is a general result which holds for SHB for (3.16) with any choice of
\sigma 2
T . The relation between Theorem 3.5 and differential privacy lies in the way \sigma 2

T is
determined in order to satisfy differential privacy with a given \epsilon . More concretely, \sigma 2

T

depends on \epsilon as well as T , sensitivity S1, and the subsample size m. For example, if
S1 = 1 and m = n, then we need \sigma 2

T = (T/n\epsilon )2 to provide \epsilon -differential privacy.
Note that in Theorem 3.5 we considered the case with uncorrelated and bounded

noise variance, which generalizes over the independent noise setting. To the best of
our knowledge, such a result has not been shown before in the literature.

Numerical demonstration. Here, we illustrate the effect of algorithm parameters
over the error bound given in Theorem 3.5. The dimension of the objective function
is taken as d = 2, and Q is chosen as the 2 \times 2 diagonal matrix with \mu = 0.5 and
L = 1 on its diagonal, so that its eigenvalues are \mu and L.

We take Ct = t for simplicity of the presentation.1 With fixed stepsizes \alpha \leq 1/L,
the convergence rate \rho in (3.18) versus \beta is plotted in Figure 1 for several values
of \alpha . As for the noise variance, we considered \sigma 2

T = (Tcw)
2 to represent increasing

noise variance in the total number of iterations. We repeated our experiments for
two different values of cw, namely for cw = 10 - 4, representing a less noisy, hence
less private, scenario (larger \epsilon ), and for cw = 10 - 2, representing a more noisy, hence
more private, scenario (smaller \epsilon ). We observe that the ``optimal"" \beta value in terms of
convergence rate \rho (which is indicated at the bottom row of Figure 1) shows a reliable
performance.

1Ct is a constant multiple of t, but the constant in front of t would not change the qualitative
behavior of the plots, only shifting the graphs by a constant factor in the logarithmic scale.
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Fig. 1. DP-SHB performance for the quadratic objective function case.

4. Differentially private accelerated algorithms. In this section, we will
investigate NAG in a differential privacy setting and propose two methods to tailor it
for improved performance under differential privacy. The first method, presented in
section 4.1, concerns how to distribute the privacy budget on the iterations to have
the best results in terms of accuracy. Specifically, instead of distributing the privacy
budget on the iterations evenly, we show in Proposition 4.2 how to allocate a given
privacy budget on the iterations to optimize accuracy. The second method, presented
in section 4.2, concerns varying the stepsize and momentum parameters of the NAG
with iterations.

In the following discussion, we will assume that Assumption 3.2 on the existence
of an upper bound S1 on the sensitivity holds, as in the previous section. Furthermore,
we will assume that the upper bound S1 is considered while determining the param-
eter bt of the privacy-preserving Laplace, so that bt is independent from the current
state. Using a state-independent sensitivity to determine the Laplace parameter is
not uncommon, especially when it is hard to identify S1(x) for all x. An example
illustrating this case can be found in section 5, in particular the sensitivity bound in
(5.2) for the logistic regression model, which is independent of the state x.

Recall the NAG update in (2.6). A straightforward differentially private version
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of NAG would be obtained by cluttering the gradient with the privacy-preserving
noise, just as in the DP-SHB algorithm. The corresponding change in NAG would be

xt+1 = zt  - \alpha (\nabla F (zt) + \eta t),

zt = (1 + \beta )xt  - \beta xt - 1,
(4.1)

where \eta t,i
i.i.d.\sim Laplace(b) for i = 1, . . . , d, and b = S1

n\epsilon 0
with \epsilon 0 is given in (3.5). The

resulting algorithm will be referred to as DP-NAG.
In DP-NAG, the stepsize \alpha (hence \beta ) and the DP noise parameter b are taken

as constant. That begs the question of whether the performance of DP-NAG could
be improved if we let b and \alpha depend on t, the iteration number. We propose two
methods to improve the performance of DP-NAG while preserving the same level of
privacy. The first method seeks to improve the algorithm by making the DP variance
parameter b, hence the privacy loss per iteration, dependent on the iteration number.
See Proposition 4.2 for an explicit result for the no-subsampling case (m = n), which,
interestingly, suggests in particular that distributing the given privacy budget on the
iterations evenly is not the best way. The second method considers varying \alpha (hence
\beta ) with iterations.

4.1. NAG with optimized DP variance. We first present an error bound for
NAG that uses noisy gradients. Let Et = \BbbE (F (xt))  - F \ast . The following theorem is
adapted from [2, Theorem 2.3].

Theorem 4.1. Let F \in \scrS \mu ,L(\BbbR d), and suppose that Assumption 3.2 holds. Con-
sider a stochastic version of the NAG algorithm that runs with a stepsize \alpha \leq 1/L
and the momentum parameter \beta = (1  - \surd 

\alpha \mu )/(1 +
\surd 
\alpha \mu ) and uses noisy gradients

\widetilde \nabla F (zt) = \nabla FBt(zt) + \eta t for t \geq 0 as in (2.8) with a subsampling size m \leq n and

\eta t,i
i.i.d.\sim Laplace(bt) for all i = 1, . . . , d. Then, for any t \geq 1, we have

(4.2) Et \leq (1 - \surd 
\mu \alpha )Et - 1 + \alpha (1 + \alpha L)

\bigl( 
b2td+ \sigma 2

s(m,n)/2
\bigr) 
.

Note that in (4.2), the term b2t +
S2
1

m
n - m
n - 1 is an upper bound on the norm of

the covariance of the gradient estimator, and it simplifies to b2t when m = n, i.e.,
without subsampling. By starting the recursion in (4.2) at the last iteration t = T
and recursing backward until t = 0, we end up with

ET \leq (1 - \surd 
\mu \alpha )TE0 +

T\sum 
t=1

(1 - \surd 
\mu \alpha )T - t\alpha (1 + \alpha L)

\bigl( 
b2td+ \sigma 2

s(m,n)/2
\bigr) 
.

It will prove useful later to express the error of NAG generically as

(4.3) ET \leq aT,0E0 +

T\sum 
t=1

aT,t

\bigl( 
b2td+ \sigma 2

s(m,n)/2
\bigr) 
.

The aT,t in (4.3) can be identified as

aT,t =

\Biggl\{ 
(1 - \surd 

\mu \alpha )T , t = 0,

(1 - \surd 
\mu \alpha )T - t\alpha (1 + \alpha L), t = 1, . . . , T.

In the DP framework, we have control on the noise parameters bt, with a con-
straint due to our privacy budget \epsilon . Suppose that we are committed to running the
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algorithm for a total of T iterations. When bt is used, the privacy loss at iteration t
becomes \epsilon t = \varepsilon (S1, bt, n,m). Given a desired privacy level \epsilon , we have the constraint\sum T

t=1 \epsilon t = \epsilon , by Theorem A.2. Therefore, one question is, with fixed m and T , how
we should arrange bt so that the bound in (4.3) is optimized. Factoring our privacy
budget into the scene, we have the following constrained optimization problem:

(4.4) min
b1,...,bT

T\sum 
t=1

aT,tb
2
t , subject to

T\sum 
t=1

\varepsilon (S1, bt, n,m) = \epsilon .

For general m \not = n, the constrained optimization problem is analytically intractable
and needs a numerical solution. This is due to the nonlinearity in \varepsilon (S1, bt, n,m).
However, for the special case of m = n (no subsampling), the constraint in (4.4)

simplifies to
\sum T

t=1 S1/nbt = \epsilon , allowing for the following tractable result. (A proof is
given in Appendix B.4.)

Proposition 4.2. When m = n, the optimization problem in (4.4) is solved by

(4.5) bt =

\sum T
j=1 a

1/3
T,j

a
1/3
T,t

S1

n\epsilon 
, t = 1, . . . , T.

Note that the choice of the bt values is directly related to how we distribute the
privacy budget over the iterations. Indeed, we can express the solution (4.5) also in
terms of the privacy loss at iteration t as

\epsilon t =
a
1/3
T,t\sum T

j=1 a
1/3
T,j

\epsilon , t = 1, . . . , T.

Since aT,t is decreasing in t, the solution (4.5) suggests that the variance should start
high and then should be decreased. This means that the privacy budget should be
distributed to the iterations in an uneven way. A larger part of the privacy budget
should be spent for later rather than for early iterations.

Remark 4.1. The solution in (4.5) for m = n yields the optimum bound

(4.6) ET \leq aT,0E0 +
dS2

1

n2\epsilon 2

\left(  T\sum 
j=1

a
1/3
T,j

\right)  3

,

which is the optimized version of the bound in (4.3) with respect to the bt values
subject to the constraint in (4.4). This optimal bound could further be optimized
with respect to the number of iterations, provided that one has an accurate guess on
the initial error E0. We note that increasing the number of iterations may degrade the
performance in the DP context, since the required noise per iteration increases, unlike
in the deterministic setting where one may improve the performance monotonically
as the number of iterations grows.

Remark 4.2. Although the result in Proposition 4.2 is valid for no subsampling, it
can be used as a guide for arranging bt's even under subsampling. Note that for values
of m, n, S, and b such that m \ll n and S/bm \ll 1, we have \varepsilon (S, b,m, n) \approx S/bn,
owing to the approximation ez \approx 1 + z for z \ll 1.
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4.2. Multistage NAG. An alternative for improving the performance of NAG
is to make the stepsize vary with iterations. In fact, the MASG algorithm of [2] has
been proposed with that motivation. The authors prove that MASG achieves the
optimal rate in both deterministic and stochastic versions.

In this paper, we present a DP-MASG, a differentially private version of MASG
introduced in [2]. In order to study and improve the error behavior of the algorithm,
an explicit bound for the objective error that accommodates iteration-dependent noise
variance parameter bt is presented. We demonstrate that the approach of dividing
noise into iterations can be applied to MASG as well.

The original algorithm MASG is a multistage accelerated algorithm which uses
the NAG method with noisy full gradient. The total iterations T are divided into K
stages, with stage lengths nk, and for each stage a different stepsize \alpha (k) is used. For
the optimal convergence rate, the stage lengths and the corresponding stepsizes are
recommended in [2] as

(4.7) n1 \geq 1, \alpha (1) =
1

L
, nk = 2k

\bigl\lceil \surd 
\kappa ln(2p+2)

\bigr\rceil 
, \alpha (k) =

1

22kL
, k \geq 2,

where p \geq 1.
The MASG algorithm can easily be modified to be differentially private by adding

a Laplace noise to the gradient as in (3.12). We will refer to the resulting algorithm
as DP-MASG. The selections in (4.7) for the stage lengths and the stepsizes were
designed for constant noise variance per iteration. In the following, we will instead
propose a new version that uses a variable noise variance parameter bt at iteration
t, which can improve performance. The main idea is to rely on Proposition 4.2 to
optimize over bt's with the privacy budget constraint.

In order to study how the privacy noise can be optimally distributed to the it-
erations of DP-MASG, we provide an explicit bound that not only accommodates
iteration-dependent noise variance, but also is in the same form as (4.3) so that the
noise variances can be optimized to minimize the bound. For MASG, stepsizes change
across stages; therefore, the recursion in (4.2) cannot be applied for all iterations. In-
stead, by Lemma 3.3 of [2], we have a factor of two that appears when the algorithm
transitions from one stage to the next. This leads to the following theorem.

Theorem 4.3. Let F \in \scrS \mu ,L(\BbbR d). Consider the DP-MASG algorithm with stage
lengths nk and stepsizes during those stages \alpha (k) given as in (4.7), and with noisy

gradients \nabla f(xt) + \eta t, where \eta t,i
i.i.d.\sim Laplace(bt) for i = 1, . . . , d. Then,

ET =

\Biggl[ 
2sT - s0

T\prod 
i=1

(1 - 
\sqrt{} 
\mu \alpha (si))

\Biggr] 
E0

+

T\sum 
t=1

2sT - st

\Biggl[ 
T\prod 

i=t+1

(1 - 
\sqrt{} 
\mu \alpha (si))

\Biggr] 
\alpha (st)(1 + \alpha (st)L)

\bigl( 
b2td+ \sigma 2

s(m,n)/2
\bigr) 
,

(4.8)

where si is the stage that contains iteration i, provided that \alpha (k) \leq 1/L for all k \geq 1.

Observing that the bound in (4.8) is in the same form as in (4.3), bt can be
optimized as in (4.4) but with aT,t indicated by (4.8) as

aT,t = 2sT - st

\Biggl[ 
T\prod 

i=t+1

(1 - 
\sqrt{} 
\mu \alpha (si))

\Biggr] 
\alpha (st)(1 + \alpha (st)L), t = 1, . . . , T.
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Once again, the optimal bt's when m = n can be written in terms of \epsilon , S1, and aT,t's
as in (4.5). To show the effect of algorithm parameters on noise variance, we plot
the optimum bt values in Figure 2 for \mu = 1, L = 20, \kappa = 20, p = 1, and c1 = 1,
representing the constant factor in front of the stepsize.
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Fig. 2. Optimal bt values for the multistage NAG algorithm.

5. Experimental results. Our experiments concern a regularized logistic re-
gression problem.2 The model has observations yi = (ui, zi), i = 1, . . . , n, where
ui \in \scrU \subseteq \BbbR d is a vector of covariates and zi \in \{  - 1, 1\} is a binary response whose
conditional probability given ui depends on a parameter vector x \in \BbbR d as follows:

p(zi| ui, x) =
\Bigl[ 
1 + e - ziu

\top 
i x

\Bigr]  - 1

, i = 1, . . . , n.

Since the probability distribution of ui's does not depend on x, the (regularized)
maximum likelihood problem is defined as determining

x\ast = argmax
x\in \BbbR d

1

n

n\sum 
i=1

f(x;ui, zi),(5.1)

where f(x;ui, zi) := ln p(zi| ui, x)+\lambda \| x\| 2. One can verify that S1(x) = 2 supu\in \scrU \| u\| 1
for all x \in \BbbR d, upon observing that for all u, u\prime \in \scrU and z, z\prime \in \{ 0, 1\} 2, we have

\| \nabla f(x;u, z) - \nabla f(x;u\prime , z\prime )\| 1 =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| zuezu
\top x

1 + ezu\top x
 - z\prime u\prime ezu

\prime \top x

1 + ez\prime u\prime \top x

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
1

\leq \| u\| 1

\bigm| \bigm| \bigm| \bigm| \bigm| zezu
\top x

1 + ezu\top x

\bigm| \bigm| \bigm| \bigm| \bigm| + \| u\prime \| 1

\bigm| \bigm| \bigm| \bigm| \bigm| z\prime ezu
\prime \top x

1 + ez\prime u\prime \top x

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \| u\| 1 + \| u\prime \| 1.(5.2)

For the experiments that follow, we use synthetic data with d = 20 and n = 105,
and the value of regularization parameter \lambda is taken as 0.01. The set \scrU is taken as the
set of all d\times 1 real-valued vectors with an L1-norm less than or equal to 20. Hence,
Assumption 3.2 holds for this example with S1 = 2 \times 20. We set \mu = 2 \times \lambda , and L
is estimated as the largest singular value of 1

n (U
\top U) + 2\lambda Id, where U is the n \times d

matrix with ut being its column t.

2The results are produced with the code at https://github.com/sibirbil/DPAccGradMethods.

https://github.com/sibirbil/DPAccGradMethods
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In our experiments, we compared six differentially private algorithms. The first
four, DP-GD, DP-NAG, DP-MASG, and DP-HB, are the straightforward differen-
tially private versions of GD, NAG, MASG, and HB, respectively. The last two algo-
rithms in the comparison are named DP-NAG-opt and DP-MASG-opt, which stand
for the alterations of DP-NAG and DP-MAGS for which the privacy-preserving noise
is distributed to the iterations according to Proposition 4.2.

The algorithms are compared across different values ofm, T , and c, wherem is the
subsampling size, T is the number of iterations, and c determines the stepsize as in \alpha =
c/L. We tried all the combinations (m,T, c) of m = 103, 105, T = 100, 200, 500, 1000,
and c = 0.1, 1. We fixed \epsilon = 1 throughout all of the experiments. For DP-MASG and
DP-MASG-opt, the general stepsize and stage length formulation in (4.7), presented
for the original versions, is preserved; however, the stepsizes are scaled by c. For
DP-HB, DP-NAG, and DP-NAG-opt, the momentum parameter is taken as \beta = (1 - \surd 
\alpha \mu )/(1+

\surd 
\alpha \mu ), while for DP-MASG and DP-MASG-opt the momentum parameter

is taken as \beta (k) = (1  - 
\sqrt{} 
\alpha (k)\mu )/(1 +

\sqrt{} 
\alpha (k)\mu ) at the kth stage of the algorithm.

Finally, the initial point for each algorithm is selected as x0 = [10, . . . , 10]\top .
For DP-NAG-opt and DP-MASG-opt, we also adjusted the given value of T as

follows: With an initial guess of E0 = 10, we computed the bound in (4.6) for each
T \prime \leq T , and we decided the number of iterations to be that T \prime which gives the
minimum bound. This procedure was detailed in Remark 4.1.

Figures 3 and 4 show, for m = 100000 (no subsampling) and for m = 1000,
respectively, the performances of the algorithms for the tried values of c and T . Each
subfigure shows the log-difference between the objective function evaluated at the
current iterate F (xt) and the objective function evaluated at the optimum solution
F (x\ast ). The optimum solution was found with a nonprivate NAG algorithm that was
run for 1000 iterations and without subsampling. The plotted values are the averages
from 20 independent runs for each combination of (m,T, c). Trace plots of the iterates
for the different values of T are plotted together with different colors. Note that for
some cases plots overlap, leaving some colors invisible.

Comparing DP-GD against the accelerated algorithms, we observe that the accel-
erated algorithms, DP-HB, DP-NAG, and DP-NAG-opt, outperform DP-SGD. Fur-
thermore, among the accelerated algorithms, we have the best results with DP-NAG-
opt and DP-MASG-opt. The advantage of accelerating is more striking for c = 0.1,
representing a too small value for the stepsize. While DP-DG is dramatically slow with
a too small stepsize, the accelerated algorithms DP-HB, DP-NAG, and DP-NAG-opt
seem to suffer less from that ill choice for the stepsize. When c = 1, DP-GD recov-
ers from slow convergence; however, the accelerated algorithms are still able to beat
it. Our observations hold both for m = 100000 and for m = 1000. The multistage
algorithm DP-MASG is also prone to a small value for c, but it recovers dramatically
when c = 1 as recommended in the earlier work [2].

In all instances, we can see the advantage of accelerated algorithms in the speed
of convergence. However, when we compare the error levels that the algorithms have
reached for the same T , we see that sometimes DP-GD has a better performance than
DP-NAG or DP-HB. See, for example, the lower half of Figure 3, at T = 1000 (red
line): While DP-GD converged more slowly than DP-HB and DP-NAG, it reached
a smaller error level. However, if we conduct an overall comparison between DP-
GD and DP-HB in terms of their best performances among all the choices T =
100, 200, 500, 1000, we see that the best of DP-HB (at T = 100) outperforms the
best of DP-GD (at T = 1000). This observation is repeated in our experiments and
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Fig. 3. Errors with various T and c and without subsampling. Top: c = 0.1; bottom: c = 1.
Note that the plots consist of all the algorithms performed with all the given iteration numbers
although some lines are not clearly visible because of overlapping. (Color available online.)

is suggestive of a general recommendation: The accelerated algorithms can promise
faster convergence when used with a small number of iterations.

This general recommendation about the selection of T is further supported by the
traces belonging to DP-NAG-opt and DP-MASG-opt (when c = 1), where T is read-
justed according to (4.6). We can see from the subplots belonging to DP-NAG-opt
and DP-MASG-opt that the readjustment prefers small T , and this selection indeed
improves the performance. This further justifies the use of the optimized algorithms
DP-NAG-opt and DP-MASG-opt, where the distribution of privacy-preserving vari-



DIFFERENTIALLY PRIVATE ACCELERATED OPTIMIZATION 813

0 500 1000

t

10
-2

10
0

10
2

DP-GD

0 500 1000

t

10
-2

10
0

10
2

DP-NAG

0 500 1000

t

10
-2

10
0

10
2

DP-MASG

0 500 1000

t

10
-2

10
0

10
2

DP-HB

0 500 1000

t

10
-2

10
0

10
2

DP-NAG-opt

0 500 1000

t

10
-2

10
0

10
2

DP-MASG-opt

0 500 1000

t

10
-2

10
0

10
2

DP-GD

0 500 1000

t

10
-2

10
0

10
2

DP-NAG

0 500 1000

t

10
-2

10
0

10
2

DP-MASG

0 500 1000

t

10
-2

10
0

10
2

DP-HB

0 500 1000

t

10
-2

10
0

10
2

DP-NAG-opt

0 500 1000

t

10
-2

10
0

10
2

DP-MASG-opt

Fig. 4. Errors with various T and c and with m = 103. Top: c = 0.1; bottom: c = 1. Note
that the plots consist of all the algorithms performed with all the given iteration numbers although
some lines are not clearly visible because of overlapping. (Color available online.)

ance as well as the number of iterations are chosen automatically.
We also compare between the NAG-based schemes and their multistage versions.

When the stepsize is chosen properly (cf. c = 1), both DP-NAG-opt and DP-MASG-
opt perform very similarly and outperform the others. However, DP-NAG-opt seems
more robust to a poor selection of the stepsize (as shown for c = 0.1).

Finally, we compare the selections m = 1000 and m = 100000, where the first
one corresponds to subsampling (with a rate of 1\%), and the other corresponds to
no subsampling. First, we can see that, even when we subsample, optimizing bt's
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and T according to Proposition 4.2 does improve the performance of DP-NAG and
DP-MASG significantly. (Recall that Proposition 4.2 holds under no subsampling,
yet its use under subsampling was discussed in Remark 4.2.) Second, a comparison
of Figures 3 and 4 on the whole shows that using full data improves the performance
of the accelerated algorithms, especially for c = 1 (compare the lower halves of the
figures). However, the difference does not seem to be by an order of magnitude. Since
the additional randomness introduced by subsampling helps to decrease the required
noise level for DP and using a sample instead of full data at each iteration is faster
(in terms of per iteration running time), many DP methods in the literature consider
stochastic algorithms in the DP context, where stochastic algorithms can improve the
running time compared to deterministic algorithms. However, if the running time is
not of concern for reaching a given privacy level, our experiments show that using full
data results in a smaller bound on the objective error.

6. Conclusions. In this paper, we presented two classes of differentially private
optimization algorithms based on the heavy ball method and Nesterov's accelerated
gradient method. We provided performance bounds for our algorithms for a given
iteration budget while preserving a desired privacy level depending on the choice of the
parameters (stepsize and the momentum). We showed that, for NAG, homogeneous
distribution of the privacy budget over all iterations, as typically done in the literature
so far, is not the best way, and we propose a method to improve it. Numerical
experiments showed that the presented algorithms have advantages over their well-
known straightforward versions.

Our analysis and methodology can be adapted to other forms of privacy to a
certain extent. For this, existence of a tractable formula for the noise parameter
to satisfy a certain level of privacy is the key requirement. For example, a weaker
form of (\epsilon , \delta )-differential privacy can be satisfied if the normal distribution is used
for the privacy-preserving noise and the required noise variance is well known [13].
Furthermore, provided there is no subsampling, privacy loss can be optimally distrib-
uted to the iterations of DP-NAG using a closed-form formula, as in Proposition 4.2,
by exploiting the relation between zero-concentrated differential privacy of [7] and
(\epsilon , \delta )-differential privacy.

Our theoretical work formally investigates, for DP-HB and DP-NAG, as well
as the multistage version of DP-NAG, the effect of the algorithm parameters on the
error bound. For DP-NAG and its multistage version, we also provide explicit formulas
about how the variance of the gradient noise should be tuned at each stage to preserve
a certain given level of privacy requirement, given the choice for the total number of
iterations. However, in our setup, tuning of these parameters requires knowledge
about the constants \mu and L. The Lipschitz constant L can often be estimated
from data using line search techniques (see, e.g., [37, Algorithm 2] or [6]). The strong
convexity constant \mu may also be known in some cases; for instance, if a regularization

term \lambda \| x\| 2

2 with \lambda > 0 is added to a convex empirical risk minimization problem of the
form (2.2), the strong convexity constant \mu can be taken as \lambda . However, in general,
\mu may not be known, and it may need to be estimated from data. As part of future
work, it would be interesting to investigate whether restarting techniques developed
for accelerated deterministic algorithms such as [17] which do not require knowledge
of the strong convexity constant a priori can be adapted to the privacy setting.

Appendix A. Definitions and known results.

Definition A.1 (strongly convex and smooth functions). A continuously differ-
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entiable function F : \BbbR d \mapsto \rightarrow \BbbR is called strongly convex with modulus \mu > 0 and
L-smooth with a Lipschitz constant L > 0 if it satisfies

\mu 

2
\| x - y\| 2 \leq F (x) - F (y) - \nabla F (y)\top (x - y) \leq L

2
\| x - y\| 2 \forall x, y \in \BbbR d.

The inequalities on the left- and right-hand sides define strong convexity and L-
smoothness, respectively. Moreover, \scrS \mu ,L(\BbbR d) denotes the set of continuously dif-
ferentiable functions that are strongly convex with modulus \mu and L-smooth with L.

Definition A.2 (\epsilon -differential privacy [12, Definition 1]). A randomized algo-
rithm \scrA with set of input datasets \scrY and range for its output \scrX is \epsilon -differentially pri-
vate if for all datasets Y, Y \prime \in \scrY differing by at most one element, i.e., h(Y, Y \prime ) \leq 1,
and all measurable O \subseteq \scrX , it holds that \BbbP [AY \in O] \leq e\epsilon \BbbP [AY \prime \in O].

Definition A.3 (sensitivity [13, Definition 3.1]). For a function on datasets \varphi :
\scrY \mapsto \rightarrow \BbbR k, k \geq 1, the L1-sensitivity of \varphi is defined as

S\varphi 
1 = max

Y,Y \prime \in \scrY :h(Y,Y \prime )=1
| | \varphi (Y ) - \varphi (Y \prime )| | 1.(A.1)

Theorem A.1 (Laplace mechanism [12, Theorem 1]). Given function \varphi : \scrY \mapsto \rightarrow 
\BbbR k, the mechanism \scrA \varphi , which adds independently generated noise with Laplace dis-
tribution Lap(S\varphi 

1 /\epsilon ) to each of the k output terms, is \epsilon -differentially private.

The methods that we shall present in the subsequent sections use the Laplace
mechanism at every iteration. Thus, we further need to quantify the privacy loss due
to using a randomized algorithm repeatedly.

Theorem A.2 (composition [13, Corollary 3.15]). Let each algorithm \scrA i be \epsilon i-
differentially private. Then (\scrA 1, . . . ,\scrA T ), whose output is the concatenation of the

outputs of the individual algorithms, is
\sum T

i=1 \epsilon i-differentially private.

Theorem A.3 ([4, Theorem 9]). Let \scrM :
\bigcup \infty 

i=1 \scrY n \rightarrow \scrX be an \epsilon -differentially pri-
vate algorithm, and let the elements of \scrY n be in the form of y1:n. Then, an algorithm
\scrM m,n : \scrY n \rightarrow \scrX that first selects a random subsample of m items from its input data
y1:n \in \scrY n, by sampling without replacement, and then runs \scrM on the subsample is
\epsilon \prime -differentially private, where \epsilon \prime = ln

\bigl( 
1 + m

n (e\epsilon  - 1)
\bigr) 
.

Appendix B. Omitted proofs. We reserve this section for the proofs of several
results in the main text.

B.1. Proof of Proposition 3.3.

Proof. Fix xt = x \in \BbbR d for the rest of the proof. Since Cov(\eta t| x) = 2bt(x)
2Id,

where bt(x) = S1(x)/m\epsilon 0, Assumption 3.2 implies that

(B.1) \| Cov(\eta t| x)\| =
S1(x)

2d

m2\epsilon 20
\leq S2

1d

m2\epsilon 20
.

Next, let R = Cov (\nabla FB(x)| x), where \nabla FB(x) is the subsampling-based estimator of
\nabla F (x) when the indices in the subsample B are sampled without replacement. From
the unbiasedness property of \nabla FB(x), we have R = Cov(vt| x). The diagonal terms
in R = [ri,j ] can be written as

(B.2) rk,k = \sigma 2
y,k

1

m

n - m

n - 1
, k = 1, . . . , d,
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where \sigma 2
y,k is the population variance given by

(B.3) \sigma 2
y,k =

1

n

n\sum 
i=1

\left(  \partial f(x; yi)

\partial xk
 - 1

n

n\sum 
j=1

\partial f(x; yj)

\partial xk

\right)  2

.

Let

S1,k(x) = sup
y,y\prime \in \scrY 

\bigm| \bigm| \bigm| \bigm| \partial f(x; y)\partial xk
 - \partial f(x; y\prime )

\partial xk

\bigm| \bigm| \bigm| \bigm| , k = 1, . . . , d.

The population variance in (B.3) can then be bounded as \sigma 2
y,k \leq S1,k(x)

2/4. There-
fore, we bound \| R\| by its trace as

\| R\| \leq 1

4

\Biggl[ 
d\sum 

k=1

S1,k(x)
2

\Biggr] 
1

m

n - m

n - 1

\leq 1

4

\Biggl[ 
d\sum 

k=1

S1,k(x)

\Biggr] 2

1

m

n - m

n - 1
\leq 1

4
S2
1

1

m

n - m

n - 1
,(B.4)

where the last line follows from Assumption 3.2. Combining (B.1) and (B.4) and
using the triangle inequality for the matrix norm, we have the claimed bound on
| | Cov(wt| x)| | .

B.2. Proof of Proposition 3.4. Recall, from section 3.1, the dynamic sys-
tem representation in (3.9) and (3.10), and define \=F : \BbbR 2d \mapsto \rightarrow \BbbR such that for

\xi t =
\bigl[ 
x\top t x\top t - 1

\bigr] \top 
we have \=F (\xi t) = F (xt). Also, with X1, X2 defined in Proposi-

tion 3.4, we define \~X1 = X1 \otimes Id and \~X2 = X2 \otimes Id.
The following lemma is central to the proof of Proposition 3.4.

Lemma B.1. Let F \in \scrS \mu ,L(\BbbR d), and consider the DP-SHB algorithm. Let wt =
\eta t+vt, the overall noise added to \nabla F (xt) due to the Laplace mechanism and subsam-
pling. Then for any \rho \in (0, 1), we have

\BbbE 

\Biggl[ \biggl[ 
\xi t  - \xi \ast 

\nabla F (zt)

\biggr] \top 
( \~X1 + (1 - \rho 2) \~X2)

\biggl[ 
\xi t  - \xi \ast 

\nabla F (zt)

\biggr] \Biggr] 

\leq \rho 2\BbbE [ \=F (\xi t) - F \ast ] - \BbbE [ \=F (\xi t+1) - F \ast ] +
L\alpha 2

2
\BbbE [\| wt\| 2].

Proof. One update rule of DP-SBH can be rewritten as

(B.5) xt+1 = (1 + \beta )xt  - \beta xt - 1  - \alpha (\nabla F (xt) + wt).

Using (B.5), we have

xt  - xt+1 = xt  - (1 + \beta )xt + \beta xt - 1 + \alpha (\nabla F (xt) + wt)

= \beta ( - xt + xt - 1) + \alpha (\nabla F (xt) + wt).(B.6)

Since F \in \scrS \mu ,L(\BbbR d), from Definition A.1, using the inequality on the L-smoothness
of F , we can write

(B.7) F (xt) - F (xt+1) \geq \nabla F (xt)\top (xt  - xt+1) - 
L

2
\| xt+1  - xt\| 2.
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Combining (B.7) with (B.6), we obtain

F (xt) - F (xt+1) \geq \nabla F (xt)\top ( - \beta (xt  - xt - 1) + \alpha (\nabla F (xt) + wt))

 - L

2
\| \beta (xt  - xt - 1) - \alpha (\nabla F (xt) + wt)\| 2

= - \beta (xt  - xt - 1)
\top \nabla F (xt) + \alpha \| \nabla F (xt)\| 2 + \alpha \nabla F (xt)\top wt

 - L\beta 2

2
\| xt  - xt - 1\| 2 + L\alpha \beta (xt  - xt - 1)

\top (\nabla F (xt) + wt)

 - \alpha 2L

2
\| \nabla F (xt) + wt\| 2

=
1

2

\biggl[ 
xt  - xt - 1

\nabla F (xt)

\biggr] \top 
\~D

\biggl[ 
xt  - xt - 1

\nabla F (xt)

\biggr] 
 - L\alpha 2

2
\| wt\| 2 + L\alpha [\beta (xt  - xt - 1)

 - \alpha \nabla F (xt)]\top wt + \alpha \nabla F (xt)\top wt,

where \~D = D \otimes Id is a 2d\times 2d matrix defined through

D =

\biggl[ 
 - L\beta 2 L\alpha \beta  - \beta 
L\alpha \beta  - \beta  - \alpha 2L+ 2\alpha 

\biggr] 
.

Next, note that \biggl[ 
xt  - xt - 1

\nabla F (ht)

\biggr] 
=

\biggl[ 
Id  - Id 0d
0d 0d Id

\biggr] \left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  
and

1

2

\biggl[ 
Id  - Id 0d
0d 0d Id

\biggr] \top 
\~D

\biggl[ 
Id  - Id 0d
0d 0d Id

\biggr] 
= \~X1.

Thus,

F (xt) - F (xt+1) \geq 

\left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  \top 

\~X1

\left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  
 - L\alpha 2

2
\| wt\| 2 + L\alpha [\beta (xt  - xt - 1) - \alpha \nabla F (xt)]\top wt  - \alpha \nabla F (xt)\top wt.

(B.8)

Similarly, by the inequality that gives strong convexity in Definition A.1, we have

F (x\ast ) - F (xt) \geq \nabla F (xt)\top (x\ast  - xt) +
\mu 

2
\| x\ast  - xt\| 2

=
1

2

\left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  \top \left[  \mu Id 0d  - Id
0d 0d 0d
 - Id 0d 0d

\right]  \left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  .
The matrix in the middle is equal to \~X2, so we can write

(B.9) F (x\ast ) - F (xt) \geq 
1

2

\left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  \top 

\~X2

\left[  xt  - x\ast 

xt - 1  - x\ast 

\nabla F (xt)

\right]  .
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Multiplying (B.9) by (1 - \rho 2) and adding to (B.8), we obtain\biggl[ 
\xi t  - \xi \ast 

\nabla F (xt)

\biggr] \top 
[ \~X1 + (1 - \rho 2) \~X2]

\biggl[ 
\xi t  - \xi \ast 

\nabla F (xt)

\biggr] 
\leq \rho 2[F (xt) - F \ast ] - (F (xt+1) - F \ast )

+
L\alpha 2

2
\| wt\| 2  - L\alpha [\beta (xt  - xt - 1) - \alpha \nabla F (xt)]wt  - \alpha \nabla F (xt)wt.

Taking the expectation and applying \BbbE (wt) = 0, we have the desired result.

Proof of Proposition 3.4. Lemma B.1 is the counterpart of Lemma 4.5 of [3],
which is given for NAG. Hence, Lemma B.1 allows us to extend the NAG results
in [3, Proposition 4.6 and Corollary 4.7] for DP-SHB. Finally, under Assumption 3.2,
we get the desired bound in our proposition.

B.3. Proof of Theorem 3.5.

Proof. Following the proof technique of [8, Theorem 12], we can write

(B.10)

\biggl[ 
xt  - x\ast 

xt - 1  - x\ast 

\biggr] 
=M(\alpha , \beta )

\biggl[ 
xt - 1  - x\ast 

xt - 2  - x\ast 

\biggr] 
+

\biggl[ 
 - \alpha wt

0d

\biggr] 
,

where we have

M(\alpha , \beta ) =

\biggl[ 
(1 + \beta )Id  - \alpha Q  - \beta Id

Id 0d

\biggr] 
.

There also exists a permutation matrix P such that

PM(\alpha , \beta )P\top = \=T :=

\left[     
T1 \cdot \cdot \cdot 0 0
0 T2 \cdot \cdot \cdot 0
... \cdot \cdot \cdot 

. . .
...

0 0 \cdot \cdot \cdot Td

\right]     ,
where

Ti =

\biggl[ 
1 + \beta  - \alpha \lambda i  - \beta 

1 0

\biggr] 
, 1 \leq i \leq d,

are 2\times 2 matrices with eigenvalues

a\lambda i,\pm =
1 + \beta  - \alpha \lambda i \pm 

\sqrt{} 
(1 + \beta  - \alpha \lambda i)2  - 4\beta 

2
.

Therefore, for t \geq 1 we obtain\bigm\| \bigm\| M(\alpha , \beta )t
\bigm\| \bigm\| =

\bigm\| \bigm\| P\top \=T tP
\bigm\| \bigm\| \leq \| P\top \| \| P\| max

1\leq i\leq d

\bigm\| \bigm\| T t
i

\bigm\| \bigm\| = max
1\leq i\leq d

\bigm\| \bigm\| T t
i

\bigm\| \bigm\| ,
where we used the fact that \| P\| = 1 for a permutation matrix P . T t

i is a 2 \times 2
matrix; it has either semisimple eigenvalues or a defective eigenvalue with a multi-
plicity two. In either case, it is well known that we can write \| T t

i \| \leq Ct
i\rho 

t
\lambda i
, where

\rho \lambda i = max\{ | a\lambda i,+| , \| a\lambda i, - \| \} is the spectral radius of T t
i and Ct

i = \scrO (t). Then it
follows that \| M(\alpha , \beta )t\| \leq Ct\rho 

t, where we take Ct = maxi\{ Ct
i\} and \rho = maxi\{ \rho \lambda i

\} .
After a straightforward computation, we observe that \rho \lambda is a quasi-convex function
of \lambda ; therefore the function \rho \lambda attains its maximum as a function of \lambda on the interval
[\mu ,L] for either \lambda = \mu or \lambda = L. Thus, \rho can also be written as

\rho = max\{ \rho \lambda \mu 
, \rho \lambda L

\} = max\{ | a\mu ,+| , | a\mu , - | , | aL,+| , | aL, - | \} .
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Let \^Et = \BbbE 
\bigl[ 
(\xi t  - \xi \ast )(\xi t  - \xi \ast )

\top | \xi t - 1

\bigr] 
. From (B.10), we obtain the recursion

\^Et+1 =M(\alpha , \beta )
\bigl[ 
(\xi t  - \xi \ast )(\xi t  - \xi \ast )

\top \bigr] M\top (\alpha , \beta ) +

\biggl( 
\alpha 2\BbbE (wtw

\top 
t | xt) 0d

0d 0d

\biggr) 
\preceq M(\alpha , \beta )

\bigl[ 
(\xi t  - \xi \ast )(\xi t  - \xi \ast )

\top \bigr] M\top (\alpha , \beta ) +

\biggl( 
\alpha 2\Sigma 0d
0d 0d

\biggr) 
.

Taking expectations with respect to \xi t, we find

\=Et+1 \preceq M(\alpha , \beta ) \=EtM
\top (\alpha , \beta ) +

\biggl( 
\alpha 2\sigma 2

T I 0d
0d 0d

\biggr) 
,

where we let \=Et := \BbbE 
\bigl[ 
(\xi t  - \xi \ast )(\xi t  - \xi \ast )

\top \bigr] . We can also write

Tr
\bigl( 
\=Et

\bigr) 
\leq m(\alpha , \beta ) + (M(\alpha , \beta ))

t \=E0

\Bigl( 
M(\alpha , \beta )

\top 
\Bigr) t

 - 
\infty \sum 
j=t

M(\alpha , \beta )j
\biggl( 
\alpha 2cW I 0d
0d 0d

\biggr) \Bigl( 
M(\alpha , \beta )

\top 
\Bigr) j

\leq m(\alpha , \beta ) +
\bigm\| \bigm\| \bigm\| M(\alpha , \beta )

t
\bigm\| \bigm\| \bigm\| 2 \=E0 +

\infty \sum 
j=t

\bigm\| \bigm\| \bigm\| M(\alpha , \beta )
j
\bigm\| \bigm\| \bigm\| 2 \alpha 2\| \Sigma \| 

\leq m(\alpha , \beta ) + C2
t \rho 

2t \=E0 + \alpha 2\sigma 2
TC

2
t

\rho 2t

1 - \rho 2
,

where we used the estimate \| M(\alpha , \beta )
t\| \leq Ct\rho 

t. This completes the proof.

B.4. Proof of Proposition 4.2.

Proof. Observe from (3.3) that, for m = n, we have \varepsilon (S1, bt, n, n) = S1/(btn).

Hence, the optimization problem in (4.4) reduces to minimizing
\sum T

t=1 aT,tb
2
t over

b1, . . . , bT subject to
\sum T

t=1
S1

nbt
= \epsilon . The above optimization problem can be solved

by equating the gradient of the corresponding Lagrangian function
\sum T

t=1 aT,tb
2
t +

\lambda 
\bigl( \sum T

t=1 S1/(nbt)  - \epsilon 
\bigr) 
with respect to (b1, . . . , bT , \lambda ) to 0, which yields the system

of T + 1 equations 2aT,tbt = \lambda S1

nb2t
for t = 1, . . . , T and

\sum T
t=1

S1

nbt
= \epsilon , which has the

solution

bt =

\biggl( 
\lambda S1/n

2aT,t

\biggr) 1/3

, with \lambda =
(S1/n)

2
\Bigl[ \sum T

t=1(2aT,t)
1/3

\Bigr] 3
\epsilon 3

.

Substituting \lambda into bt yields the claimed solution. Finally, the bordered Hessian at the
solution is a diagonal matrix, with T negative values and a single 0 on its diagonal.
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