

* Previously

- we modeled the digital components as delay
elements and their internal behavior is describe
using CSA statements

- This approach works well when modeling digital
systems at gate level.

» Large and complex systems cannot always be
built at gate level.

- The goal is to hide the unnecessary details while
capturing and preserving the external behavior.

- More abstraction
- More powerful statements than CSA statements

* Process construct

+ CSA statements are good for simple
operations

- logical operations, simple arithmetic operations etc.
* Most digital components feature more complex
behaviors

- It is not feasible or possible to capture the
behavior of complex digital systems such as CPU,
memory, communication protocols with CSA
statements.

- Event model can still be used
- Large and complex systems utilize state information
- They incorporate complex data structures

- Problems

- How can we represent the memory words?

- How can we address the correct word given the
values of address lines?

- How can memory write operations store values to be
accessed by subsequent memory read operations?

» If VHDL had conventional sequential
programming language construct these
problems would be easily overcome.

- Concurrent behavior is sometimes not appropriate.
- Array construct, address as an index to this array

- Depending on the value of control signals, we can

decide whether the array element is to be read or
written

5

| i brary | EEE;

use | EEE. std logic 1164. al | ;

use IEEE. std logic arith.all; -- we need this package for
1164 rel ated functions

entity nenory
port (address:

S
in

unsi gned(31 downto 0); -- use unsigned for
nmenory address
wite_data: in std_|logic_vector(31 downto 0);
Mem Read, MemWite: in std_|ogic;
read_data out std_loglc_vector(31 downto 0));
end entity nenory;

architecture behavioral of nenory is

end architecture behavioral ;

architecture behavioral of nenory is

type nemarray is array(0 to 7) of std |logic vector(31 dowto 0);
-- define a new type, for nenory arrays

begin -- begin for architecture

mem process: process (address, wite data) is

vari able data nem nemarray :=(-- declare a nenory array
X" 0000000", -- initialize data nenory

X" 0000000", -- X denotes a hexadeci mal nunber
X" 0000000",

X" 0000000",

X" 0000000",

X" 0000000",

X" 0000000",

X" 0000000");

vari abl e addr: integer;
begi n -- begin for process

end process mem process;
end architecture behavioral;

begin -- begin for architecture

bégin -- begin for process
L1: addr := conv_upteger(address(z downto 0));
-- thls
-- conversion function is in std logic arith

If MenWite = ‘1 then -- performa read or wite
data nmen(addr) := wite_data;

elsif MenmRead = ‘1’ then
. read data <= data _nen(addr) after 10 ns;
T,

process nmem pr ocess;
archi tecture behavi oral

» Control flow is strictly sequential

- Altered by constructs such asi f -t hen-el se or
| oop statements

- Process can be thought of a traditional sequential
program.

- However, a process can assign internally computed
values to signals in the interface after a specified

delay.
— read data <= data _nenm(addr) after 10 ns;
data _nmen(addr) := wite_ data;

- Externadlly, discrete event execution model is
applicable to process.

- Internally, many complex behavior are described.

- With respect to simulation time, a process executes

In zero time.
10

e | abel: process (sensitivity |ist)

» Concurrent signal assignment statements are executed
when there is an event on the signals in RHS of the
statement

- Process statements are executed when there is an
event on the signals in the sensitivity list.

* When an input that is not in the sensitivity list
changes, process won't execute

* Once started, process executes to the end and may
generate further events.

* We can think of a process as a big and complex,
nevertheless, CSA statement that executes
concurrently with other CSA statements.

* Or CSA can be seen a simple and special processes.

11

»+ VHDL models using process constructs are
usually referred to as behavioral models.

» Like in a structural programming languages, we
can write complex VHDL code incorporating
several processes and CSA statements.

* As we can gain insight, we will know when and
how to use processes in order to effectively
describe digital systems for both simulation &
synthesis

- Behavioral models often make synthesis more
challenging while it offers many advantages in
simulation

13

If MemWite = 1" then

data nem(addr) := wite_data,;
el sif MenRead = ‘1’ then

read data <= data _nen({addr) after 10 ns;
[el se]

end if:

case expression is
when choi ces => sequenti al -statenents branch #1
when choi ces => sequenti al -statenents branch #2
-- Can have any nunber of branches
[when ot hers => sequential -statenents] -— l[ast branch
end case;

type week day is (non, tue, wed, thu, fri, sat, sun);
type dollars is range O to 10;

vari abl e day: week day;

vari abl e pocket noney: doll ars;

case day is
when tue => pocket noney := 6; branch #1
when non|wed => pocket noney := 2; branch #2
when fri to sun => pocket nobney := 7; -- branch #3
when ot hers => pocket noney := 0; -— last branch
end case;

i brary | EEE;
use | EEE. std | ogic 1164. all;

entity MIX is

port(a,b,c,d: in std |ogic;
ctrl: in std logic vector(0 to 1);
z : out std logic);

end entity MIX;

architecture nmux_behavior of nmux is
constant nux_del ay:time: =10 ns;
begi n

mMux_process: process(a,b,c,d,ctrl) is
vari abl e tnp:std_| ogi c;
begi n

case ctrl is
when “00” =>
when “01” => branch #2
when “10” => : : branch #3
when “11” => : : branch #4
when others =>tnmp := ' X ; | ast branch
end case;

branch #1

z <= tnp after nux_del ay;
end process Mmux_process;
end architecture nmux_behavi or;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity half_adder is
port(x, y: in std_|ogic;

sum carry: out std |ogic);
end entity half_adder;

architecture behavioral of half adder is
begi n
sum proc:. process(x, y) is
begi n
I f (x =y) then
sum<= ‘0" after 5 ns;
el se
sum<= (x or y) after 5 ns;
end if;
end process sum proc;

carry_proc: process(x, y) is
begi n

end process carry_proc;
end architecture behavioral ;

carry_proc:. process(x, y) is
begi n
case X i s
when ‘0’ => carry <= x after 5 ns;
when ‘1" => carry <=y after 5 ns;
when others => carry <= ‘X after 5 ns;
end case;
end process carry_proc
end architecture behavioral;

| i brary | EEE;
use | EEE. std logic 1164. all;
use | EEE. std logic_arith.all;

entity register fileis

port (address, wite_data: in std_logic_vector(7 downto 0);
an1REad MemWite, clk, reset: in std_|ogic;
read_data out std_logic_vector (7 downto O));

end entity register file;

architecture behavioral of register file is
' signal reg0, regl, reg2, reg3:std_|logic_vector(7 downto 0));
egln

end architecture behavioral;

begi n

mem proc: process(clk) is

begi n

If (rising _edge(clk)) then -- wait until next clock edge

I f reset="1" then — initialize values on reset
reg0 <= x”00"; -- nmenory |locations are
regl <= x"117; -- initialized to random val ues
reg2 <= x"22";
reg3 <= x"33";

elsif MenWite = *1" then -- if not reset
case address(1l downto 0) is
when “00” => reg0 <= wite_data;
when “01” => regl <= write_data;
when “10” => reg2 <= wite_dat a;
when “11” => reg3 <= wite data;
when others => reg0 <= x"ff";
end case;
endi f;
endi f;
end process nMem proc;
-- CSA statenents

end architecture behavioral;

begi n
mem proc: process(clk) is
begi n

end process nmem proc;

CSA statenents

menory read is inplenented with a conditional signal
assi gnnent and concurrent to mem proc process.

Read operations are not synchronous to rising clk edge.

read _data <= reg0 when address(1 downto 0)="00"
and MenRead = ‘1’ el se
regl when address(1 downto 0)="01"
and MenRead = ‘1" el se
reg2 when address(1 downto 0)="10"
and MenRead = ‘1’ el se
reg3 when address(1 downto 0)="11"
00 and MenRead = ‘1’ else
x" 00" ;

end architecture behavioral:

- The function rising_edge(clk) is defined in the
package std_logic_1164, and is true when the
signal clk has just exper'lenced a rising edge
(i.e. a frue O-to-1 transition)

- What if the address is out of range?

- Is reset synchronous or asynchronous?

* Process for memory write is executing
concurrently with a CSA performing memory
read operation.

- memory read operation could be included within the
process. What if we did so?

22

i brary | EEE;

use | EEE. std | ogic 1164. all;

use IEEE. std logic _arith.all;
use | EEE. std | ogi c_unsi gned. al | ;

entity mult32 is

port(multiplicand, nultipli in std
product: out std logic ctor (63

end entity nult 32;

archi tecture behavi oral of nult32 S
constant nodul e delay: Tine:= 10 ns;
begi n -- for architecture

ogi c_vector (31 downto O);
3 downto 0));

mult _process: process(nultiplier, nmultiplicand) is

vari able prod reg: std |ogic vector(63 downto 0):=X"00000000";
vari able nultiplicand reg: std |ogic vector(31 downto
0) : =X 00000000";

begin — for process

end process nmult process;
end architecture behavioral;

hﬁit_process: process(nmultiplier, multiplicand) is

bégin — for process
multiplicand reg := nultiplicand;
prod reg(63 downto 0):= X"00000000" & nultiplier;

-- repeated shift-and-add | oop
for index in 1 to 32 | oop
If prod reg (0)="1" then
prod reg(63 downto 32) :=
i prod reg(63 downto 32) + nultiplicand reg(31 downto 0);
end if;
-- performa right shift with zero fill
prod reg (63 downto 0) :=0" & prod reg(63 downto 1);
end | oop;

-- write result to output port
product <= prod_reg after nodul e_del ay;

end process nmult _process;
end architecture behavioral:

* In the for loop
- Loop i ndex variable is declared implicitly.

- It is local to the loop. If a variable or signal is
declared with the same name elsewhere in the
process or architecture, it is tfreated as a distinct
object. Within the loop, loop index is taken

- loop index cannot be modified in the loop.

* While loop enables that the loop index be
assighed new values within the body of the
loop.

- Thus, the loop can execute for data dependent
number of times.

27

» Upon initialization all processes are executed
once.

+ Thereafter dataflow determines process
execution

- e.g when events occur on the signals in sensitivity
list.

- or wai t statement is used for process initiation.

- sensitivity list may be imagined as inputs to a digital
circuit

- When an input changes, output of the circuit is re-

evaluated for the new input independent of whether
the output changes its value or not.

28

i brary | EEE;
use | EEE. std | ogic 1164.all;

entity sig var is
port(x, y, z: in std_logic;

resl, res2: out std |ogic);
end entity sig var;

architecture behavioral of sig var is
signal sig sl1, sig s2: std | ogic;
begi n

procl: process(x,y,z) is

variable var _sl1, var_s2:std | ogic;
begin — for process

L1: var_sl1l := x and y;

L2: var _s2 := var_sl xor z;

L3: resl <= var_sl1 nand var_s2;
end process procl;

proc2: process(x,y,z) is

end process;
end architecture behavioral:

procl: process(x,y,z) is
begi n

L1: var_sl1 := x and vy;

L2: var _s2 := var_sl1l xor z,

L3: resl <= var_sl1 nand var_s2;
end process;

proc2: process(x,y,z) is
begi n
L1: sig sl <= x and vy;

L2: sig s2 <= sig_sl xor z;
L3: res2 <= sig_sl nand sig_s2;
end process;

end architecture behavioral:

K | ®] -
70 ns 1o B35 re

Mrart| | 1 & D2

0 mea b PE5 nis

Wstart i & =
= —
= WL
Ldap * &
=M
0| 51
A - =]
al &£ e 1
1 HH
=
= =al Zl=| =« &
] =~ Bl =) en
. -
'i': ‘-\-" E--
&= s
%29 AW

proc2:
2. process(Xx,VY, z)
33

proc2: process(x,Vy, z,

b

sig_sl1,

Si g_s2)

= | 5| =|

i brary | EEE;
use I EEE. std | ogic 1164.all;

entity full adder is

port(inl, in2, c_in: in std_|ogic;
sum c_out “out std logic);

end entity full adder;

architecture behavioral of full adder
signal sl1l, s2, s3:. std_|ogic;
const ant delay Ti me: =5ns;
begi n
HALl: process(inl,in2) is
begin — for process
sl <= (inl xor in2) after del ay;
s3 <= (inl and in2) after del ay,;
end process HAL;

HA2: process(sl,c _in) is
sum <= (sl xor c_in) after del ay;
s2 <= (sl and c_in) after del ay;
end process HA2;

OR process(s2,s3) is
c_out <= (s2 or s3) after delay;
end process OR

end architecture behavioral;

S

- Event model

- CSA: when an event occurs on signal in RHS, then
CSA statement is executed

- Process: when an event occurs on signal in the
sensitivity list, then process is executed. Otherwise
the process is suspended.

- Wait statement allows to model circuits

- where output values are computed at specific points
in time independent of event on the input

- that respond to only certain events on the input
signals (rising edge of the clock)

- provides a more general way of specifying when a
process is executed or suspended

- We can suspend the process at multiple points not
just beginnings

39

HA2: process(sl,c in) is
sum <= (sl xor c_in) after delay;
s2 <= (sl and c_in) after del ay;
end process HA2,

HA2: process
sum <= (sl xor c_in) after delay;
S2 <= (sl and c_in) after del ay;
wait on sl1, c_in

end process HA2,

proc2: process
begi n

wait on x, vy, z;

L1: sig sl <= x and vy;

wait for O ns;

L2: sig s2 <= sig_sl xor z;

wait for O ns;

L3: res2 <= sig_sl nand sig_s2;
end process;

i brary | EEE;
use | EEE. std | ogic 1164. all;

entity dff is
port(D, clk: in std_|ogic;

Q Qar: out std logic);
end entity dff;

architecture behavioral of dff is
begi n
out put: process is
begin — for process
wait until (clk’ event and cl k
Q<= D after 5 ns;
(bar <= not D after 5 ns;
end process out put;

end architecture behavioral:

e cl k' event

» event is said to be an attribute of signal clk and

+ the predicate cl k’ event is TRUE when there is a
transition from O to 1 in the clock in the most recent
simulation cycle.

» Recall that an event is a transition on a signal while a
transaction occurs on a signal when a new assignment
has been made to the signal, but the value may not
have changed.

+ std_logic_1164 package provides useful functions such
asrising edge(cl k)andfalling edge(clKk).

+ These functions take a st d_I ogi c type signal and
return a Boolean value.

45

* Recall that a signal of type std_logic may have
nine different values.

* Therefore, the predicate (cl k' event and clk =
“1') cannot really capture a O to 1 transition
- The transition may be X to 1.

- Therefore, use risi ng edge() andfal li ng_edge()
for detecting a true rising edge and falling edge of
a signal, respectively.

* Next issue: how do we initialize a flip-flop?

- when a system is powered, flip-flops are set to a
known initial state

- However, what we want is to have some control over
the initial state

46

i brary | EEE;
use I EEE. std | ogic 1164.all;

entity asynch dff is

port(D, Ak, R S in std_|ogic;
Q qgar out std logic);

end entity asynch_dff;

grchltecture behavi oral of asynch_dff is
egin
out put: process(R, S, dKk) is
begin — for process
| f (R = ‘0") then
‘0’ after 5 ns;
‘1 after 5 ns;
elsif (S=°0) then
Q<= "*'1 after 5 ns;
ar <= ‘0’ after 5 ns;
el sif (rising_edge(dKk)) then
Q<= D after 5 ns;
(bar <= not D after 5 ns;
endi f;
end process out put;

end architecture behavioral;

i brary | EEE;
use I EEE. std | ogic 1164.all;

entity reg4 is
port(D: in std logic vector(3 downto 0);
Cl, enable, dk: in std |Iogic;
Q out std logic vector(3 downto 0));
end entity reg4,;

architecture behavioral of reg4 is
begi n
reg _process:. process(d, dKk) is
begin — for process
if (A ="'1") then
Q <= “0000” after 5 ns;
el sif (rising _edge(dKk)) then
i f(enable = *1") then
Q <= D after 5 ns;
endi f;
endi f;
end process reg_process;

end architecture behavioral:

ACK

input_data transmit_data l

i brary | EEE;
use IEEE. std | ogic 1164.all;

entity handshake is
port (i nput _data: in std |ogic vector(31 downto 0));
end entity handshake;

architecture behavi oral of handshake is
signal transmt _data: std |ogic vector(31 dowmto 0);
signal RQ ACK: std | ogic;
begi n
transmtter: process is
begin — for process
wait until 1 nput _data’ event; wait until input data is
avai |l abl e
E&?nsnit_data <= | nput dat a; provi de the data as producer
= ‘1"
wait until ACK = ‘1’;
RQ — 01 ’
wait until ACK = ‘0’;
end process transmtter;

receiver: process is
begin — for process

end process receiver,
end architecture behavioral;

i brary | EEE;
use | EEE. std | ogic 1164. all;

entity handshake is
port(input_data: in std_|logic_vector(31 downto 0));
end entity handshake;

archi tecture behavi oral of handshake is
signal transmt _data: std |ogic vector(31 downto 0);
signal RQ ACK: std | ogic;

begi n

transmtter: process is
begin — for process

end process transmtter;

receiver . process is
vari abl e receive data: std |logic vector(31 dowmto 0);
begin — for process
wait until RQ= ‘1";
receive data:= transmt _data; -- read the data as consuner
ACK = *1’;
wait until RQ= *'0";
ACK = 0’ ;
end process receiver;
end architecture behavioral;

- We have seen that an attribute is used to

determine various type of information about a
signal

- For example, cl k’ event returns TRUE if there has
been a change in the value of the signal

— event is said to be an attribute of a signal

- Attributes can also be used to gather
information about the other type of VHDL
constructs such as entities and arrays.

- Some attributes are predefined by the language
- Programmer can also create attributes

54

Function Attributes

* These attributes represent functions that are called
to obtain a value.

Function Attribute Function

si gnal _nanme’ event returns a Boolean value signifying a
change on this signal
si gnal _nane’ active returns a Boolean value signifying an

assignment made to this signal. This
assignment may not be a new value

si gnal _nane’ | ast _event |returns the time since the last event

on this signal

si gnal _nane’ | ast _active | returns the time since the signal was
last active

si gnal _name’ | ast _val ue |returns the previous value of this
signal

ny_array’ | ength returns the length of the array

my_array

signal CLOCK: std | ogic;

constant setup tine: Tine:= 5 ns;
signal A:std | ogic;

si gnal COUNT: i nteger;

If CLOCK = ‘1" and CLOCK event then
If A last _event < setup_tine then
I f COUNT=20 and COUNT' | ast val ue=10 t hen

rocess
egi n
Xx <= *'2Z, *1 after 5ns, ‘1" after 5ns, null after 15ns,
‘U after 25ns;
x"driving ... use of driving attribute
x"driving value ... use of driving val ue
attribute
wai t ;
end process;

Value Attributes 2

scal ar _name’ | ef t returns the leftmost value of
scal ar _nane in its defined range
scal ar _nane’ ri ght returns the rightmost value of
scal ar _nane in its defined range
scal ar _nane’ hi gh returns the highest value of
scal ar _nane in its defined range
scal ar _nane’ | ow returns the lowest value of

scal ar _nane in its defined range

scal ar _nanme’ ascendi ng | returns true if scal ar _nane has an
ascending range of values (VHDL'93)

array_nane’ | engt h returns the number of elements
array_namne’ | eft the left bound of array_nane
array_nane’ ri ght the right bound of array_nane

61

type ALLOANED VALUE is range 31 downto O;
type WEEK DAY is (sun, non, tue, wed, thu, fri, sat);
subt ype WORK DAY is WEEK DAY range fri downto non;

Signal Attributes

+ Signal attributes create new signals from
signals explicitly declared in VHDL models.
- these types of signals are called implicit signals.

- For example, si gnal _nane’ del ayed(T) create a
new signal of the same type, which is delayed by T.

Signal Attribute Signal

si gnal _nane’ del ayed(T) |signal delayed by T units of time

si gnal _nane’ transact i on | returns signal of type bit whose value
toggles when si gnal _nane is active

si gnal _nane’ qui et (T) true when si gnal _nane has been
quiet for T units of tine

si gnal _nane’ st abl e(T) true when event has not occurred on
si gnal _nane for T units of time

63

i brary | EEE;
use | EEE. std | ogic _1164.all;

entity attributes is
port(data:in std |ogic vector(3 downto 0));

end entity attributes;

archi tecture behavioral of attributes is

signal outtransaction: bit;
si gnal outdel ayed:std | ogic _vector(3 downto 0);

begi n

out del ayed <= dat a' del ayed(10 ns);
outtransaction <= data'transacti on;
end architecture behavioral;

T Yy L |'I.l.| LILEE :I

E LT E o] =3 o | i o - | ._-.:" :lL. 1L 0. il T 1= T =p _:1 ﬁ _E:] bt =n- _: EH#L

f
i
T

65

i brary | EEE;
use | EEE. std logic 1164. all;

entity attributes 01 is
port(data:in std_Togic_vector(3 downto 0));
end entity attributes 01;

architecture behavioral of attributes 01 is

function to_integer(signal arg:std |logic vector(3 downto 0)) return

I nteger is

begi n

case arg is
when "0000" => return
when "0001" => return
when "0010" => return
when "0011" => return
when "0100" => return
when "0101" => return
when "0110" => return
when "0111" => return
when "1000" => return
when "1001" => return
when "1010" => return
when "1011" => return
when "1100" => return
when "1101" => return
when "1110" => return
when "1111" => return
when others => return
end case;
end function to_integer;

CRNDNRWNFO

signal outdel ayed:std | ogic vector(3 downto 0):="0000";

signal test: std logic:=0";

begi n

attri butes: process(data)

begi n

If(to_integer(data)-to_integer(data' delayed(10 ns)) > 1) then
test <= "'1';

el se
test <= '0';

end if;

end process attri butes;
out del ayed <= dat a' del ayed(10 ns);

end architecture behavioral;

0 = by 358 ns

el (I I <l I e

| i brary | EEE;
use | EEE. std | ogic_1164. al | ;

entity dff is
port(d, clk:in std logic; q, gbar:out std | ogic);
end entity dff;

architecture check tinmes of dff is
constant hold tinme: Tine := 5 ns;
constant setup_tinme: Tine := 3 ns;
begi n
rocess(d, clKk)
egin
-- check for hold tine
I f d event then
assert NOW= 0 ns or clk’'last_event >= hold_tine
report “hold tine too short!”
severity FAI LURE;
end if;

end architecture check _ti nes;

-- check for setup tine
If clk = 1 and cl k’ event then
assert NOW= 0 ns or d’'last_event >= setup_tine
report “setup tinme too short!”
severity FAI LURE;
end if;

-- behavior of D FF
if clk = 1 and cl k’ event then
q <= d;
gbar <= not d;
end if;
end process;
end architecture check tines;

architecture beh of user _defined is
attribute pin_no: natural;
attri bute technol ogy: string;

architecture beh of user _defined is

attribute pin_no of Q@ signal is 42
attribute technology of all: conponent is “CMXS’;

| 1 brary | EEE;

use | EEE. std |logic 1164. all;
entity periodic is

port(Z: out std |logic);

end entity periodic;

architecture behavioral of periodic is
begi n

process is

begi n

Z <='0, ‘1 after 10 ns, ‘0O after 20 ns, ‘1 after
40 ns;

wait for 50 ns;

end process;

end architecture behavi oral:

| 1 brary | EEE;
use | EEE. std |logic 1164. all;

entity two _phases iIs
port(phil, phi2: out std |ogic);
end entity two_phases;

architecture behavioral of two phases is
begi n

reset _process:. reset <= ‘1", ‘0 after 10 ns;
cl ock_process: process is

begi n
phil <= ‘1", ‘0 after 10 ns;
phi2 <= ‘0, ‘1 after 12 ns, ‘0 after 18 ns;
wait for 20 ns;

end process cl ock _process;

end architecture behavi oral:

| i brary | EEE;
use | EEE. std |l ogic 1164. all;

entity conbinational is

port (inl, in2: in std | ogic;
z: out std |ogic);
end entity conbinational;

architecture behavi or of conbinational is
signal s1, s2, s3, s4:. std logic :="'0";
begi n

sl <= not inl;

s2 <= not In2;

s3 <= not (sl and in2);

s4 <= not (s2 and inl);

z <= not (s3 and s4);
end architecture behavi or:

| i brary | EEE;
use | EEE. std logic 1164. all;

entity conbi national is

port (inl, in2: in std_|ogic;
z: out std | ogic);

end entity conbi national;

architecture behavior of conbinational is
signal sl1, s2, s3, s4. std logic := ‘0 ;
begi n
delta process: process(inl, in2) is
begin

sl <= not inl;

s2 <= not inz;

s3 <= not (sl and in2);

s4 <= not (s2 and inl);

z <= not (s3 and s4);
end process delta process;
end architecture behavior;

Using Signals in a Process 4

hs 10 20 30 40 50 60 70
o/ o0 1 (1]0]0]1]1

110011 [0,0]0
1117001100
oco(1,1,0|]0]1 |1 1
v, 11 ;1}1}1}1)1

11,001 1|00
u v o0o((1}]1]0]0]O0

sl <= not inl;

S2 <= not i n2;
s3<=not (sl and i n2);

s4<=not (s2 and inl);

z<=not (s3 and s4);

* When we made the process sensitive to all signals
then we would obtain the identical trace.

88

+ Combinational circuits are sensitive to the
inputs
- activated when an event occurs on an input signal

» Sequential circuits retain information in
internal devices such as flip-flops and latches.

- the value stored in these devices are referred to as
the state of the circuit.

- There is a finite number of states.

- the output values are computed as functions of both
internal state and input signals.

- The internal state is updated at discrete points in
time determined by a periodic signal such as clock.

89

| i brary | EEE;
use | EEE. std logic 1164. all;

entity state nmachine is
port (reset, clk, x: in std_|ogic;
z: out std |ogic);
end entity state_nachi ne;

architecture behavioral of state machine is

type state type is (stateO, statel);

signal state, next _state: state type := stateO;
begi n

éhd archi tecture behavi oral;

conb _process: process(state, X) is
begi n
case state is
when stateQ =>
If x =0 then next _state <= statel;, z <=
el se next _state <= stateO; z <= ‘'0’;
end if;
when statel =>
If x =*'1 then next_state <= state0; z <=
el se next _state <= statel; z <= '1";
end if;
end case;
end process conb_process;

cl k_process: process is
begi n
wait until (rising Edge(clk));
I f reset = ‘1" then
state <= state type'left;
el se
state <= next _state;
end if;

end process cl k_process;
end architecture behavi oral;

== wmave - default
Fil= Edit

Wi

Inserk

Forrak
al

Tools

Wlimd o

EEHS yE@maai XN g @S @B
ol

_ 1= x|

B Astate_machine/next.

ztatel

|

20 n=

|
0 ns to 263 ns

| JEN Y |
;ﬂﬁtartl] & K S 2 @

100
33

150

B = E e el = =

= & ==

[~

=
EIE <

i
10:55 4M

94

process(clk, state, x) is
begi n
I f (rising_edge(clk)) then
If reset = '1" then
Sstate <= state _type'left;
z <="'0";
el se
case state is
when state0 =>
If x ='0" then state <= statel;
el se state <= stateO; z<='0';
end if;
when statel =>
If x ='1" then state <= state0;
el se state <= statel; z<='1';
end if;
end case;
end if;
end if;
end process;

[—wrave-defaui ~ 18] x|
s |Ed " reiert B T Ak

0 n= b 360 ne

st | | "] & =3 3 =2 D

Output signal z changes with clock. 96

signal state, next _state: statetype := stateO;
begi n
out put _process: process(state, x) iIs
begi n
case state is
when stateQ =>
If x =1 then z <=
else z <= ' 1’;
end if;
when statel =>

If x =1 then z <=
else z <= "1’ ;
end i f;
end case;
end process output process;

next state process: process(state, X) is
begi n
case state is
when stateQ =>
If x = ‘1" then next_state <= stateO0;
el se next _state <= statel;
end if;
when statel =>
If x ='1" then next_state <= state0;
el se next _state <= statel;
end if;
end case;
end process next state process;

cl k_process: process is
begi n
wait until (rising_edge(clk));
If reset = ‘1 then state <= statetype’'left;
el se state <= next_state;
end if;

end process cl k_process;
end architecture behavioral;

= | x|

I n= ba 360 ne = = —_ . =¥ 555 P
Mt | HERS D e &)= | o] 3o Je| pan] TTe | s He| STl { S| BB | 5et| |l LBl S es

100

library library-nane-1, |ibrary-nane-2;
use |i brary-nane- 1. package-nane. al | ;
use |i brary-nane-2. package-nane. al | ;
entity entity name is
port (i nput signals: in type;

out put signals: out type);
end entity entity-nane;

architecture arch _nane of entity nane is

-- declare internal signals, you may have nultiple signals
-- of different types
signal internal signals: type :=initialization;

begi n
-- first process
-- second process
-- sinple, conditional, or selected CSA
-- other processes or CSAs
end architecture arch_nane;

architecture arch _nane of entity nane is
begi n
| abel -1: process(--sensitivity list--) is
--declare variables to be used in the process
vari abl e variable nanes : type:=initialization;
begi n
-- process body
end process | abel -1;
| abel -2: process is
--declare variables to be used in the process
vari abl e variable nanes . type:=initialization;
begi n
wait until (--predicate--);
-- sequential statenents
wait until (--predicate--);

-- sequential statenents
end process | abel - 2;
i nternal -signal or ports<=sinple,conditional,or selected
-- other processes or CSAs
end architecture arch_nane;

» They can be in the same architecture body
- as many CSA or process as we want

» A process and a CSA are concurrently
executed with respect to each other.

*+ We use process when the computation of the
signal values are too complex for CSA
statements.

- variables declared in a process’ declaration field is
only visible within this process.

103

Make sure if you need a signal or variable

Signals are updated with the evaluated value in the
next execution cycle.

Variables are assigned immediately.

. If multiple drivers exist for a signal, the type
of the signal must resolved (i.e. a resolution
function must be defined and associated).

. A process should have either a sensitivity list
or a wait statement; not both.

. All processes are executed once when the
simulation is started.

105

