Binary Systems

Logic and Digital System Design - CS 303 Erkay Savaş Sabanci University

Motivation

- · Analysis & Design of digital electronic circuits
- · Digital circuits are used in
 - digital computers,
 - data communication,
 - digital recording,
 - digital TV,
 - and many other application require digital hardware
- Fundamental concepts in the design of digital systems
- Basic tools for the design of digital circuits
- Logic gates (AND, OR, NOT)

Digital System

- · One characteristic:
- Ability of manipulating <u>discrete elements of information</u>
- A set that has a finite number of elements contains discrete information
- · Examples for discrete sets
 - Decimal digits {0, 1, ..., 9}
 - Alphabet {A, B, ..., Y, Z}
 - Binary digits {0, 1}
- One important problem
 - how to represent the elements of discrete sets in physical systems?

How to Represent?

- · In electronics circuits, we have electrical signals
 - voltage
 - current
- Different strengths of a physical signal can be used to represent elements of the discrete set.
- · Which discrete set?
- Binary set is the easiest
 - two elements {0, 1}
 - Just two signal levels: 0 V and 4 V
- This is why we use binary system to represent the information in our digital system.

Binary System

- Binary set {0, 1}
 - Th elements of binary set, 0 and 1 are called binary digits
 - or shortly bits.
- How to represent the elements of other discrete sets
 - Decimal digits {0, 1, ..., 9}
 - Alphabet {A, B, ..., Y, Z}
- Elements of any discrete sets can be represented using groups of bits.
 - $-9 \to 1001$
 - $-A \rightarrow 1000001$

How Many Bits?

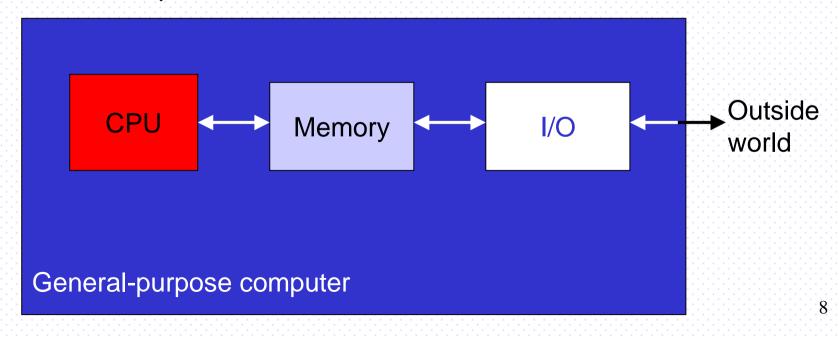
- What is the formulae for number of bits to represent a discrete set of n elements
- \cdot {0, 1, 2, 3}
 - $-00 \rightarrow 0, 01 \rightarrow 1, 10 \rightarrow 2, \text{ ands } 11 \rightarrow 3.$
- · {0, 1, 2, 4, 5, 6, 7}
 - 000 \rightarrow 0, 001 \rightarrow 1, 010 \rightarrow 2, ands 011 \rightarrow 3
 - $100 \rightarrow 4$, $101 \rightarrow 5$, $110 \rightarrow 6$, and $111 \rightarrow 7$.
- · The formulae, then,
 - $-\lceil \log_2 n \rceil$
 - If n = 9, then $\lceil \log_2 9 \rceil = 4$.

Nature of Information

- · Is information of discrete nature?
- · Sometimes, but not usually.
 - Anything related to money (e.g. financial computations, accounting etc) involves discrete information
- · In nature, information comes in a continuous form
 - temperature, humidity level, air pressure, etc.
- Continuous data must be converted (i.e. quantized) into discrete data
 - lose of some of the information
 - We need ADC

General-Purpose Computers

- · Best known example for digital systems
- · Components
 - CPU,
 - I/O units
 - Memory unit



Why Digital Systems?

- Programmable
 - underlying hardware can be used for many different applications
- Reconfigurable hardware
 - Powerful paradigm
 - (C)PLD, PLA, PAL, FPGA
- Hardware Description Languages (HDL)
 - Facilitate the use of reconfigurable hardware in more efficient way.
 - Simulation and synthesis
 - VHDL, Verilog

Anatomy of Digital Systems

- A digital system is an interconnection of digital modules
- · Hierarchical structure
- · Each module implements a (logical) function
- · This is the essence of this class
 - to understand the logical circuits and their logical function
 - Analyze and synthesize logical circuits that are components in a digital system

Binary Numbers - 1

- Internally, information in digital systems is of binary form
 - groups of bits (i.e. binary numbers)
 - Moreover, while the information is processed, all the processing (arithmetic, logical, etc) are performed on binary numbers.
- Example: 4392
 - In decimal, $4392 = (4 \times 10^3 + 3 \times 10^2 + 9 \times 10^1 + 2 \times 10^0)$
 - Convention: write only the coefficients.
 - $A = a_6 a_5 a_4 a_3 a_2 a_1 a_0 . a_{-1} a_{-2} a_{-3}$ where $a_j \in \{0, 1, ..., 9\}$
 - How do you calculate the value of A?

Binary Numbers - 2

- · Decimal system
 - coefficients are from {0,1, ..., 9}
 - and coefficients are multiplied by powers of 10
 - base-10 or radix-10 number system
- Using the analogy, binary system {0,1}
 - base(radix)-2
- Example: 25.625
 - $-25.625 = (2 \times 10^{1} + 5 \times 10^{0} + 6 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3})$
 - $-25.625 = (1 \times 2^{4} + 1 \times 2^{3} + 0 \times 2^{2} + 0 \times 2^{1} + 1 \times 2^{0} + 1 \times 2^{-1} + 0 \times 2^{-2} + 1 \times 2^{-3})$
 - $-25.625 = (11001.101)_2$

Base-r Systems

- base-r (n, m)
 - $-A = a_{n-1} r^{n-1} + ... + a_1 r^1 + a_0 r^0 + a_{-1} r^{-1} + a_{-2} r^{-2} + ... + a_{-m} r^{0-m}$
- Octal
 - base-8
 - digits {0,1, ..., 7}
 - Example: $(31.5)_8 = 3 \times 8^1 + 1 \times 8^0 + 5 \times 8^{-1} = 25.625$
- · Hexadecimal
 - base-16
 - digits {0,1, ..., 9, A, B, C, D, E, F}
 - Example: $(19.A)_{16}$
 - $= 1 \times 16^{1} + 9 \times 16^{0} + A \times 16^{-1} = 25.625$

Powers of 2

- $2^{10} = 1,024 (K Kilo)$
- $2^{20} = 1,048,576 (M Mega)$
- $2^{30} \rightarrow G Giga$
- · 240 → T Tera
- · Examples:
 - A byte is 8-bit
 - 16 Gigabyte = $2^4 \times 2^{30} = 2^{34}$ bytes = 17,179,869,184

Arithmetic with Binary Numbers

10101 + 10011				10101 10011		minuend subtrahend
1 01000	40	sum	0	00010	2	difference
		0 0	1	0 mult i	iplican	d (2)

					::::: ! ::::		murripricana (2)
		×	1	0	1	1	multiplier (11)
			0	0	1	0	
		0	0	1	0		
	0	0	0	0			
+ 0	0	1	0				
0	0	1	0	1	1	0	product (22)

Multiplication with Octal Numbers

			3	4	5	229	multiplicand
		×	6	2	1	401	multiplier
			3	4	5		
		7	1	2			
+ 2	5	3	6				
2	6	3	2	6	5	91,829	product

Base Conversions

- From base-r to decimal is easy
 - expand the number in power series and add all the terms
- · Reverse operation is somewhat more difficult
- <u>Simple idea</u>: divide the decimal number successively by r and accumulate the remainders.
- If there is a fraction, then integer part and fraction part are handled separately.

Base Conversion Examples - 1

• Example 1: 55 (decimal to binary)

1.
$$55/2 = 2 \times 27 + 1$$

$$2. 27/2 = 2 \times 13 + 1$$

3.
$$13/2 = 2 \times 6 + 1$$

4.
$$6/2 = 2 \times 3 + 0$$

5.
$$3/2 = 2 \times 1 + 1$$

6.
$$1/2 = 2 \times 0 + 1$$

$$a_0 = 1$$

$$a_1 = 1$$

$$a_2 = 1$$

$$a_3 = 0$$

$$a_4 = 1$$

$$a_5 = 1$$

- Example 2: 144 (decimal to octal)

1.
$$144/8 = 8 \times 18 + 0$$

$$2. 18/8 = 8 \times 2 + 2$$

3.
$$2/8 = 8 \times 0 + 2$$

$$-144 = (220)_8$$

$$a_0 = 0$$

$$a_1 = 2$$

$$a_2 = 2$$

Base Conversion Examples - 2

- Example 1: 0.6875 (decimal to binary)
 - When dealing with fractions, multiply by r until we get an integer instead of dividing by r

1.
$$0.6875 \times 2 = 1.3750 = 1 + 0.3750$$

$$a_{-1} = 1$$

2.
$$0.3750 \times 2 = 0.7500 = 0 + 0.7500$$

$$a_{-2} = 0$$

3.
$$0.7500 \times 2 = 1.5000 = 1 + 0.5000$$

$$a_{-3} = 1$$

4.
$$0.5000 \times 2 = 1.0000 = 1 + 0.0000$$

$$a_{-4} = 1$$

- $-0.6875 = (0.1011)_2$
- · We are not always this lucky
- · Consider the example (124.478) to octal

Base Conversion Examples - 3

· 124.478

- Treat the integer part and fraction part separately
- $-124 = (174)_8$
- Fraction part:

1.
$$0.478 \times 8 = 3.824 = 3 + 0.824$$

2.
$$0.824 \times 8 = 6.592 = 6 + 0.592$$

3.
$$0.592 \times 8 = 4.736 = 4 + 0.736$$

4.
$$0.736 \times 8 = 5.888 = 5 + 0.888$$

5.
$$0.888 \times 8 = 3.824 = 7 + 0.104$$

6.
$$0.104 \times 8 = 0.832 = 0 + 0.832$$

7.
$$0.832 \times 8 = 6.656 = 6 + 0.656$$

$$-124.478 = (174.3645706 ...)_8$$

$$a_{-1} = 3$$

$$a_{-2} = 6$$

$$a_{-3} = 4$$

$$a_{-4} = 5$$

$$a_{-5} = 7$$

$$a_{-6} = 0$$

$$a_{-7} = 6$$

Conversions between Binary, Octal and Hexadecimal

r = 2 (binary), r = 8 (octal), r = 16 (hexadecimal)
 10110001101011.111100000110

```
010 110 001 101 011. 111 100 000 110 26153.7406
0010 1100 0110 1011. 1111 0000 0110 2C6B.F06
```

- Octal and hexadecimal representations are more compact.
- Therefore, we use them in order to communicate with computers directly using their internal representation

Complements

- · Complementing is an operation on base-r numbers
- · Goal: To simplify subtraction operation
 - Rather turn the subtraction operation into an addition operation
- Two types
 - 1. Radix complement (a.k.a. r's complement)
 - 2. Diminished complement (a.k.a. (r-1)'s complement)
- When r = 2
 - 1. 2's complement
 - 2. 1's complement

How to Complement?

- · A number N in base-r
 - 1. rⁿ N r's complement
 - 2. $(r^n-1) N$ (r-1)'s complement
 - where n is the number of bits we use
- Example: r = 2, n = 4, N = 7
 - $-r^{n}=2^{4}=16, r^{n}-1=15.$
 - 2's complement of $7 \rightarrow 16-7 = 9$
 - 1's complement of $7 \rightarrow 15-7 = 8$
- · Easier way to compute complements
 - $7 = (0111)_2 \rightarrow (1000)_2 + (0001)_2 = 8$ (2's complement)
 - $7 = (0111)_2 \rightarrow (1000)_2 = 8$ (1's complement)

Subtraction with Complements - 1

- · Conventional subtraction
 - Borrow concept
 - When the minuend digit is smaller than the subtrahend digit, you borrow 1 from a digit in higher significant position
- With complements
 - M-N
 - rn N r's complement of N
 - $M + (r^n N) = M N + r^n$
 - 1. if $M \ge N$, the sum will produce a carry, that can be discarded
 - 2. Otherwise, the sum will not produce a carry, and will be equal to r^n (N-M), which is the r's complement of N-M

Subtraction with Complements - 2

· Example:

```
-X = 1010100 (84) and Y = 1000011 (67)
```

$$- X-Y = ? and Y-X = ?$$

Subtraction with Complements - 3

· Example: Previous example using 1's complement

```
1's complement of Y + 0111100

the result X - Y 1 0010000 discard carry + 0000001

0010001

Y 1000011

1's complement of X + 0101011

the result Y - X 0 1101110
```

Signed Binary Numbers

- · Pencil-and-paper
 - Use symbols "+" and "-"
- · We need to represent these symbols using bits
 - Convention:
 - 1. O positive
 - 1 negative
 - The leftmost bit position is used as a sign bit
 - In <u>signed representation</u>, bits to the right of sign bit is the number
 - In <u>unsigned representation</u>, the leftmost bit is a part of the number (i.e. the most significant bit (MSB))

Signed Binary Numbers

- Example: 5-bit numbers
 - 01011 \rightarrow 11 (unsigned binary)
 - \rightarrow +11 (signed binary)
 - 11011 \rightarrow 27 (unsigned binary)
 - \rightarrow -11 (signed binary)
 - This method is called "signed-magnitude" and is rarely used in digital systems (if at all)
- In computers, a negative number is represented by the complement of its absolute value.
- · Signed-complement system
 - positive numbers have always "O" in the MSB position
 - negative numbers have always "1" in the MSB position

Signed-Complement System

· Example:

```
- 11 = (01011)
```

- How to represent -11 in 1's and 2's complements
- 1. 1's complement -11 = 10100
- 2. 2's complement -11 = 10100 + 00001 = 10101
- If we use eight bit precision:
- 11 = 00001011
- 1's complement -11 = 11110100
- 2's complement -11 = 11110101

Signed Number Representation

Signed r	nagnitude	One's cor	mplement	Two's complement	
000	+0	000	+0	000	0
001	+1	001	+1	001	+1
010	+2	010	+2	010	+2
011	+3	011	+3	011	+3
100	-0	111	-0	111	-1
101	-1	110	-1	110	-2
110	-2	101	-2	101	-3
111	-3	100	-3	100	-4

- · Issues: balance, number of zeros, ease of operations
- Which one is best? Why?

Which One?

- · Signed magnitude:
 - Where to put the sign bit?
 - Adders may need an additional step to set the sign
 - There are two representations for 0.
- · Try to subtract a large number from a smaller one.

```
2 = 0 0 1 0
```

5 = 0 1 0 1

= 1101 (the two's complement representation of -3)

- Two's complement provide a natural way to represent signed numbers (every computer today uses two's complement)
- Think that there is an infinite number of 1's in a signed number

```
-3 = 1101 \equiv 11...11101
```

What is 11111100?

Arithmetic Addition

· Examples:

$$+11$$
 00001011 -11 11110101
 $+9$ $+ 00001001$ $+9$ $+ 00001001$
 $+20$ 00010100 -2 11111110

$$+11$$
 00001011 -11 11110101
 -9 $+$ 11110111 -9 $+$ 11110111
 $+2$ 00000010 -20 11101100

· No special treatment for sign bits

Arithmetic Overflow - 1

- In hardware, we have limited resources to accommodate numbers
 - Computers use 8-bit, 16-bit, 32-bit, and 64-bit registers for the operands in arithmetic operations.
 - Sometimes the result of an arithmetic operation get too large to fit in a register.

· Examples:

$$+2$$
 0010 -3 1101 $+2$ 0010 $+4$ $+$ 0100 -5 $+$ 1011 $+6$ $+$ 0110 $+6$ 0110 -8 1000 $+8$ 1 0000

Arithmetic Overflow - 2

$$-3$$
 1101
 $-6 + 1010$
 $-9 1 0111$

 <u>Rule</u>: If the MSB and the bits to the left of it differ, then there is an overflow

Subtraction with Negative Numbers

- · Rule: is the same
- · We take the 2's complement of the subtrahend
 - It does not matter if the subtrahend is a negative number.

$$- (\pm A) - (-B) = \pm A + B$$

- Signed-complement numbers are added and subtracted in the same way as unsigned numbers
- With the same circuit, we can do both signed and unsigned arithmetic

BCD Code - 1

- · Binary Coded Decimal BCD
 - Decimal number system is natural to human beings

Decimal Symbol	BCD Digit
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	O111
8	1000
9	1001

BCD Code - 2

· Example:

 $-429 = (110101101)_2$

 \rightarrow 9 bits

- $-429 = (0100\ 0010\ 1001)_{BCD}$
- \rightarrow 12 bits
- · Binary numbers from 1010 to 1111 have no meaning
 - $-10 = (0001\ 0000)_{BCD} = (1010)_{2}$
 - $-14 = (0001\ 0100)_{BCD} = (1110)_{2}$
- · BCD Addition

$$+4$$
 0100
+5 + 0101
+9 1001

BCD Arithmetic

- · Why we add 6 to correct in BCD arithmetic?
 - Any digit in BCD larger than (1001) must produce a carry.
 - 4-bit binary numbers produce a carry when the result is larger than (1111)

More BCD Arithmetic

1	1	
0010	1001	0111
+ 0001	1000	0011
0100	0010	1010
	+ 0110	+ 0110
0100	1000	0000

Signed-10's Complement

- Same approach
 - MSD → 0 indicates positive numbers
 - MSD → 9 indicates negative numbers
- Example: How to represent -345 in BCD?
 - Subtract each digit from 9
 - Add 1 to the resulting number to get 10's complement
 - $-0345 \rightarrow 9654 + 1 = 9655 = -345$
- Why bother with signed-10's complement arithmetic?
 - Some computers have special hardware to perform arithmetic in BCD directly
 - The reason being is to avoid conversion

Signed-10's Complement Arithmetic

Example: 774-345

1	1		
0000	0111	0111	0100
+ 1001	+ 0110	0101	0101
1010	1110	1100	1001
+ 0110	0110	+ 0110	
1 0000	0100	0010	1001

Other Decimal Codes

Decimal digit	BCD 8421	2421	Excess-3	8 4 -2 -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
Unused	1010,1011,	0101,0110,	0000,0001,	0001,0010,
bit	1100,1101,	0111,1000,	0010,1101,	0011,1100,
combinations	1110,1111	1001,1010	1110,1111	1101,1110

Other Decimal Codes

- Weighted Codes:
 - BCD 8421, 2 4 2 1, 8 4 -2 -1
 - 2421: Weights are (2, 4, 2, 1)

$$\cdot 9 = 1111 = 1 \times 2 + 1 \times 4 + 1 \times 2 + 1 \times 1 = 9$$

$$\cdot$$
 5 = (1011) = 1×2 + 1×2 + 1×1 = 5

- · how about (0101)?
- · The advantage is self-complementing

$$\cdot 3 = 0011 \rightarrow 1100 = 6 \quad (9-3=6)$$

- $\cdot 5 = 1011 \rightarrow 0100 = 4$
- Excess-3 is not weighted
 - also self-complementing

Alphanumeric Codes

- Besides numbers, we have to represent other type of information such as letters of alphabet, mathematical symbols.
- · For English, alphanumeric character set includes
 - 10 decimal digits
 - 26 letters of the English alphabet (both lowercase and uppercase)
 - several special characters
- · We need an alphanumeric code
 - ASCII
 - American Standard Code for Information Exchange
 - Uses 7 bits to encode 128 characters

ASCII Code

- · 7 bits of ASCII Code
 - $(b_6 b_5 b_4 b_3 b_2 b_1 b_0)_2$
- · Examples:
 - $-A \rightarrow 65 = (1000001), \dots Z \rightarrow 90 = (1011010)$
 - $-a \rightarrow 97 = (1100001), \dots z \rightarrow 122 = (1111010)$
 - $-0 \rightarrow 48 = (0110000), \dots 9 \rightarrow 57 = (0111001)$
- · 128 different characters
 - 26 + 26 + 10 = 62 (letters and decimal digits)
 - 32 special printable characters %, *, \$
 - 34 special control characters (non-printable): BS, CR, etc

Representing ASCII Code

- 7-bit
- Most computers manipulate 8-bit quantity as a single unit (byte)
 - One ASCII character is stored using a byte
 - One unused bit can be used for other purposes such as representing Greek alphabet, italic type font, etc.
- · The eighth bit can be used for error-detection
 - parity of seven bits of ASCII code is prefixed as a bit to the ASCII code.
 - $A \rightarrow (01000001)$ even parity
 - $A \rightarrow (11000001)$ odd parity
 - Detects one, three, and any odd number of bit errors

Binary Logic

- Deals with variables that takes on "two discrete values" and operations that assume logical meaning
- · Two discrete values:
 - {true, false}
 - {yes, no}
 - {1,0}
- Binary logic is actually equivalent to what it is called "Boolean algebra"
 - Or we can say it is an implementation of Boolean algebra

Binary Variables and Operations

- We use A, B, C, x, y, z, etc. to denote binary variables
 - each can take on {0, 1}
- Logical operations
 - 1. AND $\rightarrow x \cdot y = z \text{ or } xy = z$
 - 2. OR $\rightarrow x + y = z$
 - 3. NOT $\rightarrow \overline{x} = z \text{ or } x' = z$
 - For each combination of the values of x and y, there
 is a value of specified by the definition of the logical
 operation.
 - This definition may be listed in a compact form called truth table.

Truth Table

x	У	AND	OR	NOT
		х. Х	x + y	x'
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Logic Gates

- Electronic circuits that operate on one or more input signals to produce an output signals
 - AND gate, OR gate, NOT gate
- · These signals are electrical signals
 - voltage
 - current
- · They take on either of two recognizable values
- · For instance, voltage-operated circuits
 - $-0V \rightarrow 0$
 - $-4V \rightarrow 1$

Range of Electrical Signals

· What really matters is the range of the signal

value

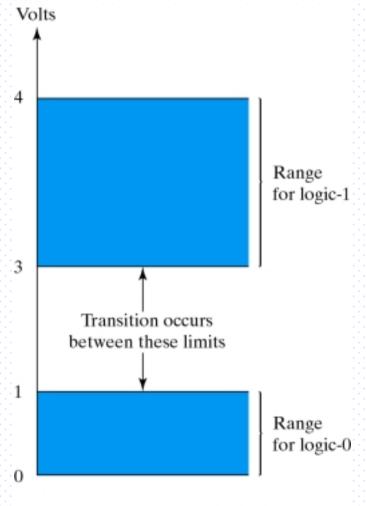


Fig. 1-3 Example of binary signals

Logic Gate Symbols

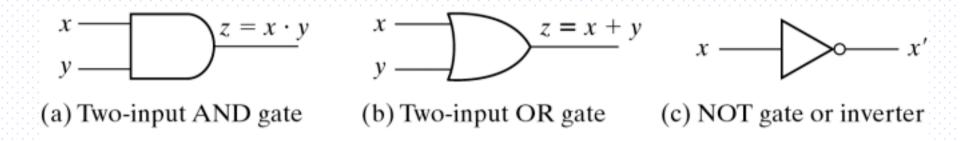


Fig. 1-4 Symbols for digital logic circuits

Gates Operating on Signals

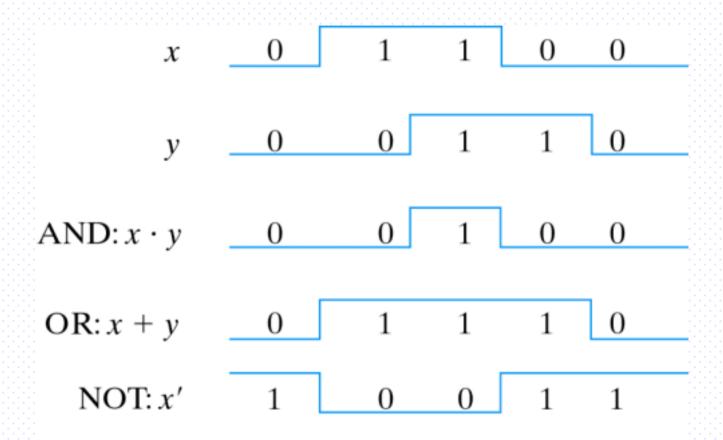
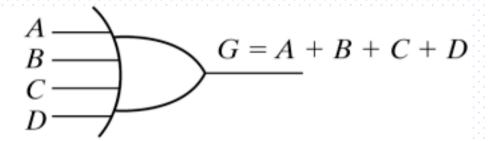


Fig. 1-5 Input-output signals for gates

Gates with More Than Two Inputs



(a) Three-input AND gate

(b) Four-input OR gate

Fig. 1-6 Gates with multiple inputs