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The Wait Statement
• Syntax

– wait until condition;

• Different forms
– wait until(clk’event and clk = ‘1’);
– wait until(rising_edge(clk));

– wait until(falling_edge(clk));

• It implies synchronous logic.
– Consider a circuit where signal values are stored in 

edge-triggered flip-flops and their values are 
updated in the clock edge.

– Therefore, all signals whose values are controlled by 
the wait statement will be synthesized into edge-
triggered flip-flops.
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Wait vs. If-Then-Endif Statement
• Only one wait statement is permitted in a 

process and it must be the first statement.
– Then, an edge-triggered flip-flop will be inferred 

for every signal in the process.
• We do not always want to generate flip-flops 

for every signal
– Then we must use if-then-endif construct.
– Edge detection expression limits the flip-flop 

inference to signals assigned in the body of then
statement. 

– The remaining statements will lead to combinational 
logic.



4

Synchronous Logic with Wait Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity edge is
port (reset, clk: in std_logic;

Aout, Bout: out integer range 0 to 3);
end entity edge;

architecture behavioral of edge is
begin
process
begin
wait until (rising_edge(clk));
if reset = ‘1’ then
Aout <= 0;
Bout <= 1;

else
Aout <= 2;
Bout <= 2;

end if;
end process;

end architecture behavioral;
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Synchronous Logic with Wait Statement
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Example in the Textbook
library IEEE;
use IEEE.std_logic_1164.all;

entity edge is
port (reset, clk: in std_logic;

Aout, Bout: out integer range 0 to 3);
end entity edge;

architecture behavioral of edge is
begin
process
begin
wait until (rising_edge(clk));
if reset = ‘1’ then
Aout <= 1;

else
Aout <= 3;

end if;
Bout <= 0;

end process;

end architecture behavioral;
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Example in the Textbook

– Warning message gotten from the synthesis compiler:
– All reachable assignments to bout(0) and bout(1) to

assign ‘0’, register removed by optimization.
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Synchronous Logic with If Statement
library IEEE;
use IEEE.std_logic_1164.all;

entity edge is
port (reset, clk: in std_logic;

x: in integer range 0 to 3;
Aout, Bout: out integer range 0 to 3);

end entity edge;

architecture behavioral of edge is
begin

process(clk, reset, x) is
begin

if reset = ‘1’ then
Aout <= x;

else
Aout <= x+1;

end if;
if(rising_edge(clk)) then

Bout <= x;
end if;

end process;

end architecture behavioral;
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Synchronous Logic with If Statement
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Synthesis vs. Simulation Semantics
library IEEE;
use IEEE.std_logic_1164.all;

entity semantics is
port (reset, clk, x, y, z: in std_logic;

aout, bout: in std_logic);
end entity semantics;

architecture behavioral of semantics is
signal sig_a, sig_b: std_logic;

begin
process
begin

wait until (rising_edge(clk));
if reset='1' then

sig_a <= '0';
sig_b <= '0';

else
sig_a <= x and y;
sig_b <= sig_a xor z;

end if;
aout <= sig_a
bout <= sig_b;

end process;
end architecture behavioral;
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Synthesis vs. Simulation Semantics

Simulation and Synthesis semantics match in this specific
example
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Synthesis vs. Simulation Semantics
library IEEE;
use IEEE.std_logic_1164.all;

entity semantics is
port (x, y, z: in std_logic;

w: out std_logic);
end entity semantics;

architecture behavioral of semantics is
signal s1, s2: std_logic;
begin
process(x, y, z) is
begin
L1: s1 <= x xor y;
L2: s2 <= s1 or z;
L3: w <= s1 nor s2;

end process;
end architecture behavioral;
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Synthesis vs. Simulation Semantics

• w = [(x ⊕ y) + ((x ⊕ y) + z)]’ = [(x ⊕ y) + z]’

• Semantics of simulation and synthesis do not 
match
– In behavioral simulation, the value of the signal s1 

used in statement L2 is the one before this 
execution of process. This implies usage of a latch.

– The synthesized logic is optimized and purely 
combinational

x
y
z

w
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Variables with Wait Statement

library IEEE;
use IEEE.std_logic_1164.all;

entity var_wait is
port (x, y, z, clk: in std_logic;

w: out std_logic);
end entity var_wait;

architecture behavioral of var_wait is
begin
process is
variable a_var, b_var: std_logic;

begin
wait until (rising_edge(clk));
L1: a_var := x or y;
L2: b_var := a_var nor z;
L3: w <= b_var xor y;

end process;
end architecture behavioral;
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Variables with Wait Statement

• Unlike signals, variable assignments take affect 
immediately.

• Variables are usually collapsed into combinational logic 
unless a variable is used before it is defined.

x
y

z
w

clk

a_var_1 b_var w_1
w
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Variables with Wait Statement
• Let us change the statement L1 in the previous 

example as follows:
– a_var := (x or y) nor b_var;

x

y
z

w

clk

a_var
b_var

w_1
wb_var_1
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Caveat
• We expect that level-sensitive or edge-

sensitive expressions within the conditional 
part of the code determine whether latches or 
flip-flops are inferred.

• However, some synthesis compiler may still 
infer flip-flops regardless of whether the 
conditional expression is level- or edge-
sensitive.
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Synthesis of State Machines

State
Elements

Inputs
Mealy 
Outputs

Next statestate

clk

Combinational Network

Output Function

Next State Function

Output Function

Combinational Network
Moore
Outputs
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Encoding of State Elements
• Function of number of states

– For example, eight states � 3 bits to represent 
each state uniquely.

– Which state is numbered with what number?

100000001001117
010000001011106
001000001111015
000100001101004
000010000100113
000001000110102
000000100010011
000000010000000
One HotGray CodeSequentialState

most compact
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FSM Compiler & Explorer in Synplify Pro
• FSM Compiler 

– automatically recognizes state machines in your 
design and optimizes them. 

– extracts the state machines as symbolic graphs, and 
then optimizes them by re-encoding the state 
representations 

– Optimization with respect to time and/or area.
– and generating a better logic optimization starting 

point for the state machines. 
• FSM Explorer 

– uses the state machines extracted by the FSM 
Compiler when it explores different encoding styles.
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Encoding in Synplify Pro
• When FSM compiler is enabled

– default encoding style automatically assigns 
encoding based on the number of states in the state 
machine as follows:

– sequential for 0-4 states
– One Hot for 5-24 states
– gray for > 24 states

• Syn_state_directive allows to choose
– sequential
– gray
– One Hot
– Safe:  default encoding & add reset logic to force 

the state machine to a known state if it reaches an 
invalid state.
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State Machine Synthesis: Example
library IEEE;
use IEEE.std_logic_1164.all;

entity state_machine is
port (reset, x, clk: in std_logic;

w: out std_logic);
end entity state_machine ;

architecture behavioral of state_machine is
type state_type is (state0, state1);
signal state, next_state: state_type;

begin
process is
begin

wait until (rising_edge(clk));
if reset = ‘1’ then

w <= ‘0’;
else

...
end if;

end process;
end architecture behavioral;
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State Machine Synthesis: Example
...

process
begin

wait until (rising_edge(clk));
if reset = ‘1’ then

w <= ‘0’;
else

case state is
when state0 =>

if x = ‘0’ then state <= state1; w <= ‘1’;
else state <= state0; w <= ‘0’;
end if;

when state1 =>
if x = ‘1’ then state <= state0; w <= ‘1’;
else state <= state1; w <= ‘0’;
end if;

end case;
end if;

end process;
end architecture behavioral;

This is a Mealy machine where output w is a 
function of both the state and the input.
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State Machine Synthesis: Example

unnecessary flip-flop 
for output signalone flip-flop 

for encoding 
two state
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State Machine Synthesis: Better VHDL
...
ns_process: process(state, x) is
begin

case state is
when state0 =>

if x = '0' then next_state <= state1; w <= '1';
else next_state <= state0; w <= 0;
end if;

when state1 =>
if x = '0' then next_state <= state0; w <= '0';
else next_state <= state1; w <= '1';
end if;

end case;
end process ns_process;

clk_process: process(reset, clk)
begin

if (rising_edge(clk)) then
if (reset = '1') then state <= state_type'left;
else state <= next_state;
end if;

end if;
end process clk_process;

end architecture;
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State Machine Synthesis: Better VHDL

No unnecessary latch 
for output signal which 
is dependent on the 
state and input
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Another Example
entity sm1_2 is
port (x, clk: in std_logic; z: out std_logic);

end entity sm1_2;

architecture behavioral of sm1_2 is
subtype s_type is integer range 0 to 7;
signal state, next_state: s_type;
constant s0: s_type := 0;
constant s1: s_type := 4;
constant s2: s_type := 5;
constant s3: s_type := 7;
constant s4: s_type := 6;
constant s5: s_type := 3;
constant s6: s_type := 2;

begin

clk_process: process(clk)
begin

if (rising_edge(clk)) then
state <= next_state;

end if;
end process clk_process;
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Another Example
ns_process: process(state, x) is
begin

z <= '0'; next_state <= s0;
case state is

when s0 =>
if x = '0' then z <= '1'; next_state <= s1;
else z <= '0'; next_state <= s2; end if;

when s1 =>
if x = '0' then z <= '1'; next_state <= s3;
else z <= '0'; next_state <= s4; end if;

when s2 =>
if x = '0' then z <= '0'; next_state <= s4;
else z <= '1'; next_state <= s4; end if;

when s3 =>
if x = '0' then z <= '0'; next_state <= s5;
else z <= '1'; next_state <= s5; end if;

when s4 =>
if x = '0' then z <= '1'; next_state <= s5;
else z <= '0'; next_state <= s6; end if;

when s5 =>
if x = '0' then z <= '0'; next_state <= s0;
else z <= '1'; next_state <= s0; end if;

when s6 =>
if x = '0' then z <= '1'; next_state <= s0;

when others => null;
end case;

end process;
end architecture;
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Null Statement
• a sequential statement that does not cause any 

action to take place; execution continues with 
the next statement.
– In the previous example,

when others => null;
implies that no action needs to be performed when 
state is any other than specified in the case 
statement.

– Recall that all choices must be covered in case 
statements.

– Sometimes it is useful to explicitly say that no 
action needs to be performed

– case or if statements.
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Design Process
• Develop the VHDL models and use simulation to 

verify the functional correctness of the model.
• The model is then synthesized
• Synthesized model is simulated to verify the 

performance.
• Simulation of VHDL model and simulation model 

of the synthesized model may behave 
differently.

• This is what is called semantic mismatch.
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Simulation vs. Synthesis
• Incomplete sensitivity list:

– In VHDL model simulation, sensitivity list can 
include only a few signals and exclude the others.

– Especially, if the process produces a combinational 
logic, then the circuit will be “sensitive” to a change 
on any of the signals that are manipulated in the 
process.

– process (sel) is
begin
if(sel=‘1’ and En=‘0’) then A<=‘1’;
else A<= ‘0’;
end if;

end process;

– The synthesized circuit will also be sensitive to the 
signal En.
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Simulation vs. Synthesis
• Sequential signal assignments in a process

– the code below show sequential behavior in VHDL 
simulation

– process (x, y, z)
begin
L1: s1 <= x xor y;
L2: s2 <= s1 or z;
L3: w <= s1 nor s2;

end process;

– However, synthesis compiler will generally optimize 
this sequence to produce combinational logic and 
avoid latches.
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Simulation vs. Synthesis
• User specified delays may not match the 

actual delays in the synthesized circuit.
• Simulation Overhead:

– Conditional and selected CSA can be modeled using 
process.

– Since CSAs are always active, it has more simulation 
overhead.

– CSAs, on the other hand, are better for synthesis.
• Speed:

– Use of variables in process will result in faster 
simulation.

– Use of process may obscure the concurrency within 
the process and may reduce the effectiveness of 
the inference mechanisms.
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Synthesis Hints
• The while-loop statement may not be supported by 

some synthesis compiler, since iteration number is data 
dependent.

• All for loop indices must have statically determinable 
loop ranges.

• In order to avoid inference of an unnecessary latch 
for a signal, every execution path through the process 
must assign a value for that signal.

• A latch will be inferred for a variable if it is used 
before it is defined.

• Initialize your signals (if you must do so) explicitly 
under the control of reset signal. Otherwise, 
initialization may be ignored by the compiler.
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Synthesis Hints
• Include all signals in a process in the sensitivity list of 

the process.
• The VHDL code should imply hardware. Avoid purely 

algorithmic descriptions of hardware.
• To avoid latches for a signal that appears in conditional 

statements, make sure that default values are 
assigned to this signals before a conditional block of 
code.

• Try to minimize dependencies between statements.
• Using don’t care values to cover when others case in 

a case statement can enable the compiler to optimize 
the logic. Try to avoid setting signals to specific values 
“0000” or “1111” in when others. 
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Synthesis Hints
• If possible try to specify data ranges for signals.
• Minimize signal assignment statements in a process and 

use variables.
• Use if-then-else statements to infer flip-flops 

rather than wait statements.  To infer flip-flop with a 
wait statement necessitates that wait statement must 
be the first and only wait statement in the process; 
thus leading to flip-flop inference for every signal in 
the process. 

• Do not use don’t care symbols in comparisons. Such 
comparisons will always return FALSE.

• Check vendor specific constraints on the permitted 
types and range for the for-loop index
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Synthesis Hints

• Move common complex operations out of the branches 
of conditional statements.

• Using a case statement rather than if-then-elsif
will produce less logic since priority logic will have to 
be generated for the latter.

• The choice of coding style must be guided by the 
building blocks that are available in the target 
technology. For example, if latches are not available, 
then level sensitive expressions will lead to the 
synthesis of latches in gate level equivalents. This will 
complicate the circuit and timing analysis.


