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Motivation
• Synthesis of VHDL models with process

construct.
• Processes provide powerful modeling abstraction 

for simulation purposes.
– modeling complex digital system behavior that cannot 

be captured with only CSA statements.
• Increasing the level of modeling abstraction 

makes hardware inference process harder.
– More than one hardware implementation is possible
– Inference process has more work to do. Relationship 

between the language constructs and the real systems 
is no longer explicit. 

– Simple coding guidelines in order to ease the synthesis 
compiler’s task.
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Synthesis with Processes 
• Process construct models have similarities to 

high-level programming languages
– sequential style of high-level programming languages 

may lead to excessive logic and often long signal 
paths. 

• Good rule of thumb:
– Avoid long processes 
– promote concurrency within models through the use 

of multiple processes and CSA statements.
– After all, processes are concurrent to other 

processes and to CSA statements.
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Recall
• Combinational logic

– The value of an output signal is defined for every 
combination of values of input signals

– “Previous” values do not have to be remembered.
– Make sure that every time a process is executed, 

each output should be assigned a value.
• Sequential logic

– The values of an output signal may depend on 
“previous” values stored in the circuit

– if-then-else constructs leads to a latch element 
if else branch does not assign a value to one of the 
output signals

– Next issue: will edge-sensitive flip-flop or latch be 
inferred?

– wait until (falling_edge(clk));
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One Old Example
library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port(x,y,z: in std_logic;

res1, res2: out std_logic);
end entity sig_var;

architecture behavioral of sig_var is
signal sig_s1, sig_s2: std_logic;

begin

proc1:process(x,y,z) is –- process 1 using variables
variable var_s1, var_s2:std_logic;

begin
var_s1 := x and y;
var_s2 := var_s1 xor z;
res1 <= var_s1 nand var_s2;

end process;
proc2:process(x,y,z) is –- process 1 using signals
begin

sig_s1 := x and y;
sig_s2 := sig_s1 xor z;
res1 <= sig_s1 nand sig_s2;

end process;
end architecture behavioral;
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Simulation Results
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Example: The Synthesized Logic

• Two processes result in identical logic for res1 and 
res2.

• Both circuit are combinational 
• combinational logic is a natural result of using 

“variables” that are assigned immediately with values 
evaluated at the RHS of assignment statements.
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Synplify Pro RTL View

res1 = res2 = z + (xy)’
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Example: The Synthesized Logic
• Recall that

– the values of sig_s1 and sig_s2 used when the 
process proc2 is executed are the ones when the 
process is invoked,

– Not the values are newly evaluated within the 
procedure

– This would cause inference of storage elements.
• However, compilers generally optimize this 

sequence to produce combinational logic.
– Thus, signals and variables behave identically with 

respect to the synthesis in this case. 
– Dependency in the sequential execution of signals 

will increase the critical path.



10

Sensitivity List Mismatch
• The signal sig_s1 is not in the sensitivity list.

– Therefore, an event on it (caused by another 
process perhaps) will not lead to the execution of 
process proc2.

– However, an event on sig_s1 will cause the re-
computation of the output values in the synthesized 
circuit.

• Simulation semantics may not match the 
behavior of the synthesized circuit.
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Data Dependency
• Independent of whether variables and signals 

are used, process statements introduce a data 
dependency between the process statements

• s1 <= ...
s2 <= ... s1 ...
s3 <= ... s2 ...
s4 <= ... s2 ...
and so on.

• Result: long chain of dependency to calculate s4.
• Consequence: a long signal path in the synthesized 

logic.
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Synthesis of Conditional Statements
• If-Then-Else and If-Then-Elsif statements

– All Boolean valued expressions are evaluated 
sequentially until the first true expression is 
encountered.

library IEEE;
use IEEE.std_logic_1164.all;

entity inf_latch is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inf_latch;

architecture behavioral of inf_latch is
variable s1, s2:std_logic;

begin
process(x,y,z,sel) is
begin

if (sel = ‘1’) then
s1 := x and z;
s2 := s1 xor y;
w <= s1 and s2;

end if; -- w gets a value only conditionally
-- hence a latch is inferred.

end process;
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Example: Latch Inference

• If sel = ‘1’ the new value of the signal w is computed as 
shown in the code.

• Otherwise it will keeps its previous value stored in the 
latch.

• Rule: to avoid unnecessary latched inferred, the signal 
values should be assigned a value in every branch of 
conditional statements (both in then and else
statements).

• remember that we have to make sure that all output 
signals get a value in every execution of process.
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Alternative to Avoid Latches
• Assign a default value to the signal prior to 

the if statement
library IEEE;
use IEEE.std_logic_1164.all;

entity inf_latch is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inf_latch;

architecture behavioral of inf_latch is
variable s1, s2:std_logic;
begin
process(x,y,z,sel) is
begin

w <= ‘0’; -- output signal set to a default value to avoid latch
if (sel = ‘1’) then

s1 := x and z; -- body generates combinational logic
s2 := s1 xor y;
w <= s1 and s2;

end if;
end process;
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Avoid Latches by Default Value
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Efficiency
• Avoiding unnecessary latches is one aspect of 

effective design for combinational circuit synthesis
• Efficiency in terms of speed and/or size is the other.
library IEEE;
use IEEE.std_logic_1164.all;

entity inference is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inference;

architecture behavioral of inference is
variable s1, s2:std_logic;
begin
process(x,y,z,sel) is
begin
if (sel = ‘1’) then
w <= x and y;

else
w <= x and z;

end if;
end process;
end architecture;
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Example: Efficiency

• The general principle: 
• combinational logic is generated for each branch of an 
if-then-else construct.

• A multiplexor is generated to select the outcome 
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More Efficient Design - 1
• a small rearrangement will simplify the design
library IEEE;
use IEEE.std_logic_1164.all;

entity inference is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inference;

architecture behavioral of inference is
begin
process(x,y,z,sel) is

variable right: std_logic;
begin
if (sel = ‘1’) then
right := y;

else
right := z;

end if;
w <= x and right;

end process;

end architecture;
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More Efficient Design - 2

• Coding styles help us to control how much hardware is 
generated. 

• Golden rule: move complex or hardware intensive 
operations that are replicated in then and else
branches out of the if-then-else statement.
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Multiple Levels of Nesting 
library IEEE;
use IEEE.std_logic_1164.all;

entity nested is
port(sel1, sel2, sel3, x,y,z: in std_logic;

res: out std_logic);
end entity nested;

architecture behavioral of nested is
begin
process(x, y, z, sel1, sel2, sel3) is
begin
if (sel1 = ‘1’) then
res <= x and y;

elsif(sel2 = ‘1’) then
res <= y xor z;

elsif(sel3 = ‘1’) then
res <= x or y;

end if;
end process;

end architecture;

Question: Is latch inferred?
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Example: Multiple Levels of Nesting

• Priority logic is implemented.
• What is the highest priority?
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Nested If Statements
library IEEE;

use IEEE.std_logic_1164.all;

entity nested_ifs is

port(sel0, sel1, x,y,z: in std_logic;

res: out std_logic);

end entity nested_ifs;

architecture behavioral of nested_ifs is

begin

process(x, y, z, sel0, sel1) is

begin

if (sel0 = '0') then

if (sel1 = '1') then

res <= x and y;
else -- included to avoid latch inference

res <= '0‘;

end if;

end if;

end process;

end architecture;
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Nested If Statements

• Latch is inferred because of the outer if-then-else 
statement
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Nested If Statements
library IEEE;

use IEEE.std_logic_1164.all;

entity nested_ifs is

port(sel0, sel1, x,y,z: in std_logic;

res: out std_logic);

end entity nested_ifs;

architecture behavioral of nested_ifs is

begin

process(x, y, z, sel0, sel1) is

begin

if (sel0 = '0') then

if (sel1 = '1') then

res <= x and y;
end if;

end if;

end process;

end architecture;
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Nested If Statements

Remove the inner if-then-else from the outer one 
in order to infer combinational logic
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Don’t Cares in Conditional Expressions

comparisons with don’t cares in conditional 
expressions return always FALSE.

library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port(sel: in std_logic_vector(1 downto 0);

x,y,z: in std_logic;
w: out std_logic);

end entity sig_var;

architecture behavioral of sig_var is
begin
process(x, y, z) is
begin
if (sel = ‘-0’) then
w <= x xnor y;

else
w <= x xnor z;

end if;
end process;

end architecture;
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Don’t Cares in Conditional Expressions
Synthesis compiler generates a logic in which then branch 
is never taken
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Case Statement
• Case statement is similar to if-then-else

constructs
– but identifies mutually exclusive blocks of code.
– Only one branch of a case statement can be true
– and collectively all branches cover all possible values 

of select expression.
– The others clause helps cover all possible values 

of select expression
– Selecting one of the several possible alternatives 

suggests that a multiplexor is inferred.
– Select expression provides the control signals for 

multiplexor.
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Case Statement: Example

A combinational logic is inferred when output signals 
receive a value in all branches of the case 

library IEEE;
use IEEE.std_logic_1164.all;

entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => res <= x nor z;

end case;
end process;

end architecture;
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Case Statement: Example
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sel: in integer range 0 to 3; is mapped to a two-bit signal



31

Latch Inference from Case Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => null; -- in this case the value of res

-- remains unaltered
end case;
end process;

end architecture;
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Latch Inference from Case Statement

x
z

y

sel[1:0]

1 when sel = 0
x and y

z xor y

x nand z

latch

1 when sel(0) = 1
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Avoiding Latch Using Default Value
entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin

res <= ‘0’;
case sel is

when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => null;

end case;
end process;

end architecture;

Any case statement has an equivalent if-then-elsif form.  
Question: what is the difference between the two?
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Using don’t cares in Case Statements
entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
-- when others => res <= ‘0’;
when others => res <= ‘-’;

end case;
end process;

end architecture;

Use don’t cares in when others to let the synthesis tool to 
optimize the circuit.
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Using don’t cares in Case Statements

circuit output res is not defined for sel 
= 3
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Loop Statements
• For-Loop

– Most common construct for loops supported by 
synthesis compilers

– At compile-time, it is possible to know when the 
loops ends; the logic is inferred accordingly.

– With while-loops, when the loop ends may be data 
dependent. 

– Therefore, a state machine controller is 
synthesized to cycle datapath a data-dependent 
number of times. 

– For-loops, on the other hand, is easy to synthesize. 
since the number of iterations is known.
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For Loops
• Example:

– for N in 3 downto 1 loop
shift_reg(N) <= shift_reg(N-1);

end loop;

– The loop can easily be replaced by sequential code
shift_reg(3) <= shift_reg(2);
shift_reg(2) <= shift_reg(1);
shift_reg(1) <= shift_reg(0);

– This technique is known as loop unrolling, and it is 
also being commonly used in conventional languages 
for optimization purposes.

– In VHDL synthesis, loop unrolling is also used as an 
optimization technique.
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Loop Unrolling: Example
library IEEE;
use IEEE.std_logic_1164.all;

entity iteration is
port(clk, reset, data: in std_logic;

res: out std_logic_vector(3 downto 0));
end entity iteration;

architecture behavioral of iteration is
signal shift_reg: std_logic_vector(3 downto 0);

begin
process(clk, reset, data) is
begin
if(rising_edge(clk)) then
if(reset = ‘1’) then res <= “0000”;
else
for N in 3 downto 1 loop
shift_reg(N) <= shift_reg(N-1);

end loop;
shift_reg(0) <= data;
res <= shift_reg;

end if;
end if;

end process;

end architecture;
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Loop Unrolling: Example
• Latch inference

– Because of if(rising_edge(clk)) then with no else,  a 
storage element will be inferred.

– Bu due to the call to function rising_edge() a flip-flop 
instead of a latch is inferred.
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While Loop
entity iteration is
port(clk, reset, data: in std_logic;

res: out std_logic_vector(3 downto 0))
end entity iteration;
architecture behavioral of iteration is

signal shift_reg: std_logic_vector(3 downto 0);
begin
process(clk, reset, data) is

variable N: integer;
begin

if(rising_edge(clk)) then
if(reset = '1') then res <= "0000";
else

N := 3;
while N > 0 loop

shift_reg(N) <= shift_reg(N-1); N := N - 1;
end loop;
shift_reg(0) <= data; res <= shift_reg;

end if;
end if;

end process;

end architecture;
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Exit Statement
sum := 1; j := 0;

L2: loop;
j := j+21;
sum := sum *10;
exit when sum > 100;

end loop L2;

– The exit statement can be used only inside a loop.
– It causes execution to jump out of the innermost loop or the loop 

whose label is specified.
– exit [loop-label][when condition];

sum := 1; j := 0;
L3: loop;

j := j+21;
sum := sum *10;
if sum > 100 then

exit L3;
end if;

end loop L3;



42

Next Statement
• A sequential statement that can be used only inside a 

loop.
• Syntax: next [loop-label][when condition];

• It results in skipping the remaining statements in the 
current iteration of the loop;

• execution resumes with the first statement in the 
next iteration of this loop, if one exists.

for j in 10 downto 5 loop
if sum < total_sum then

sum := sum + 2;
elsif sum = total_sum then

next;
else

null;
end if;
k := k + 1;

end loop;
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Next Statement
• The next statement can also cause an inner 

loop to be exited.
L4: for k in 10 downto 1 loop

-- statements section 1
L5: loop

-- statements section 2
next L4 when WR_DONE = ‘1’;
-- statements section 3

end loop L5;
-- statements section 4

end loop L4;

• When WR_DONE = ‘1’ becomes true, statements 
section 3 and 4 are skipped, and execution jumps to the
beginning of the next iteration of loop L4.
• Notice that loop L5 is terminated by next statement.  
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Loops 
• Some synthesis compilers forces the type of 

the loop index to integers or only a subsets of 
array types.

• The dependencies across iterations of a loop 
will lead to long signal paths.

• Example:
– reg(0)<= datain(0);

for N in 1 to 3 loop
reg(N) <= reg(N-1) xor datain(N);

end loop;

– When you unroll
reg(0)<= datain(0);
reg(1)<= reg(0) xor datain(1);
reg(2)<= reg(1) xor datain(2);
reg(3)<= reg(2) xor datain(3);
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Loops: Example
library IEEE;

use IEEE.std_logic_1164.all;

entity iteration is

port(data: in std_logic_vector(3 downto 0);

res: out std_logic_vector(3 downto 0));

end entity iteration;

architecture behavioral of iteration is

signal reg: std_logic_vector(3 downto 0);

begin

forl: process(data) is

begin

reg(0) <= data(0);

for N in 1 to 3 loop

reg(N) <= reg(N-1) xor data(N);

end loop;

res <= reg;

end process;

end architecture;
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Loops: Example
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Sensitivity List in Synthesis
• Process is executed when there is an event on 

any signal in the sensitivity list.
– When a signal is not in the sensitivity list, an event 

on this signal does not cause the execution of the 
process.

– However,  when the VHDL code is synthesized in to 
a logic circuit, a change on any signal will lead to the 
re-calculation of the other signals that depends on 
this signal.

– Therefore, simulation results after synthesis may 
not match exactly to those before the synthesis.

– Lesson: Include all signals of process in the 
sensitivity list when performing simulations.
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Variables
• Variables are language objects that is useful in 

describing the behavior of the circuit.
– They are typically used to transfer values between 

statements in a process
– Compiler may collapse variable assignment 

statements and eliminate some of them.
– When it is not possible to do so, then a variable is 

synthesized to a wire connecting gates.
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Inferring Latches

• Question:  Is a latch for Aout inferred?

...
L1: if(s1 = ‘1’) then
...
L2: if(s2 = ‘1’) then

Aout <= ‘1’;
else

Aout <= ‘0’;
end if;

end if;
...
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Buffer and Inout Entity Modes
• A signal can serve as both a driver and as an 

output signal
– Aout <= in1 and in2;
Bout <= Aout xor in3;

• In this case, Aout signal must be defined as 
either buffer or inout;

• It is important for hierarchical models
• For the time being, try to avoid situations like 

this, using the following:
– VarAout := in1 and in2;
Bout <= VarAout xor in3;
Aout <= VarAout;
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Inference Using Signals vs. Variables
library IEEE;
use IEEE.std_logic_1164.all;
entity sigvar is
port(sel: in std_logic; x, y, z: in std_logic; v: out std_logic);
end entity sigvar;

architecture behavioral of sigvar is
signal sig_s1: std_logic;
begin
process(x, y, z, sel) is
variable var_s1: std_logic;
begin

L1: if(sel = '1') then
sig_s1 <= x and z;
v <= sig_s1 xor y;

end if;

L2: if(sel = '0') then
var_s1 := x and z;
v <= var_s1 xor y;

end if;
end process;

end architecture;

Question: Find the latches that will be inferred?
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Inference Using Signals vs. Variables

Synthesis using Synopsys
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Inference Using Signals vs. Variables

Synthesis using Synplify Pro

L2

var_s1

sig_s1
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Latch Inference for Variables
library IEEE;
use IEEE.std_logic_1164.all;
entity sigvar is
port(clk, x, y: in std_logic;

res: out std_logic);
end entity sigvar;

architecture behavioral of sigvar is
begin
process
variable var_s1, var_s2: std_logic;

begin
wait until(rising_edge(clk));
var_s1 := x nand var_s2;
var_s2 := var_s1 xor y;
res <= var_s1 xor var_S2;

end process;

end architecture;

Question: Find the latches that will be inferred
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Latch Inference for Variables
• Signal res:

– wait until(rising_edge(clk)); statement causes a 
flip-flop.

– When there is no rising_edge of the clock, the 
signal res should retain its value.

• Variable var_s2:
– variable var_s2 is used before it is defined.
– Variables retain their values across process 

invocations.
– Therefore, a flip-flop is inferred when a variable is 

used before it is defined.
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Latch Inference for Variables
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Latch and Flip-Flop Inference
• if, case, wait, conditional and selected signal 

assignment statements can be used to infer 
latches.
– For example, “if (sel = ‘1’) then“ will lead to the 

inference of a latch.
• if(rising_edge(clk)) then is used to infer 

an edge-triggered flip-flop.
– if(clk’event and clk = ‘1’) then may not 

detect a transition from ‘0’ to ‘1’.
– The attribute clk’last_value may be useful in detecting 

0-to-1 transition. 
– However, it cannot be used in synthesis.
– Use functions rising_edge() or falling_edge().

– The Xilinx XC4000 series FPGAs support both edge-
triggered and level-sensitive devices.
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Flip-Flops with Asynchronous Reset
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity counter_async is
port(clk, reset: in std_logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begin
process(clk, reset) is

variable var_count: unsigned(3 downto 0);
begin

if(reset='1') then res <= "0000";

else
if (rising_edge(clk)) then

var_count := var_count + 1;
res <= var_count;

end if;

end if;

end process;

end architecture;
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Flip-Flops with Asynchronous Resets

Asynchronous clear and set signal can be synthesized only
if they exist in the target library.
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Flip-Flops with Synchronous Resets
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity counter_async is
port(clk, reset: in std_logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begin
process(clk, reset) is

variable var_count: unsigned(3 downto 0);
begin

if (rising_edge(clk)) then
if(reset='1') then

res <= "0000";
else

var_count := var_count + 1;
res <= var_count;

end if;
end if;

end process;

end architecture;
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Flip-Flops with Synchronous Resets
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Example in the Textbook
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity counter_async is
port(clk, reset: in std_logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begin
process(clk, reset) is
variable var_count: unsigned(3 downto 0);
begin

if (rising_edge(clk)) then
if(reset='1') then

res <= "0000";
else

var_count := var_count + 1;
end if;
res <= var_count;

end if;

end process;

end architecture;
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Example in the Textbook

What is the reason for this difference?


