Gate-Level Minimization

Logic and Digital System Design - C5 303

Erkay Savaş

Sabanci University

Complexity of Digital Circuits

- Directly related to the complexity of the algebraic expression we use to build the circuit.
- · Truth table
 - may lead to different implementations
 - Question: which one to use?
- · Optimization techniques of algebraic expressions
 - So far, ad hoc.
 - Need more systematic (algorithmic) way
 - Karnaugh (K-) map technique
 - · Quine-McCluskey

Two-Variable K-Map

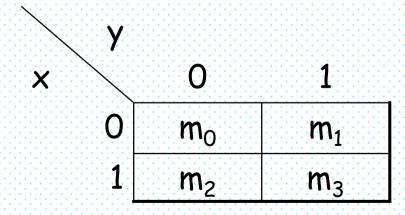
- To variable: x and y
 - 4 minterms:

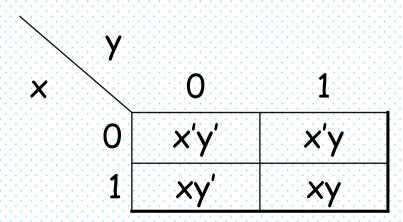
•
$$m_0 = x'y' \rightarrow 00$$

•
$$m_1 = x'y \rightarrow 01$$

•
$$m_2 = xy' \rightarrow 10$$

•
$$m_3 = xy \rightarrow 11$$





Example: Two-Variable K-Map

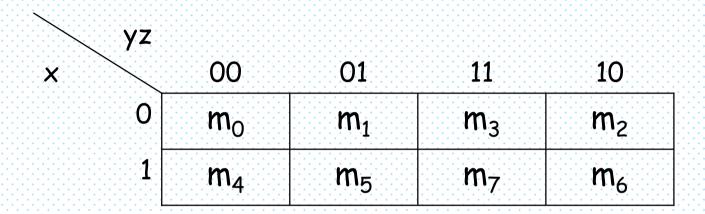
y		
X	0	1
-1-1-1-1-1-1-1-1-1-1-1-1-		
0	:::::: 1 :	::::: 1 :::::::::
1	1	

-
$$F = m_0 + m_1 + m_2 = x'y' + x'y + xy'$$

- $F = x' (y + y') + xy'$
- $F = x' + xy'$
- $F = (x' + x)(x' + y')$
- $F = x' + y'$

 We can do the same optimization by combining adjacent cells.

Three-Variable K-Map



- Adjacent squares: they differ by only one variable, which is primed in one square and not primed in the other
 - $m_2 \leftrightarrow m_6$, $m_3 \leftrightarrow m_7$
 - $m_2 \leftrightarrow m_0$, $m_6 \leftrightarrow m_4$

Example: Three-Variable K-Map

• $F_1(x, y, z) = \Sigma (2, 3, 4, 5)$

yz			
x	00	01	11 10
0	0	0	1
	1	L	0 0

- $F_1(x, y, z) = xy' + x'y$
- $F_2(x, y, z) = \Sigma (3, 4, 6, 7)$

	yz				
×		00	01	11	10
	0	0	0	1	0
	T	1	U	1	.1

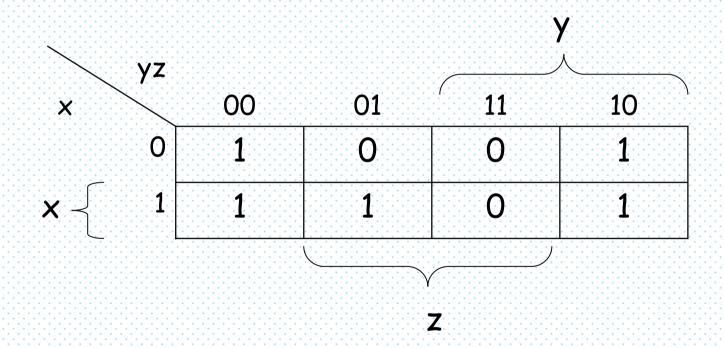
•
$$F_1(x, y, z) = xz' + yz$$

Three Variable Karnaugh Maps

- One square represents one minterm with three literals
- Two adjacent squares represent a term with two literals
- Four adjacent squares represent a term with one literal
- Eight adjacent squares produce a function that is always equal to 1.

Example

• $F_1(x, y, z) = \Sigma (0, 2, 4, 5, 6)$

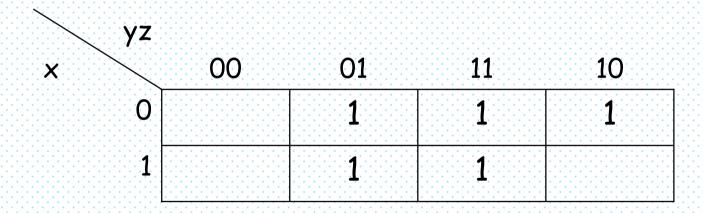


$$F_1(x, y, z) = z' + xy'$$

Finding Sum of Minterms

 If a function is not expressed in sum of minterms form, it is possible to get it using Kmaps

- Example: F(x, y, z) = x'z + x'y + xy'z + yz

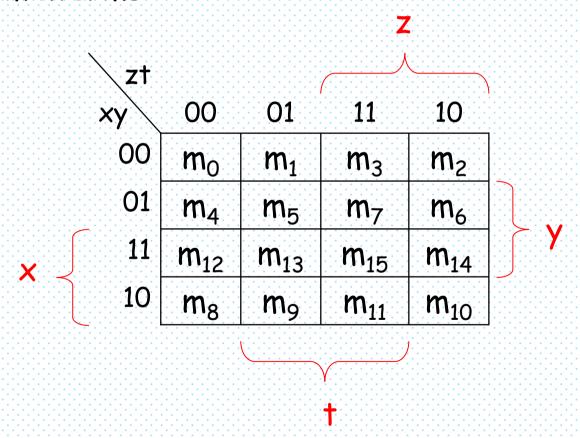


$$F(x, y, z) = x'yz + x'y'z + x'yz + x'yz' + xy'z + xyz + x'yz'$$

 $F(x, y, z) = z + x'y$

Four-Variable K-Map

- · Four variables: x, y, z, t
 - 4 literals
 - 16 minterms



Example: Four-Variable K-Map

- $F(x,y,z,t) = \Sigma (0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$

\zt				
xy	00	01	11	10
00	1	1	0	1
01	1	1	0	1
11	1	1	0	1
10	1	1	0	0

-
$$F(x,y,z,t) = z' + x't' + yt'$$

Example: Four-Variable K-Map

• F(x,y,z,t) = x'y'z' + y'zt' + x'yzt' + xy'z'

zt				
xy	00	01	11	10
00	1	1	0	1
01	0	0	0	1
11	0	0	0	0
10	1	1	0	1

•
$$F(x,y,z,t) = y'z' + y't' + x'zt'$$

Prime Implicants

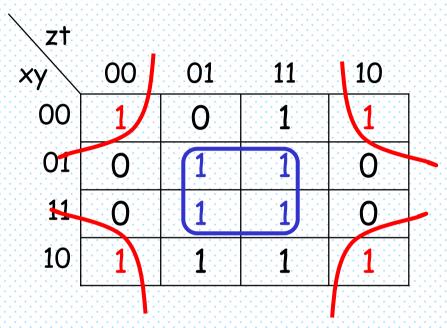
- A product term obtained by combining maximum possible number of adjacent squares in the map
- If a minterm is covered by only one prime implicant, that prime implicant is said to be essential.
 - A single 1 on the map represents a prime implicant if it is not adjacent to any other 1's.
 - Two adjacent 1's form a prime implicant, provided that they are not within a group of four adjacent 1's.
 - So on

• $F(x,y,z,t) = \Sigma(0,2,3,5,7,8,9,10,11,13,15)$

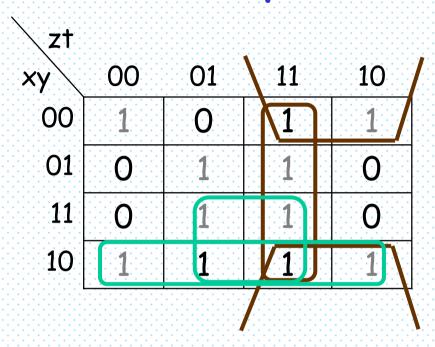
zt				
xy	00	01	11	10
00	1	0	1	1
01	0	1	1	0
11	0	1	1	0
10	1	1	1	1

· Prime implicants

- · y't' essential since mo is covered only in it
- · yt essential since m₅ is covered only in it
- They together cover m_0 , m_2 , m_8 , m_{10} , m_5 , m_7 , m_{13} , m_{15}



- · m₃, m₉, m₁₁ are not yet covered.
- · How do we cover them?
- · There are actually more than one way.



- y'z and zt covers both m_3 and m_{11} .
- · m₉ can be covered in two different prime implicant:
 - xt or xy

- F(x, y, z, t) = yt + y't' + zt + xt or
- F(x, y, z, t) = yt + y't' + zt + xy' or
- F(x, y, z, t) = yt + y't' + y'z + xt or
- F(x, y, z, t) = yt + y't' + y'z + xy'
- · Therefore, what to do
 - Find out all the essential prime implicants
 - Other prime implicants that covers the minterms not covered by the essential prime implicants
 - Simplified expression is the logical sum of the essential implicants plus the other implicants

Five-Variable Map

· Downside:

- Karnaugh maps with more than four variables are not simple to use anymore.
- 5 variables \rightarrow 32 squares, 6 variables \rightarrow 64 squares
- Somewhat more practical way for F(x, y, z, t, w)

tw					tw			
yz	00	01	11	10	yz	00	01	11
00	mo	m ₁	m ₃	m ₂	00	m ₁₆	m ₁₇	m ₁₉
01	m ₄	m_5	m ₇	m ₆	01	m ₂₀	m ₂₁	m ₂₃
11	m ₁₂	m ₁₃	m ₁₅	m ₁₄	11	m ₂₈	m ₂₉	m ₃₁
10	m ₈	m ₉	m ₁₁	m ₁₀	10	m ₂₄	m ₂₅	m ₂₇

10

 m_{18}

 m_{22}

 m_{30}

 m_{26}

Many-Variable Maps

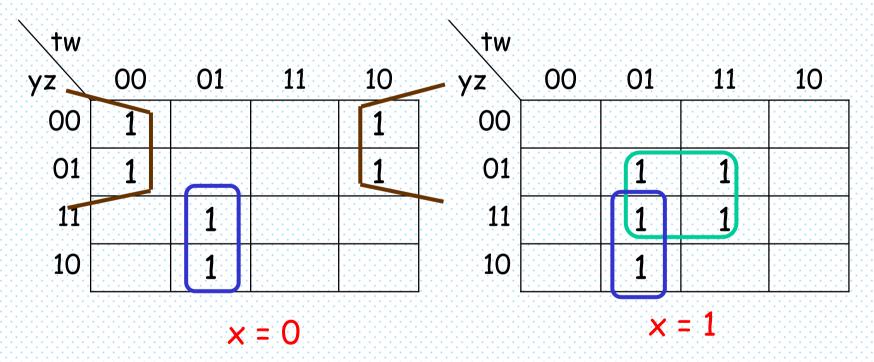
- Adjacency:
 - Each square in the x = 0 map is adjacent to the corresponding square in the x = 1 map.
 - For example, $m_4 \rightarrow m_{20}$ and $m_{15} \rightarrow m_{31}$
- In line with the same reasoning we can use four 4-variable maps to obtain 64 squares required for six variable optimization
- · Alternative way: Use computer programs
 - Quine-McCluskey method
- In n-variable map, 2^k adjacent squares (k = 0, 1, ...n) represent an area that gives a term of n-k literals. When n = k, entire map gives the identity function

Number of Literals

# of adjacent squares	n = 2	n = 3	n = 4	n = 5
20 = 1	2	3	4	5
2 ¹ = 2	1	2	3	4
2 ² = 4	0	1	2	3
2 ³ = 8	<u>-</u>	0	1	2
24 = 16			0	1
2 ⁵ = 32				0

Example: Five-Variable Map

• $F(x,y,z,t,w) = \Sigma (0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$



• F(x,y,z,t,w) = x'y'w' + yt'w + xzw

Product of Sums Simplification

So far

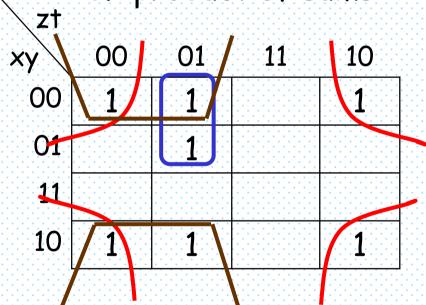
- simplified expressions from Karnaugh maps are in sum of products form.
- Simplified <u>product of sums</u> can also be derived from Karnaugh maps.

· Method:

- A square with 1 actually represents a minterm
- Similarly an empty square (a square with 0) represents a maxterm.
- Treat the 0's in the same manner we treat 1's
- The result is a simplified expression in product of sums form.

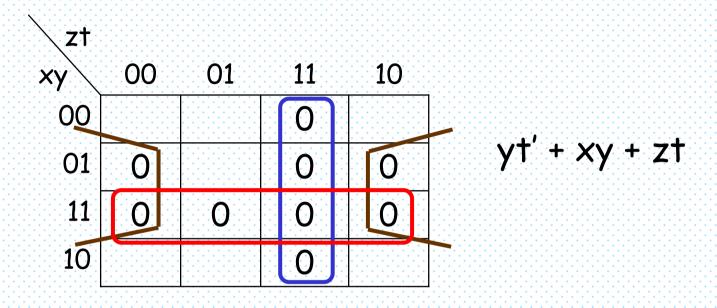
Example: Product of Sums

- $F(x,y,z,t) = \Sigma (0, 1, 2, 5, 8, 9, 10)$
 - Simplify this function in
 - a. sum of products
 - b. product of sums



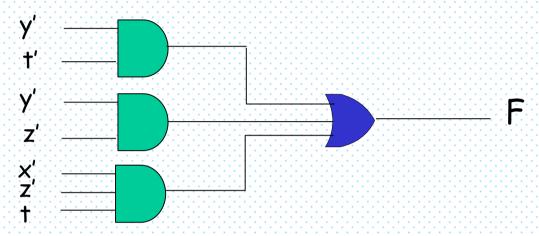
$$F(x,y,z,t) = y't' + y'z' + x'z't$$

Example: Product of Sums

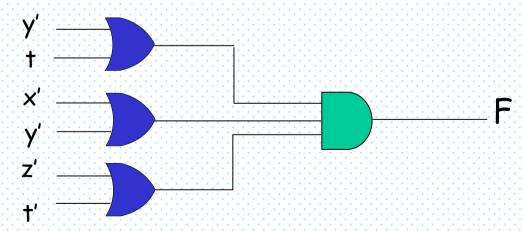


- F'(x,y,z,t) = yt' + xy + zt
- · Apply DeMorgan's theorem
- F = (y' + t)(x' + y')(z' + t')

Example: Product of Sums



F(x,y,z,t) = y't' + y'z' + x'z't: sum of products implementation

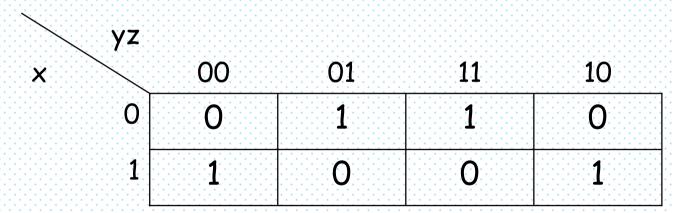


F = (y' + t)(x' + y')(z' + t'): product of sums implementation

Product of Maxterms

- If the function is originally expressed in the product of maxterms canonical form, the procedure is also valid
- · Example:

-
$$F(x, y, z) = \Pi(0, 2, 5, 7)$$



$$F(x, y, z) = (x' + z')(x+z)$$

$$F(x, y, z) = x'z + xz'$$

Product of Sums

- To enter a function F, expressed in product of sums, in the map
 - 1. take its complement, F'
 - 2. Find the squares corresponding to the terms in F',
 - 3. Fill these square with 0's and others with 1's.
- Example:

-
$$F(x, y, z, t) = (x' + y' + z')(y + t)$$

- F'(x, y, z, t) = xyz + y't'

<pre> <pre> <pre> <pre> <pre> <pre> </pre></pre></pre></pre></pre></pre>	00	01	11	10
00	0			0
01				
11			0	0
10	0			0

Don't Care Conditions

- Some functions are not defined for certain combinations of the values for the variables
 - For instance, a circuit defined by the function has never certain input values;
 - therefore, the corresponding output values do not have to be defined
 - This may significantly reduces the circuit complexity
 - Such function are referred as incompletely specified functions
- Example: Four-bit binary code for the decimal digits

Unspecified Minterms

- For unspecified minterms, we do not care what the value function assumes.
- Unspecified minterms of a function are called don't care conditions.
- We use "X" symbol to represent them in Karnaugh map.
- Useful for further simplification
- The symbol X's in the map can be taken 0 or 1 to make the Boolean expression even more simplified

Example: Don't Care Conditions

- $F(x, y, z, t) = \Sigma(1, 3, 7, 11, 15)$ function
- $d(x, y, z, t) = \Sigma(0, 2, 5,)$ don't care conditions

\zt				
xy	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

$$F = zt + x'y't$$

$$F_1 = zt + x'y'$$
 or

$$F_2 = zt + x't$$

Example: Don't Care Conditions

•
$$F_1 = zt + x'y' = \Sigma(0, 1, 2, 3, 7, 11, 15)$$

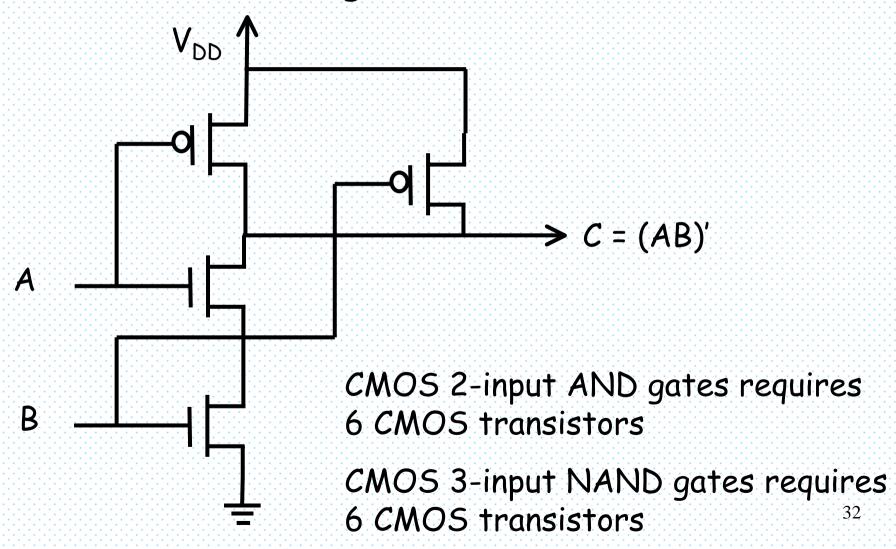
•
$$F_2 = zt + x't = \Sigma(1, 3, 5, 7, 11, 15)$$

- · The two functions are algebraically unequal
 - As far as the function F is concerned both functions are acceptable
- Look at the simplified product of sums expression for the same function F

zt xy	00	01	11	10
00	X	1	1	X
01	0	X	1	0
11	0	0	1	0
10	0	0	1	0

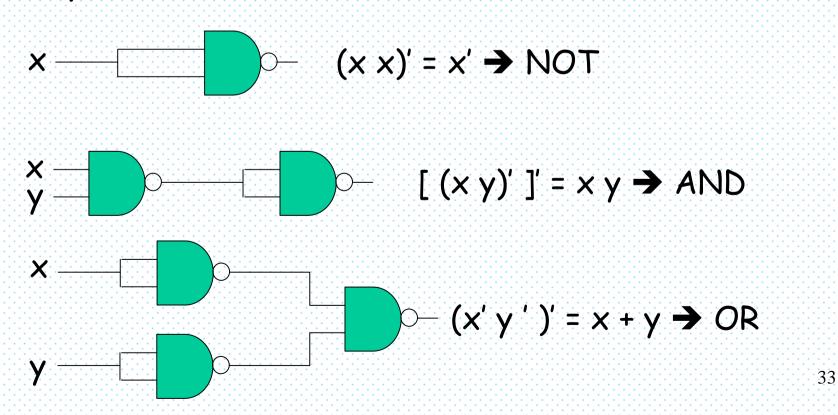
NAND or NOR Gates

· NAND and NOR gates are easier to fabricate

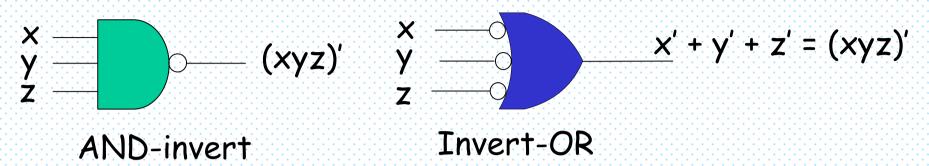


Design with NAND or NOR Gates

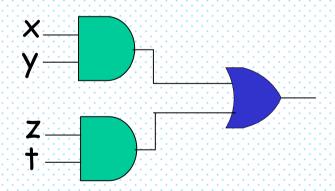
It is beneficial to derive conversion rules <u>from</u>
 Boolean functions given in terms of AND, OR, an
 NOT gates <u>into</u> equivalent NAND or NOR
 implementations



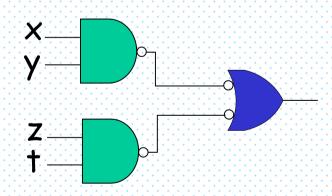
New Notation



- To implement a Boolean function with NAND gates easily it must be in <u>sum of products form</u>.
- Example: F(x, y, z, t) = xy + zt

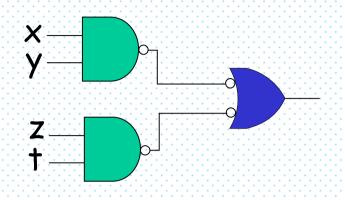


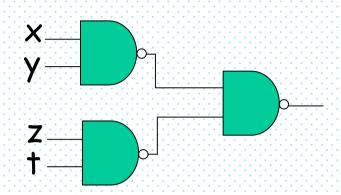
$$F(x, y, z, t) = xy + zt$$



$$F(x, y, z, t) = ((xy)')' + ((zt)')'$$

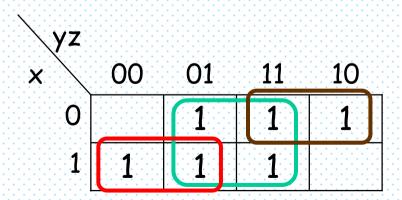
The Conversion Method





$$((xy)')' + ((zt)')' = xy + zt = [(xy)'(zt)']'$$

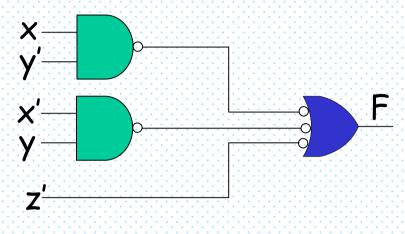
• Example: $F(x, y, z) = \Sigma(1, 2, 3, 4, 5, 7)$



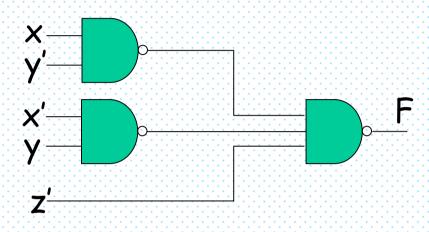
$$F = z + xy' + x'y$$

$$F = (z')' + ((xy')')' + ((x'y)')'$$

Example: Design with NAND Gates



$$F = (z')' + ((xy')')' + ((x'y)')'$$



$$F = z + xy' + x'y$$

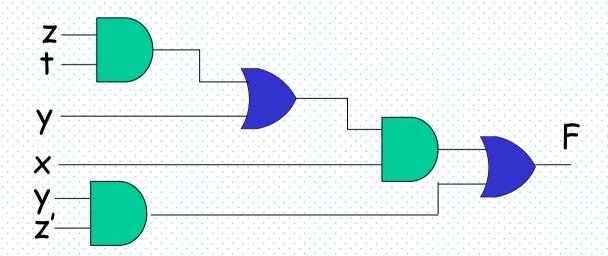
Summary

- 1. Simplify the function (in sum of products form)
- 2. Draw a NAND gate for each product term
- 3. Draw a NAND gate for each OR gate in the 2nd level, with inputs coming from the outputs of the first level gates
- 4. A term with single literal needs an inverter in the first level.

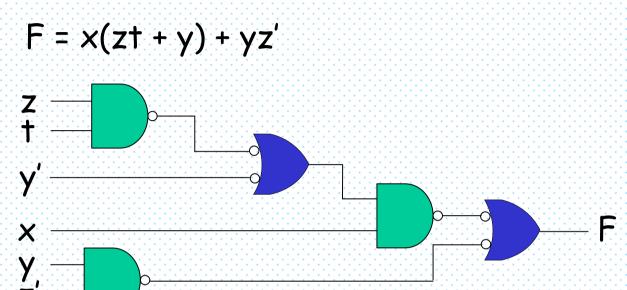
 Assume single, complemented literals are available.

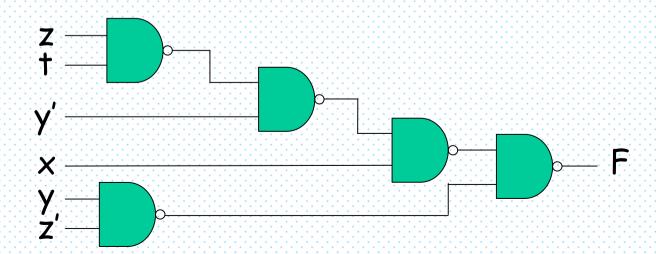
Multi-Level NAND Gate Designs

- The standard form results in two-level implementations
- · Non-standard forms may raise a difficulty
- Example: F = x(zt + y) + yz'
 - 4-level implementation



Example: Multilevel NAND...



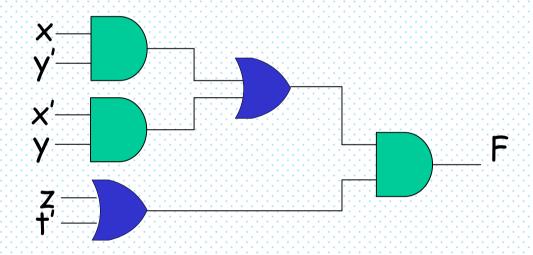


Design with Multi-Level NAND Gates

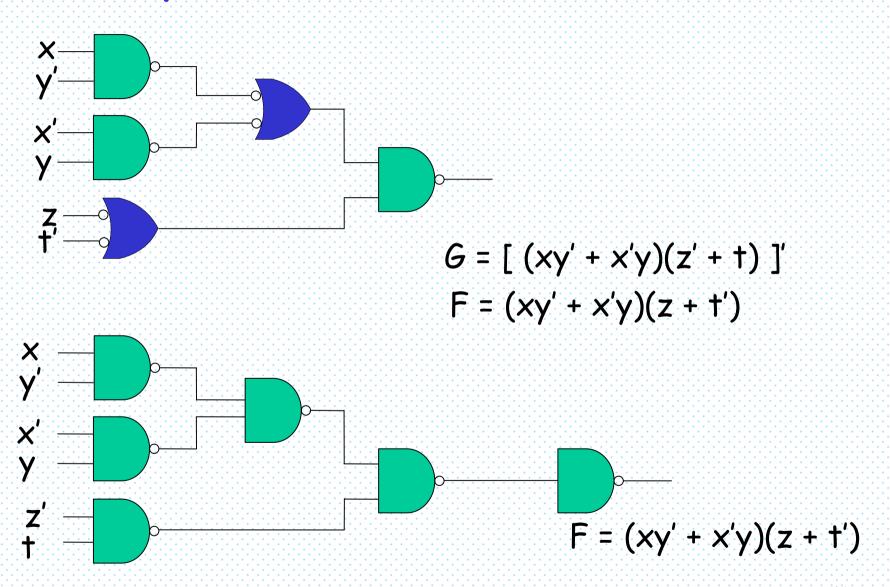
- Rules
- 1. Convert all AND gates to NAND gates
- 2. Convert all OR gates to NAND gates
- 3. Check the bubbles in the diagram. For every bubble along a path from input to output there must another bubble. If not so,
 - a. Insert an inverter (one-input NAND gate) or
 - b. complement the input literal

Another (Harder) Example

- Example: F = (xy' + x'y)(z + t')
 - (three-level implementation)

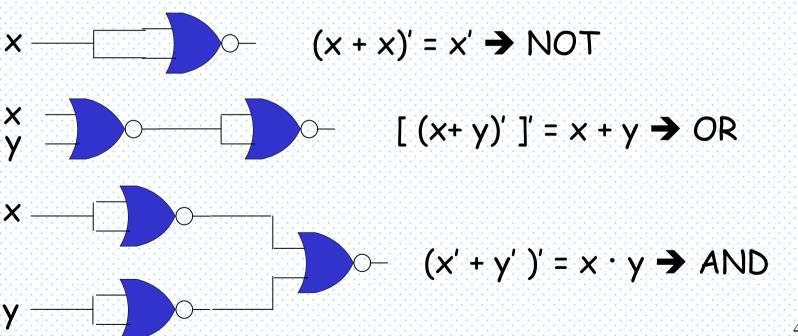


Example: Multi-Level NAND Gates



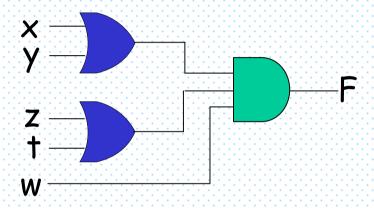
Design with NOR Gates

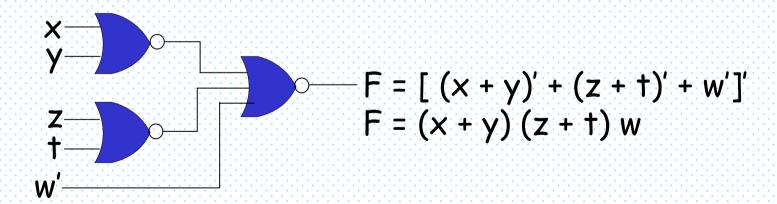
- · NOR is the dual operation of NAND.
 - All rules and procedure we used in the design with NAND gates applies here in a similar way.
 - Function to be implemented must be in <u>product of sums</u> form.



Example: Design with NOR Gates

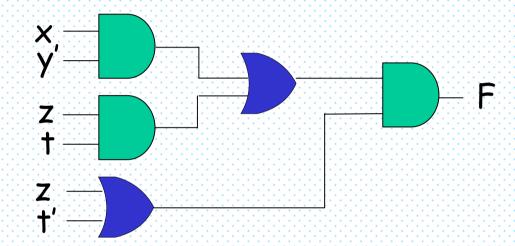
• F = (x+y)(z+t) w

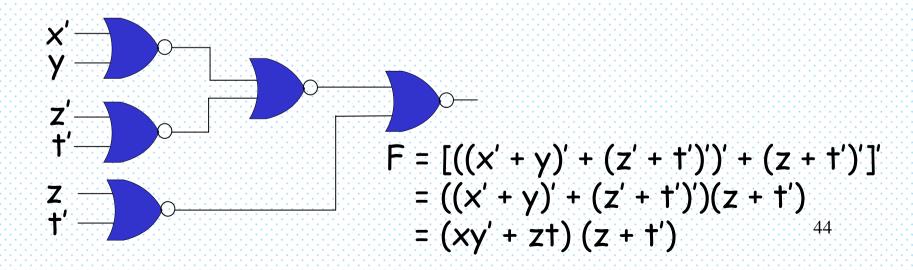




Example: Design with NOR Gates

•
$$F = (xy' + zt)(z + t')$$





Exclusive-OR Function

- The symbol: ⊕
 - $\quad \mathsf{x} \oplus \mathsf{y} = \mathsf{x}\mathsf{y}' + \mathsf{x}'\mathsf{y}$
 - $(x \oplus y)' = xy + x'y'$
- Properties
 - 1. $x \oplus 0 = x$
 - 2. $x \oplus 1 = x'$
 - 3. $x \oplus x = 0$
 - 4. $\times \oplus \times' = 1$
 - 5. $x \oplus y' = x \oplus y' = (x \oplus y)' XNOR$
- · Commutative & Associative
 - $x \oplus y = y \oplus x$
 - $(x \oplus y) \oplus z = x \oplus (y \oplus z)$

Exclusive-OR Function

- XOR gate is not universal
 - Only a limited number of Boolean functions can be expressed in terms of XOR gates
- XOR operation has very important application in arithmetic and error-detection circuits.
- Odd Function

-
$$(x \oplus y) \oplus z = (xy' + x'y) \oplus z$$

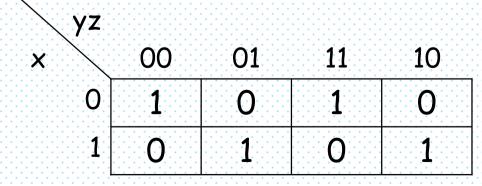
= $(xy' + x'y) z' + (xy' + x'y)' z$
= $xy'z' + x'yz' + (xy + x'y') z$
= $xy'z' + x'yz' + xyz + x'y'z$
= $\Sigma (1, 4, 5, 7)$

Odd Function

- If an odd number of variables are equal to 1, then the function is equal to 1.
- Therefore, multivariable XOR operation is referred as "odd" function.

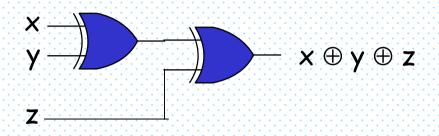
yz				
×	00	01	11	10
0	0	1	0	1
1	1	0	1	0

Odd function



Even function

Odd & Even Functions



Odd function

•
$$(x \oplus y \oplus z)' = ((x \oplus y) \oplus z)'$$

$$\begin{array}{c}
x \\
y
\end{array}$$

Adder Circuit

Addition of two-bit numbers

- c = a + b- $a = (a_1 a_0)$ and $b = (b_1 b_0)$ - $c = (c_2 c_1 c_0)$
- · Bitwise addition
 - 1. $c_0 = a_0 \oplus b_0$ $C = a_0 b_0$ 2. $c_1 = a_0 \oplus b_0$
 - 2. $c_1 = a_0 \oplus b_0 \oplus C$ $C = a_0 b_0 + a_0 C + b_0 C$
 - 3. $c_2 = C$