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Motivation
• Previously

– we modeled the digital components as delay 
elements and their internal behavior is describe 
using CSA statements

– This approach works well when modeling digital 
systems at gate level.

• Large and complex systems cannot always be 
built at gate level.
– The goal is to hide the unnecessary details while 

capturing and preserving the external behavior.
– More abstraction
– More powerful statements than CSA statements

• Process construct
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Modeling Complex Behavior
• CSA statements are good for simple 

operations
– logical operations, simple arithmetic operations etc.

• Most digital components feature more complex 
behaviors
– It is not feasible or possible to capture the 

behavior of complex digital systems such as CPU, 
memory, communication protocols with CSA 
statements. 

– Event model can still be used
– Large and complex systems utilize state information
– They incorporate complex data structures
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Memory as a Complex Digital Component

• Event model is still valid 
– events on input address, data or control lines 

produce events that can cause the memory model to 
be executed.

– Memory access for read an write operations can be 
assigned for propagation delays.

– How about internal behavior of memory

Memory

MemRead

MemWrite

read_data
write_data

address
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Memory
• Problems

– How can we represent the memory words?
– How can we address the correct word given the 

values of address lines?
– How can memory write operations store values to be 

accessed by subsequent memory read operations?
• If VHDL had conventional sequential 

programming language construct these 
problems would be easily overcome.
– Concurrent behavior is sometimes not appropriate.
– Array construct, address as an index to this array
– Depending on the value of control signals, we can 

decide whether the array element is to be read or 
written 



6

The Process Statement
• Sequential behavior of digital systems is best 

modeled using the process statement
– 8x32-bits memory

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all; -- we need this package for

1164 related functions

entity memory is
port(address: in unsigned(31 downto 0); -- use unsigned for

memory address
write_data: in std_logic_vector(31 downto 0);
Mem Read, MemWrite: in std_logic;
read_data: out std_logic_vector(31 downto 0));

end entity memory;

architecture behavioral of memory is

..

end architecture behavioral;



7

The Process Statement for Memory
...

architecture behavioral of memory is

type mem_array is array(0 to 7) of std_logic_vector(31 downto 0);
-- define a new type, for memory arrays

begin -- begin for architecture

mem_process: process (address, write_data) is

variable data_mem: mem_array :=( -- declare a memory array
X”0000000”, -- initialize data memory
X”0000000”, -- X denotes a hexadecimal number
X”0000000”,
X”0000000”,
X”0000000”,
X”0000000”,
X”0000000”,
X”0000000”);

variable addr: integer;

begin -- begin for process

...

end process mem_process;

end architecture behavioral;

Declarative region of a process



8

The Process Statement for Memory

...

begin -- begin for architecture

...
begin -- begin for process

L1: addr := conv_integer(address(2 downto 0));
-- this
-- conversion function is in std_logic_arith

L2: if MemWrite = ‘1’ then -- perform a read or write
L3: data_mem(addr) := write_data;

L4: elsif MemRead = ‘1’ then
L5: read_data <= data_mem(addr) after 10 ns;
end if;

end process mem_process;

end architecture behavioral;

Computational part of a process
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Process Construct
label: process (sensitivity_list)

-- declarative region for variables and constants

begin -- begin for process

...

end process label;

• All statements in a process are executed sequentially in 
the order implied by the text

• Therefore, values assigned to variables (not signals 
though) in a statement are immediately visible to the 
subsequent statement 

• Compare sequential nature of statements in a process to 
concurrent signal assignment statements.
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Properties of Process Construct
• Control flow is strictly sequential

– Altered by constructs such as if-then-else or 
loop statements

– Process can be thought of a traditional sequential 
program.

– However, a process can assign internally computed 
values to signals in the interface after a specified 
delay.

– read_data <= data_mem(addr) after 10 ns;
data_mem(addr) := write_data;

– Externally, discrete event execution model is 
applicable to process.

– Internally, many complex behavior are described.
– With respect to simulation time, a process executes 

in zero time.
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Sensitivity List
• label: process (sensitivity_list)

• Concurrent signal assignment statements are executed 
when there is an event on the signals in RHS of the 
statement

• Process statements are executed when there is an 
event on the signals in the sensitivity list.

• When an input that is not in the sensitivity list 
changes, process won’t execute 

• Once started, process executes to the end and may 
generate further events.

• We can think of a process as a big and complex, 
nevertheless, CSA statement that executes 
concurrently with other CSA statements.

• Or CSA can be seen a simple and special processes.
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Miscellaneous
• new type definition:

– type mem_array is array(0 to 7) of
std_logic_vector(31 downto 0);

• Variable declaration of the new type
– variable data_mem: mem_array := (...);

• new type description: 
– unsigned in std_logic_arith.
– used for memory addresses.

• type conversion function
– conv_integer() in std_logic_arith.
– memory array is indexed by integers.
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Behavioral Models

• VHDL models using process constructs are 
usually referred to as behavioral models.

• Like in a structural programming languages, we 
can write complex VHDL code incorporating 
several processes and CSA statements.

• As we can gain insight, we will know when and 
how to use processes in order to effectively 
describe digital systems for both simulation & 
synthesis
– Behavioral models often make synthesis more 

challenging while it offers many advantages in 
simulation 
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If-Then-Else and If-Then-Elsif Statements

if MemWrite = ‘1’ then
data_mem(addr) := write_data;

elsif MemRead = ‘1’ then
read_data <= data_mem(addr) after 10 ns;

[else]
...
end if;
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Case Statement
case expression is

when choices => sequential-statements -- branch #1
when choices => sequential-statements -- branch #2
-- Can have any number of branches
[when others => sequential-statements ] -– last branch

end case;

type week_day is (mon, tue, wed, thu, fri, sat, sun);
type dollars is range 0 to 10;
variable day: week_day;
variable pocket_money: dollars;

case day is
when tue => pocket_money := 6; -- branch #1
when mon|wed => pocket_money := 2; -- branch #2
when fri to sun => pocket_money := 7; -- branch #3
when others => pocket_money := 0; -– last branch

end case;
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4-by-1 MUX with Case Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity MUX is
port(a,b,c,d: in std_logic;

ctrl: in std_logic_vector(0 to 1);
z : out std_logic);

end entity MUX;

architecture mux_behavior of mux is
constant mux_delay:time:=10 ns;

begin
mux_process: process(a,b,c,d,ctrl) is

variable tmp:std_logic;
begin

case ctrl is
when “00” => tmp := a; -- branch #1
when “01” => tmp := b; -- branch #2
when “10” => tmp := c; -- branch #3
when “11” => tmp := d; -- branch #4

when others => tmp := ‘X’; -– last branch
end case;

z <= tmp after mux_delay;
end process mux_process;
end architecture mux_behavior;
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A VHDL Model with Two Processes
library IEEE;
use IEEE.std_logic_1164.all;

entity half_adder is
port(x, y: in std_logic;

sum, carry: out std_logic);
end entity half_adder;

architecture behavioral of half_adder is
begin
sum_proc: process(x, y) is
begin
if (x = y) then
sum <= ‘0’ after 5 ns;

else
sum <= (x or y) after 5 ns;

end if;
end process sum_proc;

carry_proc: process(x, y) is
begin
...

end process carry_proc;

end architecture behavioral;
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A VHDL Model with Two Processes

• Each value of the case expression being tested can 
belong to only one branch of the statement.

• A branch can have more then one sequential statement.
• The branches of case statements must cover all 

possible values of expression being tested.
• port signals (in the interface) are visible within 

processes.
• We can have a mix of processes and CSA in a VHDL 

program

carry_proc: process(x, y) is
begin
case x is
when ‘0’ => carry <= x after 5 ns;
when ‘1’ => carry <= y after 5 ns;
when others => carry <= ‘X’ after 5 ns;

end case;
end process carry_proc

end architecture behavioral;
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Process + CSA
• Memory with four 8-bit words.

– One process combined with CSAs.
– A clock is present

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity register_file is
port(address, write_data: in std_logic_vector(7 downto 0);

Mem Read, MemWrite, clk, reset: in std_logic;
read_data: out std_logic_vector (7 downto 0));

end entity register_file;

architecture behavioral of register_file is
signal reg0, reg1, reg2, reg3:std_logic_vector(7 downto 0));

begin
...

end architecture behavioral;
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A Register File Model 1
...
begin
mem_proc: process(clk) is
begin
if (rising_edge(clk)) then -- wait until next clock edge

if reset=‘1’ then –- initialize values on reset
reg0 <= x”00”; -- memory locations are
reg1 <= x”11”; -- initialized to random values
reg2 <= x”22”;
reg3 <= x”33”;

elsif MemWrite = ‘1’ then -- if not reset
case address(1 downto 0) is

when “00” => reg0 <= write_data;
when “01” => reg1 <= write_data;
when “10” => reg2 <= write_data;
when “11” => reg3 <= write_data;
when others => reg0 <= x”ff”;

end case;
endif;

endif;
end process mem_proc;
-- CSA statements

end architecture behavioral;
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A Register File Model 2
...
begin
mem_proc: process(clk) is
begin
...
end process mem_proc;

-- CSA statements
-- memory read is implemented with a conditional signal
-- assignment and concurrent to mem_proc process.
-- Read operations are not synchronous to rising clk edge.

read_data <= reg0 when address( 1 downto 0)=“00”
and MemRead = ‘1’ else

reg1 when address( 1 downto 0)=“01”
and MemRead = ‘1’ else

reg2 when address( 1 downto 0)=“10”
and MemRead = ‘1’ else

reg3 when address( 1 downto 0)=“11”
and MemRead = ‘1’ else

x”00”;

end architecture behavioral;
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A Register File Model 3

• The function rising_edge(clk) is defined in the 
package std_logic_1164,  and is true when the 
signal clk has just experienced a rising edge 
(i.e. a true 0-to-1 transition)
– What if the address is out of range?
– Is reset synchronous or asynchronous?

• Process for memory write is executing 
concurrently with a CSA performing memory 
read operation.
– memory read operation could be included within the 

process. What if we did so?



23

Multiplier

Control
testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU
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32-bit Multiplier 1
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;
use IEEE.std_logic_unsigned.all;

entity mult32 is
port(multiplicand, multiplier: in std_logic_vector(31 downto 0);

product: out std_logic_vector (63 downto 0));
end entity mult32;

architecture behavioral of mult32 is
constant module_delay: Time:= 10 ns;

begin -- for architecture

mult_process: process(multiplier, multiplicand) is

variable prod_reg: std_logic_vector(63 downto 0):=X”00000000”;
variable multiplicand_reg: std_logic_vector(31 downto

0):=X”00000000”;

begin –- for process
...
end process mult_process;

end architecture behavioral;
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32-bit Multiplier 2
...
mult_process: process(multiplier, multiplicand) is
...
begin – for process
multiplicand_reg := multiplicand;
prod_reg(63 downto 0):= X”00000000” & multiplier;

-- repeated shift-and-add loop
for index in 1 to 32 loop
if prod_reg (0)=‘1’ then

prod_reg(63 downto 32) :=
prod_reg(63 downto 32) + multiplicand_reg(31 downto 0);

end if;
-- perform a right shift with zero fill
prod_reg (63 downto 0) :=‘0’ & prod_reg(63 downto 1);

end loop;

-- write result to output port
product <= prod_reg after module_delay;

end process mult_process;

end architecture behavioral;



26

What is New?
• Loop statements

– for loop:
for index in 1 to 32 loop
...

end loop;

– while loop:
while j < 32 loop
...
j := j + 1;

end loop;

• Concatenation operator &
– Shift right by one bit using concatenation 
– prod_reg(63 downto 0) :=‘0’ & prod_reg(63 downto 1);

– There are other ways to implement shift operation
• IEEE.std_logic_unsigned package contains the 

definition for the “+” operator.
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More on Loop
• In the for loop

– Loop index variable is declared implicitly. 
– It is local to the loop. If a variable or signal is 

declared with the same name elsewhere in the 
process or architecture, it is treated as a distinct 
object. Within the loop, loop index is taken

– loop index cannot be modified in the loop.
• While loop enables that the loop index be 

assigned new values within the body of the 
loop.
– Thus, the loop can execute for data dependent 

number of times.
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Process Behavior
• Upon initialization all processes are executed 

once.
• Thereafter dataflow determines process 

execution
– e.g when events occur on the signals in sensitivity 

list.
– or wait statement is used for process initiation.
– sensitivity list may be imagined as inputs to a digital 

circuit
– When an input changes, output of the circuit is re-

evaluated for the new input independent of whether 
the output changes its value or not.
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Signals vs. Variables 1
library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port(x, y, z: in std_logic;

res1, res2: out std_logic);
end entity sig_var;

architecture behavioral of sig_var is
signal sig_s1, sig_s2: std_logic;

begin

proc1: process(x,y,z) is
variable var_s1, var_s2:std_logic;

begin –- for process
L1: var_s1 := x and y;
L2: var_s2 := var_s1 xor z;
L3: res1 <= var_s1 nand var_s2;

end process proc1;

proc2: process(x,y,z) is
...
end process;

end architecture behavioral;

• Two processes: proc1 and proc2
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Signals vs. Variables 2

• proc1 uses intermediate variables var_s1, var_s2
• proc2 uses intermediate signals sig_s1, sig_s2 

(delta delay model)
• They demonstrate different execution behaviors

...

proc1: process(x,y,z) is
begin
L1: var_s1 := x and y;
L2: var_s2 := var_s1 xor z;
L3: res1 <= var_s1 nand var_s2;
end process;

proc2: process(x,y,z) is
begin
L1: sig_s1 <= x and y;
L2: sig_s2 <= sig_s1 xor z;
L3: res2 <= sig_s1 nand sig_s2;

end process;

end architecture behavioral;
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Signals vs. Variables 3
• proc1

– the new value of var_s1 computed in L1 is used in L2 
in the same execution

– L3 is executed with the new values of var_s1 and 
var_s2

• proc2
– L1 and L2 computes the new values of sig_s1 and 

sig_s2.
– These signals will not acquire these new values until 

after delta delay elapses.
– This means that the new values of sig_s1 and sig_s2 

will not be used in this execution of the process.
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Signals vs. Variables 4
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Sensitivity List Subtleties 1

proc2: process(x,y,z)
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Sensitivity List Subtleties 2
proc2: process(x,y,z, sig_s1, sig_s2)
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Sensitivity List Subtleties 2
• 1st run of the process

– sig_s1 : 0�1   (an event)
– sig_s2 : 0�0
– res2 : 1 � 1

• 2nd run of the process (after ∆ delay) 
– sig_s1 : 1�1
– sig_s2 : 0�1 (an event)
– res2 1�1

• 3rd run of the process (after 2∆ delay) 
– sig_s1 : 1�1
– sig_s2 : 1�1
– res2 : 1�0
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How Processes Communicate
• All of the ports of the entity and the signals 

declared within an architecture are visible to 
any process in the architecture.
– A process can read and update these signals.

• Processes use these signals to communicate
– For example process A writes signal which is in the 

sensitivity list of process B
– the event on this signal will cause process B to 

execute
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Communication Processes 1
• Full adder

HA1 HA2
in1

in2

c_in

sum

c_out 

s1

s2

s3

• Full adder can be modeled as three 
communicating processes through internal 
signals: HA1, HA2, OR

• they create events on signals s1, s2 and s3
• s1 must be in the sensitivity list of HA2
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Communication Processes 2
library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is
port(in1, in2, c_in: in std_logic;

sum, c_out: out std_logic);
end entity full_adder;

architecture behavioral of full_adder is
signal s1, s2, s3: std_logic;

constant delay: Time:=5ns;
begin
HA1: process(in1,in2) is
begin –- for process
s1 <= (in1 xor in2) after delay;
s3 <= (in1 and in2) after delay;

end process HA1;

HA2: process(s1,c_in) is
sum <= (s1 xor c_in) after delay;
s2 <= (s1 and c_in) after delay;

end process HA2;

OR: process(s2,s3) is
c_out <= (s2 or s3) after delay;

end process OR;

end architecture behavioral;
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The Wait Statement 1
• Event model

– CSA: when an event occurs on signal in RHS, then 
CSA statement is executed

– Process: when an event occurs on signal in the 
sensitivity list, then process is executed. Otherwise 
the process is suspended.

• Wait statement allows to model circuits 
– where output values are computed at specific points 

in time independent of event on the input
– that respond to only certain events on the input 

signals (rising edge of the clock)
– provides a more general way of specifying when a 

process is executed or suspended
– We can suspend the process at multiple points not 

just beginnings 
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The Wait Statement 2
• wait for time expression;

– suspend a process for a certain period of time and when this 
time specified by time expression elapses the process is 
executed.

– wait for 20 ns;

• wait on signal;
– suspend a process until an event occurs on any one of one or 

more signals
– wait on clk, reset, status;

• wait until <condition >
– suspends a process until <condition > becomes TRUE.

• wait and sensitivity list shouldn’t be used together. 
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Wait Statement: Examples 1
HA2: process(s1,c_in) is
sum <= (s1 xor c_in) after delay;
s2 <= (s1 and c_in) after delay;

end process HA2;

HA2: process
sum <= (s1 xor c_in) after delay;
s2 <= (s1 and c_in) after delay;
wait on s1, c_in

end process HA2;

• wait for 0 ns; ?
proc2: process
begin
wait on x, y, z;
L1: sig_s1 <= x and y;
wait for 0 ns;
L2: sig_s2 <= sig_s1 xor z;
wait for 0 ns;
L3: res2 <= sig_s1 nand sig_s2;

end process;
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Wait Statement: Examples 2

y

x

sig_s1

z

5 ns 10 10+∆ 10+2∆ 20

sig_s2

res2

10+3∆
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Wait Statements: Examples 3
• wait on x, y, z;
• wait until A = B;
• wait for 10 ns;
• wait on CLOCK for 20 ns;
• wait until SUM > 100 for 50 ns;
• wait on CLOCK until SUM > 100;
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Positive-Edge-Triggered D Flip-Flop
• D input is sampled at the rising edge of the clock and 

transferred to the output.
• Computation is done at a particular event
• wait until(clk’event and clk = ‘1’);

library IEEE;
use IEEE.std_logic_1164.all;

entity dff is
port(D, clk: in std_logic;

Q, Qbar: out std_logic);
end entity dff;

architecture behavioral of dff is
begin
output: process is
begin –- for process
wait until(clk’event and clk = ‘1’);
Q <= D after 5 ns;
Qbar <= not D after 5 ns;

end process output;

end architecture behavioral;
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Positive-Edge-Triggered D Flip-Flop
• clk’event

• event is said to be an attribute of signal clk and 
• the predicate clk’event is TRUE when there is a 

transition from 0 to 1 in the clock in the most recent 
simulation cycle.

• Recall that an event is a transition on a signal while a 
transaction occurs on a signal when a new assignment 
has been made to the signal, but the value may not 
have changed.

• std_logic_1164 package provides useful functions such 
as rising_edge(clk) and falling_edge(clk).

• These functions take a std_logic type signal and 
return a Boolean value.
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Why Use rising_edge()?
• Recall that a signal of type std_logic may have 

nine different values.
• Therefore, the predicate (clk’event and clk =

‘1’) cannot really capture a 0 to 1 transition
– The transition may be X to 1.
– Therefore, use rising_edge() and falling_edge()

for detecting a true rising edge and falling edge of 
a signal, respectively.

• Next issue: how do we initialize a flip-flop?
– when a system is powered, flip-flops are set to a 

known initial state
– However, what we want is to have some control over 

the initial state  
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D Flip-Flops with Asynchronous Inputs
• Asynchronous inputs such as Clear or Set and 
Preset and Reset are used to initialize flip-
flops to known states.
– These signals do not work with the clock, on the 

contrary they override its effect.

DFF
Q

Q’

D

clk

R’

S’

??XX00
100R11
011R11
10XX01
01XX10
Q’QDclkR’S’

Both S and R are active low
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D Flip-Flops with Asynchronous Inputs

• During synchronous operation both R and S must be 
held to 1.

library IEEE;
use IEEE.std_logic_1164.all;

entity asynch_dff is
port(D, Clk, R, S: in std_logic;

Q, Qbar: out std_logic);
end entity asynch_dff;

architecture behavioral of asynch_dff is
begin
output: process(R, S, Clk) is
begin –- for process
if (R = ‘0’) then

Q <= ‘0’ after 5 ns;
Qbar <= ‘1’ after 5 ns;

elsif (S = ‘0’) then
Q <= ‘1’ after 5 ns;
Qbar <= ‘0’ after 5 ns;

elsif (rising_edge(Clk)) then
Q <= D after 5 ns;
Qbar <= not D after 5 ns;

endif;
end process output;

end architecture behavioral;
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Registers and Counters

• Constructing a 4-bit register from D flip-flops

library IEEE;
use IEEE.std_logic_1164.all;

entity reg4 is
port(D: in std_logic_vector(3 downto 0);

Cl, enable, Clk: in std_logic;
Q: out std_logic_vector(3 downto 0));

end entity reg4;

architecture behavioral of reg4 is
begin
reg_process: process(Cl, Clk) is
begin –- for process

if (Cl = ‘1’) then
Q <= “0000” after 5 ns;

elsif (rising_edge(Clk)) then
if(enable = ‘1’) then

Q <= D after 5 ns;
endif;

endif;
end process reg_process;

end architecture behavioral;
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How to Model Asynchronous Communication

• 4 –phase protocol for asynchronous data 
transfer
– can be modeled two processes communicating via 

signals.
– The model uses wait statement that can suspend 

the process at multiple times.
– Not possible with sensitivity list.

RQ

ACK
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How to Model Asynchronous Communication

Transmitter Receiver

RQ
ACK

transmit_datainput_data
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Asynchronous Communication 1
library IEEE;
use IEEE.std_logic_1164.all;

entity handshake is
port(input_data: in std_logic_vector(31 downto 0));
end entity handshake;

architecture behavioral of handshake is
signal transmit_data: std_logic_vector(31 downto 0);
signal RQ, ACK: std_logic;

begin
transmitter: process is
begin –- for process

wait until input_data’event; -- wait until input data is
-- available

transmit_data <= input_data; -- provide the data as producer
RQ = ‘1’;
wait until ACK = ‘1’;
RQ = ‘0’;
wait until ACK = ‘0’;

end process transmitter;

receiver: process is
begin –- for process
...
end process receiver;

end architecture behavioral;
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Asynchronous Communication 2
library IEEE;
use IEEE.std_logic_1164.all;

entity handshake is
port(input_data: in std_logic_vector(31 downto 0));
end entity handshake;

architecture behavioral of handshake is
signal transmit_data: std_logic_vector(31 downto 0);
signal RQ, ACK: std_logic;

begin
...
transmitter: process is
begin –- for process
...
end process transmitter;

receiver : process is
variable receive_data: std_logic_vector(31 downto 0);

begin –- for process
wait until RQ = ‘1’;
receive_data:= transmit_data; -- read the data as consumer
ACK = ‘1’;
wait until RQ = ‘0’;
ACK = ‘0’;

end process receiver;
end architecture behavioral;
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Attributes 1
• We have seen that an attribute is used to 

determine various type of information about a 
signal
– For example, clk’event returns TRUE if there has 

been a change in the value of the signal
– event is said to be an attribute of a signal

• Attributes can also be used to gather 
information about the other type of VHDL 
constructs such as entities and arrays.
– Some attributes are predefined by the language
– Programmer can also create attributes
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Attributes 2
• An attribute can be a value, function, type, 

range, signal, or constant that can be 
associated with certain names within a VHDL 
description.
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Type of Attributes
• Function Attributes

– invokes a function which returns a value
• Value Attributes

– returns a constant value
• Signal Attributes

– returns a signal
• Type Attributes

– returns a type
• Range Attributes

– returns a range
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Function Attributes
• These attributes represent functions that are called 

to obtain a value.

returns the length of the array 
my_array

my_array’length

returns the previous value of this 
signal

signal_name’last_value

returns the time since the signal was 
last active

signal_name’last_active

returns the time since the last event 
on this signal

signal_name’last_event

returns a Boolean value signifying an 
assignment  made to this signal. This 
assignment may not be a new value

signal_name’active

returns a Boolean value signifying a 
change on this signal

signal_name’event

FunctionFunction Attribute
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Function Attributes: Examples

• s1’driving: returns FALSE if, the driver for the 
signal s1 is disconnected; otherwise it returns TRUE.

• s1’driving_value: returns the current value of 
the driver for s1. It is illegal to access this attribute 
when s1’driving is FALSE.

signal CLOCK: std_logic;
constant setup_time: Time:= 5 ns;
signal A:std_logic;
signal COUNT: integer;

if CLOCK = ‘1’ and CLOCK’event then
if A’last_event < setup_time then
if COUNT=20 and COUNT’last_value=10 then
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Function Attributes: Examples
process
begin
x <= ‘Z’, ‘1’ after 5ns, ‘1’ after 5ns, null after 15ns,

‘U’ after 25ns;
... x’driving ... -- use of driving attribute
... x’driving_value ... -- use of driving_value

-- attribute
wait;
end process;

‘Z’ @ ∆‘1’ @ 5 nsnull @ 15 ns‘U’ @ 25 nsx

TRUETRUEFALSETRUEx’driving

‘Z’‘1’illegal access‘U’x’driving_value
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Value Attributes 1
• They return a constant value
• For example

– type mem_array is array(0 to 7) of
std_logic_vector(31 downto 0);

– mem_array’left = 0
– mem_array’ascending = TRUE
– mem_array’lenght = 8

• Another example
– type statetype is (state0, state1, state2,
state3);

– statetype’left = state0
– statetype’right = state3

– Do not have to remember the every state we just assign 
state’left to the state on reset
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Value Attributes 2

the right bound of array_namearray_name’right

returns the highest value of 
scalar_name in its defined range

scalar_name’high

returns the rightmost value of 
scalar_name in its defined range

scalar_name’right

the left bound of array_namearray_name’left

returns the number of elements array_name’length

returns true if scalar_name has an 
ascending range of values (VHDL’93)

scalar_name’ascending

returns the lowest value of 
scalar_name in its defined range

scalar_name’low

returns the leftmost value of 
scalar_name in its defined range

scalar_name’left

ValueValue Attribute
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Value Attributes: Examples

• ALLOWED_VALUE’high = ALLOWED_VALUE’left = 31

• ALLOWED_VALUE’right = ALLOWED_VALUE’low = 0

• WEEK_DAY’left = WEEK_DAY’low = sun

• WEEK_DAY’right = WEEK_DAY’high = sat

• WORK_DAY’right = WORK_DAY’low = mon

• WORK_DAY’left = WORK_DAY’high = fri

• ALLOWED_VALUE’ascending is FALSE

• WEEK_DAY’ascending is TRUE

• WORK_DAY’ascending is FALSE

type ALLOWED_VALUE is range 31 downto 0;
type WEEK_DAY is (sun, mon, tue, wed, thu, fri, sat);
subtype WORK_DAY is WEEK_DAY range fri downto mon;
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Signal Attributes
• Signal attributes create new signals from 

signals explicitly declared in VHDL models.
– these types of signals are called implicit signals.
– For example, signal_name’delayed(T) create a 

new signal of the same type, which is delayed by T.

true when signal_name has been
quiet for T units of time

signal_name’quiet(T)

returns signal of type bit whose value 
toggles when signal_name is active

signal_name’transaction

true when event has not occurred on
signal_name for T units of time

signal_name’stable(T)

signal delayed by T units of timesignal_name’delayed(T)

SignalSignal Attribute



64

Signal Attributes: Example 1
library IEEE;

use IEEE.std_logic_1164.all;

entity attributes is

port(data:in std_logic_vector(3 downto 0));

end entity attributes;

architecture behavioral of attributes is

signal outtransaction:bit;

signal outdelayed:std_logic_vector(3 downto 0);

begin

outdelayed <= data'delayed(10 ns);

outtransaction <= data'transaction;

end architecture behavioral;
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Signal Attributes: Example 2
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When to Use Implicit Signals?
• If we are interested in a change in the value of 

the  signal data for example, we can wait for 
events on the data‘transaction implicit 
signal. 

• Delayed signal is used to check for the 
relationship between the current value and 
older value of a signal

• wait on ReceiveData’transaction
if ReceiveData’delayed(5 ns)- ReceiveData > 5 then

...
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Implicit Signals: Example 1
library IEEE;
use IEEE.std_logic_1164.all;

entity attributes_01 is
port(data:in std_logic_vector(3 downto 0));
end entity attributes_01;

architecture behavioral of attributes_01 is
function to_integer(signal arg:std_logic_vector(3 downto 0)) return
integer is
begin
case arg is

when "0000" => return 0;
when "0001" => return 1;
when "0010" => return 2;
when "0011" => return 3;
when "0100" => return 4;
when "0101" => return 5;
when "0110" => return 6;
when "0111" => return 7;
when "1000" => return 8;
when "1001" => return 9;
when "1010" => return 10;
when "1011" => return 11;
when "1100" => return 12;
when "1101" => return 13;
when "1110" => return 14;
when "1111" => return 15;
when others => return 0;

end case;
end function to_integer;
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Implicit Signals: Example 2
signal outdelayed:std_logic_vector(3 downto 0):="0000";

signal test: std_logic:='0';

begin

attributes: process(data)

begin

if(to_integer(data)-to_integer(data'delayed(10 ns)) > 1) then

test <= '1';

else

test <= '0';

end if;

end process attributes;

outdelayed <= data'delayed(10 ns);

end architecture behavioral;
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Implicit Signals: Example 3
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Signal Attributes
• signal CLOCK_SKEW;

CLOCK_SKEW

5 ns 10 15 20 25 

CLOCK_SKEW’DELAYED(5 ns) 5 ns

CLOCK_SKEW’STABLE(4 ns) 4 ns
FALSE

TRUE
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Signal Attributes for Setup Constraint
• ‘STABLE attribute can be used for catch a 

setup violation.
– It is required to report a violation if signal DATA 

has not been stable for the specified SETUP time 
before the falling edge of the signal CLK occurs.

– Example:
process

constant SETUP: TIME:=1.2 ns;
begin

wait until CLK = ‘1’ and CLK’event;
assert DATA’STABLE(SETUP)

report “setup violation”
severity WARNING;

end process;
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A D Flip-Flop with Setup & Holdup 
Violations Check

library IEEE;
use IEEE.std_logic_1164.all;

entity dff is
port(d, clk:in std_logic; q, qbar:out std_logic);
end entity dff;

architecture check_times of dff is
constant hold_time: Time := 5 ns;
constant setup_time: Time := 3 ns;

begin
process(d, clk)
begin
-- check for hold time
if d’event then

assert NOW = 0 ns or clk’last_event >= hold_time
report “hold time too short!”
severity FAILURE;

end if;

...
end architecture check_times;

NOW is a predefined function that returns the current
simulation time.
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A D Flip-Flop with Setup & Holdup 
Violations Check

...

-- check for setup time
if clk = 1 and clk’event then

assert NOW = 0 ns or d’last_event >= setup_time
report “setup time too short!”
severity FAILURE;

end if;

-- behavior of D FF
if clk = 1 and clk’event then
q <= d;
qbar <= not d;

end if;
end process;

end architecture check_times;
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Signal Attributes vs. Function Attributes
• Function attributes return value
• Signal attributes creates a new signal

– Signal attributes can be used wherever a signal is 
expected; for example in the sensitivity list of a 
process

– Example:
PSTABLE: process(A, B, CLK’STABLE)
begin
...
end process;

– It is illegal to use CLK’EVENT, for example, in the 
sensitivity list.
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Range Attribute
• Returns a range
• Useful especially when writing loops

– Consider a loop that scans all of the elements in an 
array value_array();

– The index range is returned by 
value_array’range.

– We may not know the size of the array after all.
– Example:
for i in value_array’range loop
...
my_var := value_array(i);
...

end loop;
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Range Attribute
• Examples:

– variable WBUS: std_logic_vector(7 downto 0);

– WBUS’range returns the range “7 downto 0”

– WBUS’reverse_range returns the range “0 to

7”



77

Type Attribute
• If T is any type or subtype, T’BASE, which is the 

only type attribute, returns base type of T
– This attribute cannot be used in expressions since it 

returns a type.
– It can be used in conjunction with other attributes. 
– For example
type ALU_OPS is (ADD,SUB,MULT,DIV,AND,NAND,OR,NOR);
subtype ARITH_OPS is ALU_OPS range ADD to DIV;

– then
ARITH_OPS’BASE is ALU_OPS.

– ARITH_OPS’BASE’LEFT returns ADD.
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User-Defined Attributes 1
• Constants of any type (except access or file 

types)
– They are declared using attribute declarations.
– attribute attribute-name: value-type;

– Example:

architecture beh of user_defined is
attribute pin_no: natural;
attribute technology: string;

...

• They are yet not associated with an entity.
• Entity, in this context, could be and entity, a signal, an
architecture, a variable, type, subtype, package, 
procedure, or function.
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User-Defined Attributes 2

architecture beh of user_defined is
...
attribute pin_no of Q: signal is 42;
attribute technology of all: component is “CMOS”;

To associate
• attribute attribute-name of item-names:
name_class is expression;
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Generating Clocks and Periodic Waveforms
library IEEE;
use IEEE.std_logic_1164.all;

entity periodic is
port(Z: out std_logic);
end entity periodic;

architecture behavioral of periodic is
begin

process is

begin
Z <= ’0’, ‘1’ after 10 ns, ‘0’ after 20 ns, ‘1’ after
40 ns;
wait for 50 ns;
end process;

end architecture behavioral;
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Generating Clocks and Periodic Waveforms

• This process is executed repeatedly with 50 ns 
period
– recall upon initialization, all processes are executed.
– therefore, every process is executed at least once.
– wait for 50 ns cause the process to be re-executed.

10 20 30 40 50 60 
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Generating a Two-Phase Clock
library IEEE;
use IEEE.std_logic_1164.all;

entity two_phases is
port(phi1, phi2: out std_logic);
end entity two_phases;

architecture behavioral of two_phases is
begin

reset_process: reset <= ‘1’, ‘0’ after 10 ns;
clock_process: process is

begin
phi1 <= ‘1’, ‘0’ after 10 ns;
phi2 <= ‘0’, ‘1’ after 12 ns, ‘0’ after 18 ns;
wait for 20 ns;

end process clock_process;

end architecture behavioral;
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Generating a Two-Phase Clock
• The pulses in two clock signals are adjusted not to 

overlap

reset

10 ns 20 30 40 50 

phi1

phi2

60 

• Note that reset process is executed once.

1st run of processes
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Using Signals in a Process

library IEEE;
use IEEE.std_logic_1164.all;

entity combinational is
port (in1, in2: in std_logic;

z: out std_logic);
end entity combinational;

architecture behavior of combinational is
signal s1, s2, s3, s4: std_logic := ‘0’;
begin
s1 <= not in1;
s2 <= not in2;
s3 <= not (s1 and in2);
s4 <= not (s2 and in1);
z <= not (s3 and s4);

end architecture behavior;

in1

in2

s1

s2

s3

s4

z
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Delta Delays: Example

in2

in1

10 ns 20 30 40 50 60

s2

s3

70

z

s1

s4
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Using Signals in a Process 2
library IEEE;
use IEEE.std_logic_1164.all;

entity combinational is
port (in1, in2: in std_logic;

z: out std_logic);
end entity combinational;

architecture behavior of combinational is
signal s1, s2, s3, s4: std_logic := ‘0’;
begin
delta_process: process(in1, in2) is
begin
s1 <= not in1;
s2 <= not in2;
s3 <= not (s1 and in2);
s4 <= not (s2 and in1);
z <= not (s3 and s4);

end process delta_process;
end architecture behavior;
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Using Signals in a Process 3

in2

in1

10 ns 20 30 40 50 60

s2

s3

70

z

s1

s4
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Using Signals in a Process 4

• When  we made the process sensitive to all signals 
then we would obtain the identical trace.

000110UUz
00110011s4
1111111Us3
11100110s2
00110011s1
00011001in2
11001100in1

706050403020100 ns

z<=not(s3 and s4);

s1 <= not in1;

s2 <= not in2;

s3<=not(s1 and in2);

s4<=not(s2 and in1);
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State Machines
• Combinational circuits are sensitive to the 

inputs
– activated when an event occurs on an input signal

• Sequential circuits retain information in 
internal devices such as flip-flops and latches.
– the value stored in these devices are referred to as 

the state of the circuit.
– There is a finite number of states.
– the output values are computed as functions of both 

internal state and input signals.
– The internal state is updated at discrete points in 

time determined by a periodic signal such as clock.
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Finite State Machine (FSM)

Combinational
logic 

outputsinputs

state next state

clk

s0 s1

0/1 

1/0 

0/11/0

VHDL Model: Two communicating processes
1. Process implementing combinational component. Sensitive to 

events on input signals and changes in the state.
2. Process implementing the sequential component. Sensitive to 

active edge of the clock 
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VHDL Model for FSM 1
library IEEE;
use IEEE.std_logic_1164.all;

entity state_machine is
port (reset, clk, x: in std_logic;

z: out std_logic);
end entity state_machine;

architecture behavioral of state_machine is
type state_type is (state0, state1);
signal state, next_state: state_type := state0;

begin
...
end architecture behavioral;
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Combinational Part
comb_process: process(state, x) is
begin
case state is
when state0 =>

if x = ‘0’ then next_state <= state1; z <= ‘1’;
else next_state <= state0; z <= ‘0’;
end if;

when state1 =>
if x = ‘1’ then next_state <= state0; z <= ‘0’;
else next_state <= state1; z <= ‘1’;
end if;

end case;
end process comb_process;
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Sequential Part
clk_process: process is
begin

wait until (rising_Edge(clk));
if reset = ‘1’ then

state <= state_type’left;
else

state <= next_state;
end if;

end process clk_process;
end architecture behavioral;

• state and next_state are used by two process to communicate 
values. 

• Enumerated type is used.
• Attributes of enumerated type statetype’left is used to 

initialize state machine.
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Simulation
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Alternative Model: with One Process
process(clk, state, x) is

begin

if (rising_edge(clk)) then

if reset = '1' then

state <= state_type'left;

z <= '0';

else

case state is

when state0 =>

if x = '0' then state <= state1; z<='1';

else state <= state0; z<='0';

end if;

when state1 =>

if x = '1' then state <= state0; z<='0';

else state <= state1; z<='1';

end if;

end case;

end if;

end if;

end process;
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Simulation

Output signal z changes with clock.
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Alternative Model: with Three Process
...
signal state, next_state: statetype := state0;
begin
output_process: process(state, x) is
begin
case state is
when state0 =>

if x = ‘1’ then z <= ‘0’;
else z <= ‘1’;
end if;

when state1 =>
if x = ‘1’ then z <= ‘0’;
else z <= ‘1’;
end if;

end case;
end process output_process;

Output Process
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Alternative Model: with Three Process
next_state_process: process(state, x) is
begin
case state is
when state0 =>

if x = ‘1’ then next_state <= state0;
else next_state <= state1;
end if;

when state1 =>
if x = ‘1’ then next_state <= state0;
else next_state <= state1;
end if;

end case;
end process next_state_process;

Next State Process
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Alternative Model: with Three Process
clk_process: process is
begin
wait until(rising_edge(clk));
if reset = ‘1’ then state <= statetype’left;
else state <= next_state;
end if;

end process clk_process;

end architecture behavioral;

Clock Process
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Simulation
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Constructing VHDL Models
library library-name-1, library-name-2;
use library-name-1.package-name.all;
use library-name-2.package-name.all;

entity entity_name is
port(input signals: in type;

output signals: out type);
end entity entity-name;

architecture arch_name of entity_name is

-- declare internal signals, you may have multiple signals
-- of different types

signal internal signals: type := initialization;

begin

-- first process
-- second process
-- simple, conditional, or selected CSA
-- other processes or CSAs

end architecture arch_name;
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Constructing VHDL Models
architecture arch_name of entity_name is

begin

label-1: process(--sensitivity list--) is
--declare variables to be used in the process
variable variable names : type:=initialization;

begin
-- process body
end process label-1;
label-2: process is
--declare variables to be used in the process
variable variable names : type:=initialization;

begin
wait until (--predicate--);

-- sequential statements
wait until (--predicate--);

-- sequential statements
end process label-2;

internal-signal or ports<=simple,conditional,or selected CSA
-- other processes or CSAs
end architecture arch_name;
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CSA and Process
• They can be in the same architecture body

– as many CSA or process as we want
• A process and a CSA are concurrently 

executed with respect to each other.
• We use process when the computation of the 

signal values are too complex for CSA 
statements.
– variables declared in a process’ declaration field is 

only visible within this process.
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Common Syntax Errors
1. elsif (not elseif)
2. end if (not endif)
3. no semicolon (;) after then or if-then-elsif construct
4. 10 ns (10ns is incorrect)
5. underscore is OK in label names (not hyphen)
6. Some simulators cannot do the following assignment

signal X: std_logic_vector(7 downto 0):=“00000000”;

we may have to use to_stdlogicvector(“00000000”)

first to make this assignment work. 
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Common Run-Time Errors
1. Make sure if you need a signal or variable

• Signals are updated with the evaluated value in the 
next execution cycle.

• Variables are assigned immediately.
2. If multiple drivers exist for a signal, the type 

of the signal must resolved (i.e. a resolution 
function must be defined and associated).

3. A process should have either a sensitivity list 
or a wait statement; not both.

4. All processes are executed once when the 
simulation is started.
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Common Run-Time Errors
5. Be careful of the assigned values of signals

wait until rising_edge(clk);
sig_a <= sig_x and sig_y;
sig_b <= sig_a;

Think of sig_a and sig_b are being stored in flip-
flops.
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Summary
• Processes
• Sequential statements

– if-then-else, case, loop
• wait statement of sensitivity list
• attributes
• communicating processes
• modeling state machines
• using both CSA statements and processes 

within the same architecture description


