
1

VHDL
Modeling Behavior

from Synthesis Perspective
- Part A -

EL 310
Erkay Savaş

Sabancı University

2

Motivation
• Synthesis of VHDL models with process

construct.
• Processes provide powerful modeling abstraction

for simulation purposes.
– modeling complex digital system behavior that cannot

be captured with only CSA statements.
• Increasing the level of modeling abstraction

makes hardware inference process harder.
– More than one hardware implementation is possible
– Inference process has more work to do. Relationship

between the language constructs and the real systems
is no longer explicit.

– Simple coding guidelines in order to ease the synthesis
compiler’s task.

3

Synthesis with Processes
• Process construct models have similarities to

high-level programming languages
– sequential style of high-level programming languages

may lead to excessive logic and often long signal
paths.

• Good rule of thumb:
– Avoid long processes
– promote concurrency within models through the use

of multiple processes and CSA statements.
– After all, processes are concurrent to other

processes and to CSA statements.

4

Recall
• Combinational logic

– The value of an output signal is defined for every
combination of values of input signals

– “Previous” values do not have to be remembered.
– Make sure that every time a process is executed,

each output should be assigned a value.
• Sequential logic

– The values of an output signal may depend on
“previous” values stored in the circuit

– if-then-else constructs leads to a latch element
if else branch does not assign a value to one of the
output signals

– Next issue: will edge-sensitive flip-flop or latch be
inferred?

– wait until (falling_edge(clk));

5

One Old Example
library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port(x,y,z: in std_logic;

res1, res2: out std_logic);
end entity sig_var;

architecture behavioral of sig_var is
signal sig_s1, sig_s2: std_logic;

begin

proc1:process(x,y,z) is –- process 1 using variables
variable var_s1, var_s2:std_logic;

begin
var_s1 := x and y;
var_s2 := var_s1 xor z;
res1 <= var_s1 nand var_s2;

end process;
proc2:process(x,y,z) is –- process 1 using signals
begin

sig_s1 := x and y;
sig_s2 := sig_s1 xor z;
res1 <= sig_s1 nand sig_s2;

end process;
end architecture behavioral;

6

Simulation Results

7

Example: The Synthesized Logic

• Two processes result in identical logic for res1 and
res2.

• Both circuit are combinational
• combinational logic is a natural result of using

“variables” that are assigned immediately with values
evaluated at the RHS of assignment statements.

z

y
x

res1

res2

8

Synplify Pro RTL View

res1 = res2 = z + (xy)’

9

Example: The Synthesized Logic
• Recall that

– the values of sig_s1 and sig_s2 used when the
process proc2 is executed are the ones when the
process is invoked,

– Not the values are newly evaluated within the
procedure

– This would cause inference of storage elements.
• However, compilers generally optimize this

sequence to produce combinational logic.
– Thus, signals and variables behave identically with

respect to the synthesis in this case.
– Dependency in the sequential execution of signals

will increase the critical path.

10

Sensitivity List Mismatch
• The signal sig_s1 is not in the sensitivity list.

– Therefore, an event on it (caused by another
process perhaps) will not lead to the execution of
process proc2.

– However, an event on sig_s1 will cause the re-
computation of the output values in the synthesized
circuit.

• Simulation semantics may not match the
behavior of the synthesized circuit.

11

Data Dependency
• Independent of whether variables and signals

are used, process statements introduce a data
dependency between the process statements

• s1 <= ...
s2 <= ... s1 ...
s3 <= ... s2 ...
s4 <= ... s2 ...
and so on.

• Result: long chain of dependency to calculate s4.
• Consequence: a long signal path in the synthesized

logic.

12

Synthesis of Conditional Statements
• If-Then-Else and If-Then-Elsif statements

– All Boolean valued expressions are evaluated
sequentially until the first true expression is
encountered.

library IEEE;
use IEEE.std_logic_1164.all;

entity inf_latch is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inf_latch;

architecture behavioral of inf_latch is
variable s1, s2:std_logic;

begin
process(x,y,z,sel) is
begin

if (sel = ‘1’) then
s1 := x and z;
s2 := s1 xor y;
w <= s1 and s2;

end if; -- w gets a value only conditionally
-- hence a latch is inferred.

end process;

13

Example: Latch Inference

• If sel = ‘1’ the new value of the signal w is computed as
shown in the code.

• Otherwise it will keeps its previous value stored in the
latch.

• Rule: to avoid unnecessary latched inferred, the signal
values should be assigned a value in every branch of
conditional statements (both in then and else
statements).

• remember that we have to make sure that all output
signals get a value in every execution of process.

z

y

x
sel

wL

s1

s2

enable signal
for the latch

E

14

Alternative to Avoid Latches
• Assign a default value to the signal prior to

the if statement
library IEEE;
use IEEE.std_logic_1164.all;

entity inf_latch is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inf_latch;

architecture behavioral of inf_latch is
variable s1, s2:std_logic;
begin
process(x,y,z,sel) is
begin

w <= ‘0’; -- output signal set to a default value to avoid latch
if (sel = ‘1’) then

s1 := x and z; -- body generates combinational logic
s2 := s1 xor y;
w <= s1 and s2;

end if;
end process;

15

Avoid Latches by Default Value

z

y

x
sel

w

s1

s2

if sel = ‘0’ the w gets ‘0’

16

Efficiency
• Avoiding unnecessary latches is one aspect of

effective design for combinational circuit synthesis
• Efficiency in terms of speed and/or size is the other.
library IEEE;
use IEEE.std_logic_1164.all;

entity inference is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inference;

architecture behavioral of inference is
variable s1, s2:std_logic;
begin
process(x,y,z,sel) is
begin
if (sel = ‘1’) then
w <= x and y;

else
w <= x and z;

end if;
end process;
end architecture;

17

Example: Efficiency

• The general principle:
• combinational logic is generated for each branch of an
if-then-else construct.

• A multiplexor is generated to select the outcome

z

x
y

w

sel

logic for
then part

logic for
else part

2-to-1 MUX

18

More Efficient Design - 1
• a small rearrangement will simplify the design
library IEEE;
use IEEE.std_logic_1164.all;

entity inference is
port(sel,x,y,z: in std_logic;

w: out std_logic);
end entity inference;

architecture behavioral of inference is
begin
process(x,y,z,sel) is

variable right: std_logic;
begin
if (sel = ‘1’) then
right := y;

else
right := z;

end if;
w <= x and right;

end process;

end architecture;

19

More Efficient Design - 2

• Coding styles help us to control how much hardware is
generated.

• Golden rule: move complex or hardware intensive
operations that are replicated in then and else
branches out of the if-then-else statement.

z

x

y
w

sel

20

Multiple Levels of Nesting
library IEEE;
use IEEE.std_logic_1164.all;

entity nested is
port(sel1, sel2, sel3, x,y,z: in std_logic;

res: out std_logic);
end entity nested;

architecture behavioral of nested is
begin
process(x, y, z, sel1, sel2, sel3) is
begin
if (sel1 = ‘1’) then
res <= x and y;

elsif(sel2 = ‘1’) then
res <= y xor z;

elsif(sel3 = ‘1’) then
res <= x or y;

end if;
end process;

end architecture;

Question: Is latch inferred?

21

Example: Multiple Levels of Nesting

• Priority logic is implemented.
• What is the highest priority?

z

y
x

sel2
sel1

sel3

res

x + y

y ⊕ z

xy

(x+ y) sel1’ sel2’

sel1’ sel2

xysel1

0 if sel1 = sel2 = sel3 = 0

E
L

22

Nested If Statements
library IEEE;

use IEEE.std_logic_1164.all;

entity nested_ifs is

port(sel0, sel1, x,y,z: in std_logic;

res: out std_logic);

end entity nested_ifs;

architecture behavioral of nested_ifs is

begin

process(x, y, z, sel0, sel1) is

begin

if (sel0 = '0') then

if (sel1 = '1') then

res <= x and y;
else -- included to avoid latch inference

res <= '0‘;

end if;

end if;

end process;

end architecture;

23

Nested If Statements

• Latch is inferred because of the outer if-then-else
statement

24

Nested If Statements
library IEEE;

use IEEE.std_logic_1164.all;

entity nested_ifs is

port(sel0, sel1, x,y,z: in std_logic;

res: out std_logic);

end entity nested_ifs;

architecture behavioral of nested_ifs is

begin

process(x, y, z, sel0, sel1) is

begin

if (sel0 = '0') then

if (sel1 = '1') then

res <= x and y;
end if;

end if;

end process;

end architecture;

25

Nested If Statements

Remove the inner if-then-else from the outer one
in order to infer combinational logic

26

Don’t Cares in Conditional Expressions

comparisons with don’t cares in conditional
expressions return always FALSE.

library IEEE;
use IEEE.std_logic_1164.all;

entity sig_var is
port(sel: in std_logic_vector(1 downto 0);

x,y,z: in std_logic;
w: out std_logic);

end entity sig_var;

architecture behavioral of sig_var is
begin
process(x, y, z) is
begin
if (sel = ‘-0’) then
w <= x xnor y;

else
w <= x xnor z;

end if;
end process;

end architecture;

27

Don’t Cares in Conditional Expressions
Synthesis compiler generates a logic in which then branch
is never taken

28

Case Statement
• Case statement is similar to if-then-else

constructs
– but identifies mutually exclusive blocks of code.
– Only one branch of a case statement can be true
– and collectively all branches cover all possible values

of select expression.
– The others clause helps cover all possible values

of select expression
– Selecting one of the several possible alternatives

suggests that a multiplexor is inferred.
– Select expression provides the control signals for

multiplexor.

29

Case Statement: Example

A combinational logic is inferred when output signals
receive a value in all branches of the case

library IEEE;
use IEEE.std_logic_1164.all;

entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => res <= x nor z;

end case;
end process;

end architecture;

30

Case Statement: Example

z

y
x

sel(1)
sel(0)

res

(x nor y)

x nand z

(x nor y) when sel=3

when sel=2

y xor z

when sel=1

x and y

when sel=0

sel: in integer range 0 to 3; is mapped to a two-bit signal

31

Latch Inference from Case Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => null; -- in this case the value of res

-- remains unaltered
end case;
end process;

end architecture;

32

Latch Inference from Case Statement

x
z

y

sel[1:0]

1 when sel = 0
x and y

z xor y

x nand z

latch

1 when sel(0) = 1

1 when sel(1) = 1

don’t enable the
latch when sel≠0,1,2

33

Avoiding Latch Using Default Value
entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin

res <= ‘0’;
case sel is

when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
when others => null;

end case;
end process;

end architecture;

Any case statement has an equivalent if-then-elsif form.
Question: what is the difference between the two?

34

Using don’t cares in Case Statements
entity case_ex is
port(sel: in integer range 0 to 3;

x,y,z: in std_logic;
res: out std_logic);

end entity case_ex;

architecture behavioral of case_ex is
begin
process(x, y, z, sel) is
begin
case sel is
when 0 => res <= x and y;
when 1 => res <= y xor z;
when 2 => res <= x nand z;
-- when others => res <= ‘0’;
when others => res <= ‘-’;

end case;
end process;

end architecture;

Use don’t cares in when others to let the synthesis tool to
optimize the circuit.

35

Using don’t cares in Case Statements

circuit output res is not defined for sel
= 3

36

Loop Statements
• For-Loop

– Most common construct for loops supported by
synthesis compilers

– At compile-time, it is possible to know when the
loops ends; the logic is inferred accordingly.

– With while-loops, when the loop ends may be data
dependent.

– Therefore, a state machine controller is
synthesized to cycle datapath a data-dependent
number of times.

– For-loops, on the other hand, is easy to synthesize.
since the number of iterations is known.

37

For Loops
• Example:

– for N in 3 downto 1 loop
shift_reg(N) <= shift_reg(N-1);

end loop;

– The loop can easily be replaced by sequential code
shift_reg(3) <= shift_reg(2);
shift_reg(2) <= shift_reg(1);
shift_reg(1) <= shift_reg(0);

– This technique is known as loop unrolling, and it is
also being commonly used in conventional languages
for optimization purposes.

– In VHDL synthesis, loop unrolling is also used as an
optimization technique.

38

Loop Unrolling: Example
library IEEE;
use IEEE.std_logic_1164.all;

entity iteration is
port(clk, reset, data: in std_logic;

res: out std_logic_vector(3 downto 0));
end entity iteration;

architecture behavioral of iteration is
signal shift_reg: std_logic_vector(3 downto 0);

begin
process(clk, reset, data) is
begin
if(rising_edge(clk)) then
if(reset = ‘1’) then res <= “0000”;
else
for N in 3 downto 1 loop
shift_reg(N) <= shift_reg(N-1);

end loop;
shift_reg(0) <= data;
res <= shift_reg;

end if;
end if;

end process;

end architecture;

39

Loop Unrolling: Example
• Latch inference

– Because of if(rising_edge(clk)) then with no else, a
storage element will be inferred.

– Bu due to the call to function rising_edge() a flip-flop
instead of a latch is inferred.

clk

data

reset

res<0>

res<1>

res<2>

res<3>

Q

Q

Q

QQQ QQ

E E E E R

R

R

R

D D D D D

D

D

D

40

While Loop
entity iteration is
port(clk, reset, data: in std_logic;

res: out std_logic_vector(3 downto 0))
end entity iteration;
architecture behavioral of iteration is

signal shift_reg: std_logic_vector(3 downto 0);
begin
process(clk, reset, data) is

variable N: integer;
begin

if(rising_edge(clk)) then
if(reset = '1') then res <= "0000";
else

N := 3;
while N > 0 loop

shift_reg(N) <= shift_reg(N-1); N := N - 1;
end loop;
shift_reg(0) <= data; res <= shift_reg;

end if;
end if;

end process;

end architecture;

41

Exit Statement
sum := 1; j := 0;

L2: loop;
j := j+21;
sum := sum *10;
exit when sum > 100;

end loop L2;

– The exit statement can be used only inside a loop.
– It causes execution to jump out of the innermost loop or the loop

whose label is specified.
– exit [loop-label][when condition];

sum := 1; j := 0;
L3: loop;

j := j+21;
sum := sum *10;
if sum > 100 then

exit L3;
end if;

end loop L3;

42

Next Statement
• A sequential statement that can be used only inside a

loop.
• Syntax: next [loop-label][when condition];

• It results in skipping the remaining statements in the
current iteration of the loop;

• execution resumes with the first statement in the
next iteration of this loop, if one exists.

for j in 10 downto 5 loop
if sum < total_sum then

sum := sum + 2;
elsif sum = total_sum then

next;
else

null;
end if;
k := k + 1;

end loop;

43

Next Statement
• The next statement can also cause an inner

loop to be exited.
L4: for k in 10 downto 1 loop

-- statements section 1
L5: loop

-- statements section 2
next L4 when WR_DONE = ‘1’;
-- statements section 3

end loop L5;
-- statements section 4

end loop L4;

• When WR_DONE = ‘1’ becomes true, statements
section 3 and 4 are skipped, and execution jumps to the
beginning of the next iteration of loop L4.
• Notice that loop L5 is terminated by next statement.

44

Loops
• Some synthesis compilers forces the type of

the loop index to integers or only a subsets of
array types.

• The dependencies across iterations of a loop
will lead to long signal paths.

• Example:
– reg(0)<= datain(0);

for N in 1 to 3 loop
reg(N) <= reg(N-1) xor datain(N);

end loop;

– When you unroll
reg(0)<= datain(0);
reg(1)<= reg(0) xor datain(1);
reg(2)<= reg(1) xor datain(2);
reg(3)<= reg(2) xor datain(3);

45

Loops: Example
library IEEE;

use IEEE.std_logic_1164.all;

entity iteration is

port(data: in std_logic_vector(3 downto 0);

res: out std_logic_vector(3 downto 0));

end entity iteration;

architecture behavioral of iteration is

signal reg: std_logic_vector(3 downto 0);

begin

forl: process(data) is

begin

reg(0) <= data(0);

for N in 1 to 3 loop

reg(N) <= reg(N-1) xor data(N);

end loop;

res <= reg;

end process;

end architecture;

46

Loops: Example

47

Sensitivity List in Synthesis
• Process is executed when there is an event on

any signal in the sensitivity list.
– When a signal is not in the sensitivity list, an event

on this signal does not cause the execution of the
process.

– However, when the VHDL code is synthesized in to
a logic circuit, a change on any signal will lead to the
re-calculation of the other signals that depends on
this signal.

– Therefore, simulation results after synthesis may
not match exactly to those before the synthesis.

– Lesson: Include all signals of process in the
sensitivity list when performing simulations.

48

Variables
• Variables are language objects that is useful in

describing the behavior of the circuit.
– They are typically used to transfer values between

statements in a process
– Compiler may collapse variable assignment

statements and eliminate some of them.
– When it is not possible to do so, then a variable is

synthesized to a wire connecting gates.

49

Inferring Latches

• Question: Is a latch for Aout inferred?

...
L1: if(s1 = ‘1’) then
...
L2: if(s2 = ‘1’) then

Aout <= ‘1’;
else

Aout <= ‘0’;
end if;

end if;
...

50

Buffer and Inout Entity Modes
• A signal can serve as both a driver and as an

output signal
– Aout <= in1 and in2;
Bout <= Aout xor in3;

• In this case, Aout signal must be defined as
either buffer or inout;

• It is important for hierarchical models
• For the time being, try to avoid situations like

this, using the following:
– VarAout := in1 and in2;
Bout <= VarAout xor in3;
Aout <= VarAout;

51

Inference Using Signals vs. Variables
library IEEE;
use IEEE.std_logic_1164.all;
entity sigvar is
port(sel: in std_logic; x, y, z: in std_logic; v: out std_logic);
end entity sigvar;

architecture behavioral of sigvar is
signal sig_s1: std_logic;
begin
process(x, y, z, sel) is
variable var_s1: std_logic;
begin

L1: if(sel = '1') then
sig_s1 <= x and z;
v <= sig_s1 xor y;

end if;

L2: if(sel = '0') then
var_s1 := x and z;
v <= var_s1 xor y;

end if;
end process;

end architecture;

Question: Find the latches that will be inferred?

52

Inference Using Signals vs. Variables

Synthesis using Synopsys

53

Inference Using Signals vs. Variables

Synthesis using Synplify Pro

L2

var_s1

sig_s1

54

Latch Inference for Variables
library IEEE;
use IEEE.std_logic_1164.all;
entity sigvar is
port(clk, x, y: in std_logic;

res: out std_logic);
end entity sigvar;

architecture behavioral of sigvar is
begin
process
variable var_s1, var_s2: std_logic;

begin
wait until(rising_edge(clk));
var_s1 := x nand var_s2;
var_s2 := var_s1 xor y;
res <= var_s1 xor var_S2;

end process;

end architecture;

Question: Find the latches that will be inferred

55

Latch Inference for Variables
• Signal res:

– wait until(rising_edge(clk)); statement causes a
flip-flop.

– When there is no rising_edge of the clock, the
signal res should retain its value.

• Variable var_s2:
– variable var_s2 is used before it is defined.
– Variables retain their values across process

invocations.
– Therefore, a flip-flop is inferred when a variable is

used before it is defined.

56

Latch Inference for Variables

57

Latch and Flip-Flop Inference
• if, case, wait, conditional and selected signal

assignment statements can be used to infer
latches.
– For example, “if (sel = ‘1’) then“ will lead to the

inference of a latch.
• if(rising_edge(clk)) then is used to infer

an edge-triggered flip-flop.
– if(clk’event and clk = ‘1’) then may not

detect a transition from ‘0’ to ‘1’.
– The attribute clk’last_value may be useful in detecting

0-to-1 transition.
– However, it cannot be used in synthesis.
– Use functions rising_edge() or falling_edge().

– The Xilinx XC4000 series FPGAs support both edge-
triggered and level-sensitive devices.

58

Flip-Flops with Asynchronous Reset
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity counter_async is
port(clk, reset: in std_logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begin
process(clk, reset) is

variable var_count: unsigned(3 downto 0);
begin

if(reset='1') then res <= "0000";

else
if (rising_edge(clk)) then

var_count := var_count + 1;
res <= var_count;

end if;

end if;

end process;

end architecture;

59

Flip-Flops with Asynchronous Resets

Asynchronous clear and set signal can be synthesized only
if they exist in the target library.

60

Flip-Flops with Synchronous Resets
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity counter_async is
port(clk, reset: in std_logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begin
process(clk, reset) is

variable var_count: unsigned(3 downto 0);
begin

if (rising_edge(clk)) then
if(reset='1') then

res <= "0000";
else

var_count := var_count + 1;
res <= var_count;

end if;
end if;

end process;

end architecture;

61

Flip-Flops with Synchronous Resets

62

Example in the Textbook
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_arith.all;

entity counter_async is
port(clk, reset: in std_logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begin
process(clk, reset) is
variable var_count: unsigned(3 downto 0);
begin

if (rising_edge(clk)) then
if(reset='1') then

res <= "0000";
else

var_count := var_count + 1;
end if;
res <= var_count;

end if;

end process;

end architecture;

63

Example in the Textbook

What is the reason for this difference?

