
1

VHDL
Modeling Behavior

from Synthesis Perspective
- Part B -

EL 310
Erkay Savaş

Sabancı University

2

The Wait Statement
• Syntax

– wait until condition;

• Different forms
– wait until(clk’event and clk = ‘1’);
– wait until(rising_edge(clk));

– wait until(falling_edge(clk));

• It implies synchronous logic.
– Consider a circuit where signal values are stored in

edge-triggered flip-flops and their values are
updated in the clock edge.

– Therefore, all signals whose values are controlled by
the wait statement will be synthesized into edge-
triggered flip-flops.

3

Wait vs. If-Then-Endif Statement
• Only one wait statement is permitted in a

process and it must be the first statement.
– Then, an edge-triggered flip-flop will be inferred

for every signal in the process.
• We do not always want to generate flip-flops

for every signal
– Then we must use if-then-endif construct.
– Edge detection expression limits the flip-flop

inference to signals assigned in the body of then
statement.

– The remaining statements will lead to combinational
logic.

4

Synchronous Logic with Wait Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity edge is
port (reset, clk: in std_logic;

Aout, Bout: out integer range 0 to 3);
end entity edge;

architecture behavioral of edge is
begin
process
begin
wait until (rising_edge(clk));
if reset = ‘1’ then
Aout <= 0;
Bout <= 1;

else
Aout <= 2;
Bout <= 2;

end if;
end process;

end architecture behavioral;

5

Synchronous Logic with Wait Statement

6

Example in the Textbook
library IEEE;
use IEEE.std_logic_1164.all;

entity edge is
port (reset, clk: in std_logic;

Aout, Bout: out integer range 0 to 3);
end entity edge;

architecture behavioral of edge is
begin
process
begin
wait until (rising_edge(clk));
if reset = ‘1’ then
Aout <= 1;

else
Aout <= 3;

end if;
Bout <= 0;

end process;

end architecture behavioral;

7

Example in the Textbook

– Warning message gotten from the synthesis compiler:
– All reachable assignments to bout(0) and bout(1) to

assign ‘0’, register removed by optimization.

8

Synchronous Logic with If Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity edge is
port (reset, clk: in std_logic;

x: in integer range 0 to 3;
Aout, Bout: out integer range 0 to 3);

end entity edge;

architecture behavioral of edge is
begin

process(clk, reset, x) is
begin

if reset = ‘1’ then
Aout <= x;

else
Aout <= x+1;

end if;
if(rising_edge(clk)) then

Bout <= x;
end if;

end process;

end architecture behavioral;

9

Synchronous Logic with If Statement

10

Synthesis vs. Simulation Semantics
library IEEE;
use IEEE.std_logic_1164.all;

entity semantics is
port (reset, clk, x, y, z: in std_logic;

aout, bout: in std_logic);
end entity semantics;

architecture behavioral of semantics is
signal sig_a, sig_b: std_logic;

begin
process
begin

wait until (rising_edge(clk));
if reset='1' then

sig_a <= '0';
sig_b <= '0';

else
sig_a <= x and y;
sig_b <= sig_a xor z;

end if;
aout <= sig_a
bout <= sig_b;

end process;
end architecture behavioral;

11

Synthesis vs. Simulation Semantics

Simulation and Synthesis semantics match in this specific
example

12

Synthesis vs. Simulation Semantics
library IEEE;
use IEEE.std_logic_1164.all;

entity semantics is
port (x, y, z: in std_logic;

w: out std_logic);
end entity semantics;

architecture behavioral of semantics is
signal s1, s2: std_logic;
begin
process(x, y, z) is
begin
L1: s1 <= x xor y;
L2: s2 <= s1 or z;
L3: w <= s1 nor s2;

end process;
end architecture behavioral;

13

Synthesis vs. Simulation Semantics

• w = [(x ⊕ y) + ((x ⊕ y) + z)]’ = [(x ⊕ y) + z]’

• Semantics of simulation and synthesis do not
match
– In behavioral simulation, the value of the signal s1

used in statement L2 is the one before this
execution of process. This implies usage of a latch.

– The synthesized logic is optimized and purely
combinational

x
y
z

w

14

Variables with Wait Statement

library IEEE;
use IEEE.std_logic_1164.all;

entity var_wait is
port (x, y, z, clk: in std_logic;

w: out std_logic);
end entity var_wait;

architecture behavioral of var_wait is
begin
process is
variable a_var, b_var: std_logic;

begin
wait until (rising_edge(clk));
L1: a_var := x or y;
L2: b_var := a_var nor z;
L3: w <= b_var xor y;

end process;
end architecture behavioral;

15

Variables with Wait Statement

• Unlike signals, variable assignments take affect
immediately.

• Variables are usually collapsed into combinational logic
unless a variable is used before it is defined.

x
y

z
w

clk

a_var_1 b_var w_1
w

16

Variables with Wait Statement
• Let us change the statement L1 in the previous

example as follows:
– a_var := (x or y) nor b_var;

x

y
z

w

clk

a_var
b_var

w_1
wb_var_1

17

Caveat
• We expect that level-sensitive or edge-

sensitive expressions within the conditional
part of the code determine whether latches or
flip-flops are inferred.

• However, some synthesis compiler may still
infer flip-flops regardless of whether the
conditional expression is level- or edge-
sensitive.

18

Synthesis of State Machines

State
Elements

Inputs
Mealy
Outputs

Next statestate

clk

Combinational Network

Output Function

Next State Function

Output Function

Combinational Network
Moore
Outputs

19

Encoding of State Elements
• Function of number of states

– For example, eight states � 3 bits to represent
each state uniquely.

– Which state is numbered with what number?

100000001001117
010000001011106
001000001111015
000100001101004
000010000100113
000001000110102
000000100010011
000000010000000
One HotGray CodeSequentialState

most compact

20

FSM Compiler & Explorer in Synplify Pro
• FSM Compiler

– automatically recognizes state machines in your
design and optimizes them.

– extracts the state machines as symbolic graphs, and
then optimizes them by re-encoding the state
representations

– Optimization with respect to time and/or area.
– and generating a better logic optimization starting

point for the state machines.
• FSM Explorer

– uses the state machines extracted by the FSM
Compiler when it explores different encoding styles.

21

Encoding in Synplify Pro
• When FSM compiler is enabled

– default encoding style automatically assigns
encoding based on the number of states in the state
machine as follows:

– sequential for 0-4 states
– One Hot for 5-24 states
– gray for > 24 states

• Syn_state_directive allows to choose
– sequential
– gray
– One Hot
– Safe: default encoding & add reset logic to force

the state machine to a known state if it reaches an
invalid state.

22

State Machine Synthesis: Example
library IEEE;
use IEEE.std_logic_1164.all;

entity state_machine is
port (reset, x, clk: in std_logic;

w: out std_logic);
end entity state_machine ;

architecture behavioral of state_machine is
type state_type is (state0, state1);
signal state, next_state: state_type;

begin
process is
begin

wait until (rising_edge(clk));
if reset = ‘1’ then

w <= ‘0’;
else

...
end if;

end process;
end architecture behavioral;

23

State Machine Synthesis: Example
...

process
begin

wait until (rising_edge(clk));
if reset = ‘1’ then

w <= ‘0’;
else

case state is
when state0 =>

if x = ‘0’ then state <= state1; w <= ‘1’;
else state <= state0; w <= ‘0’;
end if;

when state1 =>
if x = ‘1’ then state <= state0; w <= ‘1’;
else state <= state1; w <= ‘0’;
end if;

end case;
end if;

end process;
end architecture behavioral;

This is a Mealy machine where output w is a
function of both the state and the input.

24

State Machine Synthesis: Example

unnecessary flip-flop
for output signalone flip-flop

for encoding
two state

25

State Machine Synthesis: Better VHDL
...
ns_process: process(state, x) is
begin

case state is
when state0 =>

if x = '0' then next_state <= state1; w <= '1';
else next_state <= state0; w <= 0;
end if;

when state1 =>
if x = '0' then next_state <= state0; w <= '0';
else next_state <= state1; w <= '1';
end if;

end case;
end process ns_process;

clk_process: process(reset, clk)
begin

if (rising_edge(clk)) then
if (reset = '1') then state <= state_type'left;
else state <= next_state;
end if;

end if;
end process clk_process;

end architecture;

26

State Machine Synthesis: Better VHDL

No unnecessary latch
for output signal which
is dependent on the
state and input

27

Another Example
entity sm1_2 is
port (x, clk: in std_logic; z: out std_logic);

end entity sm1_2;

architecture behavioral of sm1_2 is
subtype s_type is integer range 0 to 7;
signal state, next_state: s_type;
constant s0: s_type := 0;
constant s1: s_type := 4;
constant s2: s_type := 5;
constant s3: s_type := 7;
constant s4: s_type := 6;
constant s5: s_type := 3;
constant s6: s_type := 2;

begin

clk_process: process(clk)
begin

if (rising_edge(clk)) then
state <= next_state;

end if;
end process clk_process;

28

Another Example
ns_process: process(state, x) is
begin

z <= '0'; next_state <= s0;
case state is

when s0 =>
if x = '0' then z <= '1'; next_state <= s1;
else z <= '0'; next_state <= s2; end if;

when s1 =>
if x = '0' then z <= '1'; next_state <= s3;
else z <= '0'; next_state <= s4; end if;

when s2 =>
if x = '0' then z <= '0'; next_state <= s4;
else z <= '1'; next_state <= s4; end if;

when s3 =>
if x = '0' then z <= '0'; next_state <= s5;
else z <= '1'; next_state <= s5; end if;

when s4 =>
if x = '0' then z <= '1'; next_state <= s5;
else z <= '0'; next_state <= s6; end if;

when s5 =>
if x = '0' then z <= '0'; next_state <= s0;
else z <= '1'; next_state <= s0; end if;

when s6 =>
if x = '0' then z <= '1'; next_state <= s0;

when others => null;
end case;

end process;
end architecture;

29

Null Statement
• a sequential statement that does not cause any

action to take place; execution continues with
the next statement.
– In the previous example,

when others => null;
implies that no action needs to be performed when
state is any other than specified in the case
statement.

– Recall that all choices must be covered in case
statements.

– Sometimes it is useful to explicitly say that no
action needs to be performed

– case or if statements.

30

Design Process
• Develop the VHDL models and use simulation to

verify the functional correctness of the model.
• The model is then synthesized
• Synthesized model is simulated to verify the

performance.
• Simulation of VHDL model and simulation model

of the synthesized model may behave
differently.

• This is what is called semantic mismatch.

31

Simulation vs. Synthesis
• Incomplete sensitivity list:

– In VHDL model simulation, sensitivity list can
include only a few signals and exclude the others.

– Especially, if the process produces a combinational
logic, then the circuit will be “sensitive” to a change
on any of the signals that are manipulated in the
process.

– process (sel) is
begin
if(sel=‘1’ and En=‘0’) then A<=‘1’;
else A<= ‘0’;
end if;

end process;

– The synthesized circuit will also be sensitive to the
signal En.

32

Simulation vs. Synthesis
• Sequential signal assignments in a process

– the code below show sequential behavior in VHDL
simulation

– process (x, y, z)
begin
L1: s1 <= x xor y;
L2: s2 <= s1 or z;
L3: w <= s1 nor s2;

end process;

– However, synthesis compiler will generally optimize
this sequence to produce combinational logic and
avoid latches.

33

Simulation vs. Synthesis
• User specified delays may not match the

actual delays in the synthesized circuit.
• Simulation Overhead:

– Conditional and selected CSA can be modeled using
process.

– Since CSAs are always active, it has more simulation
overhead.

– CSAs, on the other hand, are better for synthesis.
• Speed:

– Use of variables in process will result in faster
simulation.

– Use of process may obscure the concurrency within
the process and may reduce the effectiveness of
the inference mechanisms.

34

Synthesis Hints
• The while-loop statement may not be supported by

some synthesis compiler, since iteration number is data
dependent.

• All for loop indices must have statically determinable
loop ranges.

• In order to avoid inference of an unnecessary latch
for a signal, every execution path through the process
must assign a value for that signal.

• A latch will be inferred for a variable if it is used
before it is defined.

• Initialize your signals (if you must do so) explicitly
under the control of reset signal. Otherwise,
initialization may be ignored by the compiler.

35

Synthesis Hints
• Include all signals in a process in the sensitivity list of

the process.
• The VHDL code should imply hardware. Avoid purely

algorithmic descriptions of hardware.
• To avoid latches for a signal that appears in conditional

statements, make sure that default values are
assigned to this signals before a conditional block of
code.

• Try to minimize dependencies between statements.
• Using don’t care values to cover when others case in

a case statement can enable the compiler to optimize
the logic. Try to avoid setting signals to specific values
“0000” or “1111” in when others.

36

Synthesis Hints
• If possible try to specify data ranges for signals.
• Minimize signal assignment statements in a process and

use variables.
• Use if-then-else statements to infer flip-flops

rather than wait statements. To infer flip-flop with a
wait statement necessitates that wait statement must
be the first and only wait statement in the process;
thus leading to flip-flop inference for every signal in
the process.

• Do not use don’t care symbols in comparisons. Such
comparisons will always return FALSE.

• Check vendor specific constraints on the permitted
types and range for the for-loop index

37

Synthesis Hints

• Move common complex operations out of the branches
of conditional statements.

• Using a case statement rather than if-then-elsif
will produce less logic since priority logic will have to
be generated for the latter.

• The choice of coding style must be guided by the
building blocks that are available in the target
technology. For example, if latches are not available,
then level sensitive expressions will lead to the
synthesis of latches in gate level equivalents. This will
complicate the circuit and timing analysis.

