Hidden Markov Models and Bayesian Inference

Sinan Yıldırım
Sabancı University, Turkey

June 13, 2023
Hidden Markov models

The joint law of all the variables of the HMM up to time n

$$p(x_1:n, y_1:n) = \eta(x_1) \prod_{t=2}^{n} f(x_t|x_{t-1}) \prod_{t=1}^{n} g(y_t|x_t)$$

- hidden Markov process
- observations
Some distributions of interest

The joint law of all the variables of the HMM up to time n

$$p(x_1:n, y_1:n) = \eta(x_1) \prod_{t=2}^{n} f(x_t|x_{t-1}) \prod_{t=1}^{n} g(y_t|x_t)$$

Hidden Markov process $\underbrace{p(x_1:n, y_1:n)}$ Observations

Marginal likelihood the observations up to time n which can be derived as

$$p(y_1:n) = \int p(x_1:n, y_1:n) dx_1:n.$$

Posterior distribution of $X_1:n$ given $Y_1:n = y_1:n$, which is obtained by using the Bayes’ theorem

$$p(x_1:n|y_1:n) = \frac{p(x_1:n, y_1:n)}{p(y_1:n)}$$
Bayesian inference - General

Observation y, with likelihood $p(y|x)$

Parameter x, with prior $p(x)$

Want to estimate x based on y

Bayesian inference

Evaluate the posterior distribution

$$p(x|y) = \frac{p(x)p(y|x)}{p(y)} \propto p(x)p(y|x)$$
A finite state-space HMM for weather conditions

\(X_t \in \{1, 2\} \) denotes the state of the atmospheric condition in terms of pressure; "Low" (1) or "High" (2)

Initial and transition probabilities:

\[
\eta = [\eta(1), \eta(2)], \quad F = \begin{bmatrix} 0.3 & 0.7 \\ 0.2 & 0.8 \end{bmatrix}
\]

where \(F(i, j) = \Pr(X_{t+1} = j | X_t = i) = f(j|i) \).

\(Y_t \in \{1, 2, 3\} \): Day is “Dry” (1), ”Cloudy” (2), ”Rainy” (3),

\[
G = \begin{bmatrix} 0.3 & 0.4 & 0.3 \\ 0.6 & 0.3 & 0.1 \end{bmatrix}
\]

where \(G(i, j) = \Pr(Y_t = j | X_t = i) = g(j|i) \).
Linear Gaussian HMM

We have \(\{X_t, Y_t\} \), where \(X_t \in \mathbb{R}^{d_x} \), and \(Y_t \in \mathbb{R}^{d_y} \)

\[
X_1 \sim \mathcal{N}(\mu_1, \Sigma_1), \quad X_t = AX_{t-1} + U_t, \quad U_t \sim \mathcal{N}(0, S), \quad t > 1
\]

\[
Y_t = BX_t + V_t, \quad V_t \sim \mathcal{N}(0, R),
\]

In terms of transition and observation densities

\[
\eta(x_1) = \mathcal{N}(x_1; \mu_1, \Sigma_1), \quad f(x_t|x_{t-1}) = \mathcal{N}(x_t; Ax_{t-1}, S), \quad g(y_t|x_t) = \mathcal{N}(y_t; Bx_t, R).
\]
A partially observed moving target - Target dynamics

\[X_t = (V_t, P_t) \] with

- \(V_t = (V_t(1), V_t(2)) \) velocity
- \(P_t = (P_t(1), P_t(2)) \) position

State dynamics

\[V_1(i) \sim N(0, \sigma^2_{bv}), \quad P_1(i) \sim N(0, \sigma^2_{bp}), \quad i = 1, 2, \]

\[V_t(i) = aV_{t-1}(i) + U_t(i), \quad P_t(i) = P_{t-1}(i) + \Delta V_{t-1}(i) + Z_t(i), \quad i = 1, 2. \]

where \(U_t \overset{i.i.d.}{\sim} N(0, \sigma^2_v) \) and \(Z_t(i) \overset{i.i.d.}{\sim} N(0, \sigma^2_p) \).

Transition density

\[f(x_t|x_{t-1}) = \phi(Fx_{t-1}, \Sigma_x), \quad F = \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & a & 0 & 0 \\ \Delta & 0 & 1 & 0 \\ 0 & \Delta & 0 & 1 \end{bmatrix}, \quad \Sigma_x = \begin{bmatrix} \sigma^2_v & 0 & 0 & 0 \\ 0 & \sigma^2_v & 0 & 0 \\ 0 & 0 & \sigma^2_p & 0 \\ 0 & 0 & 0 & \sigma^2_p \end{bmatrix} \]
At each time t three distance measurements $(R_{t,1}, R_{t,2}, R_{t,3})$ with

$$R_{t,i} = [(P_t(1) - S_i(1))^2 + (P_t(2) - S_i(2))^2]^{1/2}, \quad i = 1, 2, 3,$$

from three different sensors are collected in Gaussian noise with variance σ_y^2 and these measurements form $Y_t = (Y_{t,1}, Y_{t,2}, Y_{t,3})$

$$Y_{t,i} = R_{t,i} + E_{t,i}, \quad E_{t,i} \sim \mathcal{N}(0, \sigma_y^2), \quad i = 1, 2, 3.$$

so that

$$g(y_t|x_t) = \prod_{i=1}^{3} \mathcal{N}(y_{t,i}; r_{t,i}, \sigma_y^2).$$

This is an example to a non-linear HMM due to the non-linearity in its observation dynamics.
Example - target tracking

path for the target position for 1000 time steps

noisy sensor measurements
Bayesian optimal filtering and smoothing

Goal: Estimate the hidden process \(\{X_t\}_{t \geq 1} \) given observations \(\{Y_t\}_{t \geq 1} \) up to time \(n \).

The sequence of posterior distributions

\[
p(x_{1:t} | y_{1:t}), \quad t \geq 1
\]

For \(t' > t \) we have

\[
p(x_{1:t'} | y_{1:t}) = p(x_{1:t} | y_{1:t}) \prod_{\tau = t + 1}^{t'} f(x_{\tau} | x_{\tau - 1});
\]

For \(t' < t \),

\[
p(x_{1:t'} | y_{1:t}) = \int p(x_{1:t} | y_{1:t}) dx_{t'+1:t}.
\]
Filtering, prediction, smoothing

Consider the posterior distribution

\[p(x_k|y_{1:n}) \]

- Filtering: \(k = n \)
- Prediction: \(k > n \)
- Smoothing: \(k < n \)

Expectations of functions \(\varphi: \mathcal{X} \to \mathbb{R} \) of \(X_k \) given \(y_{1:n} \)

\[\mathbb{E} [\varphi(X_k)|Y_{1:n} = y_{1:n}] = \int \varphi(x_k)p(x_k|y_{1:n})dx_k. \]
Forward filtering (and prediction):

Initialization:
\[p(x_1|y_1) = \frac{\eta(x_1)g(y_1|x_1)}{\int \eta(x'_1)g(y_1|x'_1)dx_1}. \]

Given \(y_t \),

Filtering at time \(t - 1 \) \(\rightarrow \) Prediction for time \(t \)

\[p(x_t|y_{1:t-1}) = \int f(x_t|x_{t-1})p(x_{t-1}|y_{1:t-1})dx_{t-1}. \]

Prediction for time \(t \) \(\rightarrow \) Filtering at time \(t \)

\[p(x_t|y_1:t) = \frac{g(y_t|x_t)p(x_t|y_{1:t-1})}{\int p(x'_t|y_{1:t-1})g(y_t|x'_t)dx'_t}. \]
Backward smoothing

Start with $p(x_n|y_{1:n-1})$.
For $t = n, n-1, \ldots, 1$, update from $p(x_{t+1}|y_{1:n})$ to $p(x_t|y_{1:n})$:

$$p(x_t|y_{1:n}) = \int p(x_{t+1}|y_{1:n})p(x_t|x_{t+1}, y_{1:n})dx_{t+1}.$$

Given X_{t+1}, X_t is conditionally independent from the rest of the future variables. Hence

$$p(x_t|x_{t+1}, y_{1:n}) = \frac{p(x_t|y_{1:t})f(x_{t+1}|x_t)}{p(x_{t+1}|y_{1:t})}$$

Backward smoothing

$$p(x_t|y_{1:n}) = \int p(x_{t+1}|y_{1:n})\frac{p(x_t|y_{1:t})f(x_{t+1}|x_t)}{p(x_{t+1}|y_{1:t})}dx_{t+1}$$
Finite state-space HMM

\(X_t \in \mathcal{X} = \{1, \ldots, k\}. \)

Define

- **Filtering probabilities:**
 \[
 \alpha_t(i) := \mathbb{P}(X_t = i | Y_{1:t} = y_{1:t}), \quad i = 1, \ldots, k, \quad t = 1, \ldots, n
 \]

- **Prediction probabilities:**
 \[
 \beta_t(i) := \mathbb{P}(X_t = i | Y_{1:t-1} = y_{1:t-1}), \quad i = 1, \ldots, k, \quad t = 1, \ldots, n
 \]

- **Smoothing probabilities:**
 \[
 \gamma_t(i) := \mathbb{P}(X_t = i | Y_{1:n} = y_{1:n}), \quad i = 1, \ldots, k, \quad t = 1, \ldots, n
 \]
FFBS for HMM

Forward filtering

\[
\text{for } t = 1, \ldots, n \text{ do}
\]

\[
\begin{align*}
\text{Prediction: If } t &= 1, \text{ set } \beta_1(i) = \eta(i), \ i = 1, \ldots, k; \text{ else } \\
\beta_t(i) &= \sum_{j=1}^{k} \alpha_{t-1}(j) f(i|j), \quad i = 1, \ldots, k. \\
\text{Filtering:} \\
\alpha_t(i) &= \frac{\beta_t(i) g(y_t|i)}{\sum_{j=1}^{k} \beta_t(j) g(y_t|j)}, \quad i = 1, \ldots, k.
\end{align*}
\]

Backward smoothing

\[
\text{for } t = n, \ldots, 1 \text{ do}
\]

\[
\begin{align*}
\text{Smoothing: If } t &= n, \text{ set } \gamma_n(i) = \alpha_n(i), \ i = 1, \ldots, k; \text{ else } \\
\gamma_t(i) &= \sum_{j=1}^{k} \gamma_{t+1}(j) \frac{\alpha_t(i) f(j|i)}{\beta_{t+1}(j)}, \quad i = 1, \ldots, k.
\end{align*}
\]
Recall the linear Gaussian HMM

\[X_1 \sim \mathcal{N}(\mu_1, \Sigma_1), \quad X_t = AX_{t-1} + U_t, \quad U_t \sim \mathcal{N}(0, S), \quad t > 1 \]
\[Y_t = BX_t + V_t, \quad V_t \sim \mathcal{N}(0, R) \]

The filtering, prediction, and smoothing distributions are all Gaussian:

\[p(x_t|y_{1:t}) = \mathcal{N}(x_t; \mu_{t|t}, P_{t|t}), \quad t = 1, \ldots, n, \]
\[p(x_t|y_{1:t-1}) = \mathcal{N}(x_t; \mu_{t|t-1}, P_{t|t-1}), \quad t = 1, \ldots, n, \]
\[p(x_t|y_{1:n}) = \mathcal{N}(x_t; \mu_{t|n}, P_{t|n}), \quad t = 1, \ldots, n. \]

The mean and the covariance of these distributions are tractable.
Kalman Filtering: Forward filtering in LG-HMM

for $t = 1, \ldots, n$ do

Prediction:

if $t = 1$ then

Set $\mu_{1|0} = \mu_1$, $P_{1|0} = \Sigma_1$

else

$$\mu_{t|t-1} = A \mu_{t-1|t-1},$$
$$P_{t|t-1} = AP_{t-1|t-1}A^T + S$$

Filtering:

$$P_{t|t-1}^y = BP_{t|t-1}B^T + R,$$
$$\mu_{t|t-1}^y = B \mu_{t|t-1},$$
$$P_{t|t-1}^{xy} = P_{t|t-1}B^T$$

$$\mu_{t|t} = \mu_{t|t-1} + P_{t|t-1}^{xy} P_{t|t-1}^{y -1} (y_t - \mu_{t|t-1}^y)$$
$$P_{t|t} = P_{t|t-1} - P_{t|t-1}^{xy} P_{t|t-1}^{y -1} P_{t|t-1}^{xy T}$$
Start with $\mu_{n|n}$ and $P_{n|n}$.

for $t = n - 1, \ldots, 1$ do

\[
\Gamma_{t|t+1} = P_{t|t} A^T P_{t+1|t}^{-1}
\]

\[
\mu_{t|n} = \mu_{t|t} + \Gamma_{t|t+1}(\mu_{t|n} - \mu_{t+1|t})
\]

\[
P_{t|n} = P_{t|t} + \Gamma_{t|t+1}(P_{t+1|n} - P_{t+1|t})\Gamma_{t|t+1}^T
\]
Particle Filtering
HMM: Target posterior distributions

Joint distribution

\[p(x_{1:n}, y_{1:n}) = \eta(x_1) \prod_{t=2}^{n} f(x_t|x_{t-1}) \prod_{t=1}^{n} g(y_t|x_t) \]

Posterior distribution of \(x_{1:n} \) given \(y_{1:n} \)

\[p(x_{1:n}|y_{1:n}) = \frac{p(x_{1:n}, y_{1:n})}{p(y_{1:n})} \propto p(x_{1:n}, y_{1:n}) \]

Goal: Sequentially estimate \(p(x_{1:n}|y_{1:n}) \).
Sequential Importance Sampling
Sequential importance sampling

Target distribution: \(p(x_{1:n} | y_{1:n}) \propto p(x_{1:n}, y_{1:n}) \)
Want to approximate with a discrete distribution

\[
p(x_{1:n} | y_{1:n}) \approx \sum_{i=1}^{N} W_n^{(i)} \delta_{x_{1:n}^{(i)}}(x_{1:n})
\]

For this, we need a proposal distribution

\[
Q_n(x_{1:n} | y_{1:n}) = q_1(x_1) \prod_{t=1}^{n} q_t(x_t | x_{1:t-1})
\]

The weight function:

\[
w_n(x_{1:n}) = \frac{p(x_{1:n}, y_{1:n})}{Q_n(x_{1:n})}.
\]

Recursion on the weight function:

\[
w_n(x_{1:n}) = w_{n-1}(x_{1:n-1}) \frac{f(x_n | x_{n-1})g(y_n | x_n)}{q_n(x_n | x_{1:n-1})}.
\]

With \(N \) particles \(X_{1:n}^{(i)} \sim Q_n(x_{1:n}) \),

\[
W_n^{(i)} = \frac{w_n(X_{1:n}^{(i)})}{\sum_{i=1}^{N} w_n(X_{1:n}^{(i)})}.
\]
Sequential importance sampling

For $n = 1, 2, \ldots$;

- For $i = 1, \ldots, N$,
 - If $n = 1$, draw $X_1^{(i)} \sim q_1(\cdot | y_1)$ and calculate
 \[
 w_1(X_1^{(i)}) = \frac{\eta(X_1^{(i)}) g(y_1 | X_1^{(i)})}{q_1(X_1^{(i)})}.
 \]
 - If $n \geq 2$, draw $X_n^{(i)} \sim q_n(\cdot | X_1^{(i)}_{1:n-1})$, set $X_1^{(i)}_{1:n} = (X_1^{(i)}_{1:n-1}, X_n^{(i)})$ and calculate
 \[
 w_n(X_1^{(i)}_{1:n}) = w_{n-1}(X_1^{(i)}_{1:n-1}) \frac{f(X_n^{(i)} | X_n^{(i)}_{n-1}) g(y_n | X_n^{(i)})}{q_n(X_n^{(i)} | X_1^{(i)}_{1:n-1})}.
 \]

- Importance weights: For $i = 1, \ldots, N$, calculate
 \[
 W_n^{(i)} = \frac{w_n(X_1^{(i)}_{1:n})}{\sum_{i=1}^N w_n(X_1^{(i)}_{1:n})}.
 \]
Sequential importance sampling - before weighting: $t = 1$
SIS - Weight degeneracy problem

Sequential importance sampling - after weighting, t = 1

Sample values vs. time step
SIS - Weight degeneracy problem

Sequential importance sampling - before weighting: $t = 2$
Sequential importance sampling - after weighting, \(t = 2 \)
SIS - Weight degeneracy problem
SIS - Weight degeneracy problem
Sequential importance sampling - before weighting: $t = 4$
SIS - Weight degeneracy problem

Sequential importance sampling - after weighting, $t = 4$
SIS - Weight degeneracy problem

Sequential importance sampling - before weighting: $t = 5$
Sequential importance sampling - after weighting, $t = 5$
SIS - Weight degeneracy problem

Sequential importance sampling - before weighting: $t = 6$
SIS - Weight degeneracy problem

Sequential importance sampling - after weighting, $t = 6$
Sequential importance sampling - before weighting: $t = 7$
Sequential importance sampling - after weighting, $t = 7$
SIS - Weight degeneracy problem

Sequential importance sampling - before weighting: t = 8
SIS - Weight degeneracy problem
SIS - Weight degeneracy problem

Sequential importance sampling - before weighting: t = 9
SIS - Weight degeneracy problem
Sequential importance sampling - before weighting: $t = 10$
Sequential importance sampling - after weighting, $t = 10$
Resampling: Assume at time $n - 1$ we have particles $X_{1:n-1}^{(1)}, \ldots, X_{1:n-1}^{(N)}$ with weights $W_{n-1}^{(1)}, \ldots, W_{n-1}^{(N)}$.

Draw N new particles among $X_{1:n-1}^{(1)}, \ldots, X_{1:n-1}^{(N)}$ according to their weights independently.

$$P(\tilde{X}_{1:n-1}^{(i)} = X_{1:n-1}^{(j)}) = W_{n-1}^{(j)}, \quad i, j = 1, \ldots, N.$$

Proceed with the resampled particles $\tilde{X}_{1:n-1}^{(1)}, \ldots, \tilde{X}_{1:n-1}^{(N)}$ with equal weights $1/N$.
Particle filter for HMM

For $n = 1$;
For $i = 1, \ldots, N$ draw $X_1^{(i)} \sim q_1(\cdot)$ and calculate $W_1^{(i)} \propto \frac{\eta(X_1^{(i)}) g(y_1 | X_1^{(i)})}{q_1(X_1^{(i)})}$.

For $n = 2, 3, \ldots$,

- Generate $\tilde{X}_{1:n-1}^{(1)}, \ldots, \tilde{X}_{1:n-1}^{(N)}$ by resampling:

$$\mathbb{P}(\tilde{X}_{1:n-1}^{(i)} = X_{1:n-1}^{(j)}) = W_{n-1}^{(j)}, \quad i, j = 1, \ldots, N.$$

- For $i = 1, \ldots, N$, draw $X_n^{(i)} \sim q_n(\cdot | \tilde{X}_{1:n-1}^{(i)})$, set $X_{1:n}^{(i)} = (\tilde{X}_{1:n-1}^{(i)}, X_n^{(i)})$.

- Weights

$$W_n^{(i)} \propto \frac{f(X_n^{(i)} | \tilde{X}_{n-1}^{(i)}) g(y_n | X_n^{(i)})}{q_n(X_n^{(i)} | \tilde{X}_{1:n-1}^{(i)})}.$$
Sequential importance sampling - resampling, before weighting $t = 1$
Particle filter

Sequential importance sampling - resampling, after weighting $t = 1$
Particle filter

Sequential importance sampling - resampling, before weighting $t = 2$
Particle filter

Sequential importance sampling - resampling, after weighting $t = 2$
Particle filter

Sequential importance sampling - resampling, before weighting t = 3
Sequential importance sampling - resampling, after weighting $t = 3$
Particle filter

Sequential importance sampling - resampling, before weighting $t = 4$
Particle filter

```
Sequential importance sampling - resampling, after weighting t = 4
```

Graph showing sample values over time steps with resampling after weighting at t = 4.
Particle filter

Sequential importance sampling - resampling, before weighting $t = 5$
Particle filter

Sequential importance sampling - resampling, after weighting $t = 5$
Particle filter
Sequential importance sampling - resampling, after weighting $t = 6$
Sequential importance sampling - resampling, before weighting $t = 7$
Sequential importance sampling - resampling, after weighting $t = 7$
Particle filter

Sequential importance sampling - resampling, after weighting $t = 8$
Particle filter

Sequential importance sampling - resampling, before weighting $t = 9$
Particle filter

Sequential importance sampling - resampling, after weighting $t = 9$
Particle filter

Sequential importance sampling - resampling, before weighting $t = 10$
Particle filter

Sequential importance sampling - resampling, after weighting $t = 10$
Thank you!