

+ Synthesis of VHDL models with process
construct.

* Processes provide powerful modeling abstraction
for simulation purposes.
- modeling complex digital system behavior that cannot
be captured with only CSA statements.
* Increasing the level of modeling abstraction
makes hardware inference process harder.
- More than one hardware implementation is possible

- Inference process has more work to do. Relationship
between the language constructs and the real systems
is no longer explicit.

- Simple coding guidelines in order to ease the synthesis
compiler's task.

2

* Process construct models have similarities to
high-level programming languages
- sequential style of high-level programming languages

may lead to excessive logic and often long signal
paths.

- Good rule of thumb:

- Avoid long processes

- promote concurrency within models through the use
of multiple processes and CSA statements.

- After all, processes are concurrent to other
processes and to CSA statements.

» Combinational logic

- The value of an output signal is defined for every
combination of values of input signals

- "Previous” values do not have to be remembered.
- Make sure that every time a process is executed,
each output should be assigned a value.
» Sequential logic
- The values of an output signal may depend on
“previous” values stored in the circuit

— i f-then- el se constructs leads to a latch element
if el se branch does not assign a value to one of the
output signals

- Next issue: will edge-sensitive flip-flop or latch be
inferred?

—wait until (falling edge(clk)):

| i brary | EEE;
use | EEE. std | ogic_1164. al | ;

entity sig var is
port(x,y,z: in std_|ogic;

resl, res2: out std |logic);
end entity sig _var;

architecture behavioral of sig var is
signal sig sl1, sig s2: std |logic;
begi n
procl: process(x,y,z) is — process 1 using variables
vari abl e var _s1, var_s2:std | ogic;
begi n
var_sl := x and vy;
var _s2 := var_sl xor z;
resl <= var_s1 nand var _s2;
end process;

proc2: process(x,y,z) Is — process 1 using signals
begi n
sig sl :=x and vy;
sig s2 :=sig_sl xor z;
resl <= sig sl nand sig_s2;
end process;
end architecture behavioral;

—owave -defauk NETE]
. e [. iy e

- Recall that

- the values of sig_s1 and sig_s2 used when the
process proc?2 is executed are the ones when the
process is invoked,

- Not the values are newly evaluated within the
procedure

- This would cause inference of storage elements.

 However, compilers generally optimize this
sequence to produce combinational logic.

- Thus, signals and variables behave identically with
respect to the synthesis in this case.

- Dependency in the sequential execution of signals
will increase the critical path.

| i brary | EEE;
use | EEE. std | ogic 1164. all;

entity inf _latch is
port(sel,x,y,z: in std_| ogic;
w. out std |ogic);

end entity inf _|atch;

architecture behavioral of inf _latch is
vari able sl1, s2:std | ogic;
begi n
process(Xx,y,z,sel) is
begi n
If (sel =*1") then
sl := x and z;
s2 := sl xor vy;
w <= sl and s2;
end if; -- wgets a value only conditionally
-- hence a latch is inferred.

end process;

sel :
enable signal

X — s1 / for the latch
Z s

>, s2 w
Y 7 —

+ If sel =1 the new value of the signal w is computed as
shown in the code.

Otherwise it will keeps its previous value stored in the
latch.

Rule: to avoid unnecessary latched inferred, the signal
values should be assigned a value in every branch of
conditional statements (both int hen and el se
statements).

remember that we have to make sure that all output
signals get a value in every execution of process. 13

| i brary | EEE;
use | EEE. std |l ogic_1164. al | ;

entity inf _latch is
port(sel,x,y,z: in std_|ogic;
w. out std |ogic);

end entity inf_|atch;

architecture behavioral of inf latch is
vari abl e sl1, s2:std | ogic;
begi n
process(Xx,y,z,sel) is
begi n
w<="‘0"; -- output signal set to a default value to avoid | atch
if (sel = *1") then
sl := x and z; -- body generates conbi national |ogic
s2 := sl xor vy;
w <= sl and s2;
end if;
end process;

i brary | EEE;
use | EEE. std logic 1164. all;

entity inference is _
port(sel,x,y,z: in std_| ogic;
w. out std |logic);

end entity inference;

architecture behavioral of inference is
vari able s1, s2:std_|ogic;
begi n
process(x,y,z,sel) is
begi n
I f (sel = 1) then
w <= x and vy;
el se
w <= X and z;
end if;
end process;
end architecture;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity inference is

port(sel,Xx,y,z: in std_|ogic;
W, out std _logic);

end entity inference;

architecture behavioral of inference is
begi n
process(x,y,z,sel) is
vari abl e rlght std | ogi c;
begi n
If (sel = 1) then
right :=y;
el se
right
end if;
w <= X and right;
end process;

end architecture;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity nested is

port(sell, sel2, sel3, x,y,z: in std_|ogic;
res. out std logic);

end entity nested;

architecture behavioral of nested is
begi n
process(x, sell, sel?2, sel3) is
begi n

I f (sell
res <=
el sif(sel
res <=y
el sif(sel
res <=
end if;
end process;

end architecture;

i brary | EEE;
use | EEE. std | ogic_1164. al | ;
entity nested ifs is
port(sel 0, sell, x,y,z: in std_|ogic;
res: out std | ogic);
end entity nested ifs;
architecture behavioral of nested ifs is
begi n
process(x, y, z, sel0, sell) is
begi n
If (sel0 ="0") then
If (sell ="1") then
res <= x and vy;

el se -- included to avoid | atch i nference
res <= '0°*";

end if;
end if;
end process;
end architecture;

i brary | EEE;

use | EEE. std | ogic_1164. al | ;

entity nested ifs is

port(sel 0, sell, x,y,z: in std_| ogic;
res: out std | ogic);

end entity nested ifs;

architecture behavioral of nested ifs is
begi n

process(x, y, z, sel0, sell) is
begi n
If (sel0 ="0") then
If (sell ="1") then
res <= x and vy;
end if;

end if;
end process;
end architecture;

| i brary | EEE;
use | EEE std logic 1164. all;

entity S|g var is

port(sel: in std_|ogi ector(l downto 0);
X,Y,z: in std_|
w. " out std _l ogi

end entity sig var;

architecture behavioral of sig var is
begin _
process(x, Yy, z) is

begi n
I f (sel = *-0") then
W <= X Xnhor Yy;
el se
w <= X Xnhor z;
end if;
end process;

end architecture;

e Case statement is similar toi f -t hen-el se
constructs

but identifies mutually exclusive blocks of code.
Only one branch of a case statement can be true

and collectively all branches cover all possible values
of select expression.

The ot her s clause helps cover all possible values
of select expression

Selecting one of the several possible alternatives
suggests that a multiplexor is inferred.

Select expression provides the control signals for
multiplexor.

28

| i brary | EEE;
use | EEE. std logic 1164. all;

entity case ex iIs

port(sel: in integer range O to 3;
X,Y¥,z: in std_|ogic;
res. out std logic);

end entity case_ex;

architecture behavioral of case_ex i
begin _
process(x, y, z, sel) is

begi n
case sel is
when 0 => res <= x and vy;
when 1 => res <=y xor z;
when 2 => res <= X nand z;
when others => res <= X nor z;
end case;
end process;

end architecture;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity case ex iIs

port(sel: in integer range O to 3;
X,Y¥,z: in std_|ogic;
res. out std logic);

end entity case_ex;

architecture behavioral of case_ex is
begin _
process(x, y, z, sel) is

begi n
case sel is
when 0 => res <= x and vy;
when 1 => res <=y xor z;
when 2 => res <= x nand z;
when others => null: -- in this case the value of res
-- remal ns unal tered
end case;
end process;

end architecture;

E{—J__l_when sel=0
! x and y

—

(i
— C

It
latch

Q

S

.

\1 when sel(0) = 1

ras
|~ adon’t enable the

atch when sel#z0,1,2

1 whensel(1) =1

entity case ex is

port(sel: in integer range 0 to 3;
X,Y¥,z: in std_|ogic;
res: out std | ogic);

end entity case_ex;

archi tecture behavioral of case_ex i
begi n
process(x, y, z, sel) is
begi n
res <= ‘0°;
case sel is
when 0 => res <= x and vy;

when 1 => res <=y Xxor z;
when 2 => res <= X nand z;
when ot hers => null;
end case;
end process;

end architecture;

entity case ex iIs

port(sel: in integer range 0 to 3;
X,Y¥,z: in std_|ogic;
res. out std logic);

end entity case_ex;

archi tecture behavioral of case ex |
begi n
process(x, vy, z, sel) is
begi n
case sel is

when 0 => res <= x and vy;
when 1 => res <=y xor z;
when 2 => res <= X nand z;
-- when others =>res <= ‘0" ;
when others => res <= ‘-":
end case;
end process;

end architecture;

=) >

res 2

i>c .

un1l un3 res

» For-Loop
- Most common construct for loops supported by
synthesis compilers

- At compile-time, it is possible to know when the
loops ends; the logic is inferred accordingly.

- With while-loops, when the loop ends may be data
dependent.

- Therefore, a state machine controller is
synthesized to cycle datapath a data-dependent
number of times.

- For-loops, on the other hand, is easy to synthesize.
since the number of iterations is known.

36

| i brary | EEE;
use | EEE. std logic 1164. all;

entity iteration is
port(clk, reset, data: in std_| ogic;

res: out std logic _vector(3 downto 0));
end entity iteration;

architecture behavioral of iteration is
signal shift reg: std |ogic vector(3 downto 0);
begi n
process(cl k, reset, data) is
begi n
I f(rising_edge(clk)) then
if(reset = *1") then res <= “0000";
el se
for Nin 3 downto 1 |oop
shift reg(N) <= shift reg(N1);
end | oop;
shift reg(0) <= data;
res <= shift _reg;
end if;
end if;
end process;

end architecture;

entity iteration is
port(clk, reset, data: in std_| ogic;
res: out std | ogic vector(3 downto 0))
end entity iteration;
architecture behavioral of iteration is
signal shift reg: std logic vector(3 downto 0);
begi n
process(clk, reset, data) is
variable N integer;
begi n
I f(rising_edge(clk)) then
if(reset ="'1') then res <= "0000";
el se
N:= 3;
while N > 0 | oop
shift reg(N) <= shift reg(N-1); N:= N - 1;
end | oop;
shift reg(0) <= data; res <= shift _reg;
end if;
end if;
end process;

end architecture;

sum:=1; j
L2: | oop;

joi=g2L

sum : = sum *10;

exit when sum > 100;
end | oop L2;

sum:= 1; |j
L3: | oop;
j o= j+21
sum : = sum *10;
if sum > 100 then
exit L3;
end if;
end | oop L3;

for j in 10 dowmto 5 | oop
If sum < total sumthen
sum := sum + 2;
el sif sum = total _sumthen
next ;
el se
nul | ;
end if;
k := k + 1;
end | oop;

L4: for k in 10 downto 1 | oop
-- statenents section 1
L5: | oop
-- statenents section 2
next L4 when WR DONE = 1’ ;

-- statenents section 3
end | oop L5;
-- statenents section 4
end | oop L4;

i brary | EEE;
use | EEE. std | ogic 1164. all;
entity iteration is
port(data: in std | ogic _vector(3 downto 0);
res: out std | ogic vector(3 downto 0));
end entity iteration;
architecture behavioral of iteration is
signal reg: std logic vector(3 downto 0);
begi n
forl: process(data) is
begi n
reg(0) <= data(O0);
for Nin 1 to 3 |oop
reg(N) <= reg(N-1) xor data(N);
end | oop;
res <= reg;
end process;
end architecture;

» Process is executed when there is an event on
any signal in the sensitivity list.

- When a signal is not in the sensitivity list, an event
on this signal does not cause the execution of the
process.

- However, when the VHDL code is synthesized in to
a logic circuit, a change on any signal will lead to the
re-calculation of the other signals that depends on
this signal.

- Therefore, simulation results after synthesis may
not match exactly to those before the synthesis.

- Lesson: Include all signals of process in the
sensitivity list when performing simulations.

47

L1: if(sl 1) then

L2: if(s2 1) then
Aout <= ‘1’;
el se
Aout <= ‘0’;
end if;
end if;

i brary | EEE;
use | EEE. std | ogic 1164. all;
entity sigvar is
port(sel: in std logic; x, y, z: in std logic; v: out std |ogic);
end entity sigvar;
architecture behavioral of sigvar is
signal sig sl1: std_| ogic;
begi n
process(x, y, z, sel) is
vari abl e var _sl1: std_| ogi c;
begi n
L1: if(sel ="'1") then
sig sl <= x and z;
vV <= sig_sl xor vy;
end if;

L2: if(sel ="'0") then
var_sl := x and z;
v <= var_sl xor vy;
end if;
end process;

end architecture;

Synthesis using Synopsys

~

v

Synthesis using Synplify P

| i brary | EEE;
use | EEE. std logic 1164. all;
entity sigvar is
port(clk, x, y: in std_|ogic;
res: out std |logic);
end entity sigvar;
architecture behavioral of sigvar is
begi n
process

vari abl e var _sl1, var_s2: std_| ogi c;
begi n

wait until (rising_edge(clk));

var sl := x nand var_S2;

var _s2 := var_sl xor vy,

res <= var_sl1 xor var_S2;

end process;
end architecture;

« if, case, wait, conditional and selected signal
assignment statements can be used to infer
latches.

- For example, i f (sel = ‘1) then" will lead to the
inference of a latch.

e if(rising edge(clk)) then isused to infer
an edge-triggered flip-flop.

—if(clk’event and clk = “1’) then may not
detect a transition from ‘0" to '1'.

- The attribute clk'last_value may be useful in detecting
O-to-1 transition.

- However, it cannot be used in synthesis.
- Use functionsri si ng edge() or falling edge().

- The Xilinx XC4000 series FPGAs support both edge-

triggered and level-sensitive devices. -

i brary | EEE;
use | EEE. std | ogic_1164. al | ;
use | EEE. std logic_arith.all;

entity counter_async is
port(clk, reset: in std logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begi n
process(clk, reset) is

vari abl e var_count: unsigned(3 downto 0);

begi n
if(reset="1") then res <= "0000";
el se
I f (rising_edge(clk)) then
var _count := var_count + 1;
res <= var_count;

end if;

end if;
end process;
end architecture;

i brary | EEE;
use | EEE. std | ogic 1164. all;
use | EEE. std logic_arith.all;

entity counter_async is
port(clk, reset: in std logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter_async is
begi n
process(clk, reset) is
vari abl e var _count: unsigned(3 downto 0);
begi n
I f (rising_edge(clk)) then
if(reset="1") then
res <= "0000";
el se
var _count := var_count + 1;
res <= var_count;
end if;
end if;

end process;
end architecture;

- O (] ==
F

v ool var o4

i brary | EEE;
use | EEE. std | ogic 1164. all;
use | EEE. std logic_arith.all;

entity counter_async is
port(clk, reset: in std logic; res: out unsigned(3 downto 0));
end entity counter_async;

architecture behavioral of counter _async is
begi n
process(clk, reset) is
vari abl e var _count: unsignhed(3 downto 0);
begi n
if (rising_edge(clk)) then
if(reset="1") then
res <= "0000";
el se
var _count := var_count + 1;
end if;
res <= var_count;
end if;

end process;
end architecture;

