

* Syntax

—walt until condition;:

- Different forms
—wait until(clk’event and clk = “1");
—walt until (rising edge(clKk));
—wait until (falling edge(clKk));

» It implies synchronous logic.

- Consider a circuit where signal values are stored in
edge-triggered flip-flops and their values are
updated in the clock edge.

- Therefore, all signals whose values are controlled by
the wai t statement will be synthesized into edge-
triggered flip-flops.

* Only one wait statement is permitted in a

process and it must be the first statement.

- Then, an edge-triggered flip-flop will be inferred
for every signal in the process.

*+ We do not always want to generate flip-flops

for every signal

- Then we must use i f -t hen-endi f construct.

- Edge detection expression limits the flip-flop
inference to signals assigned in the body of t hen
statement.

- The remaining statements will lead to combinational
logic.

i brary | EEE;
use | EEE. std logic 1164. all;

entity edge is
port (reset, clk: in std_| ogic;

Aout, Bout: out integer range 0 to 3);
end entity edge;

architecture behavioral of edge is
begi n
process
begi n
wait until
I f reset =
Aout <= 0;
Bout <= 1;
2;
2;

ri sing_edge(clk));
1’ then

(

el se
Aout <=
Bout <=
end if;
end process;

end architecture behavioral ;

A_I:'n[m] Qi ‘—M—

aout[1:0]

bout[1:0]

| i brary | EEE;
use | EEE. std logic 1164. all;

entity edge is
port (reset, clk: in std_| ogic;

Aout, Bout: out integer range O to 3);
end entity edge;

architecture behavioral of edge is
begi n
process
begi n
wait until
I f reset =
Aout <= 1;
el se
Aout <= 3;
end if;
Bout <= O;
end process;

(

ri sing_edge(clk));
1’ then

end architecture behavioral ;

i brary | EEE;
use | EEE. std | ogic 1164. all;

entity edge is
port (reset, clk: in std_|ogic;

X: in integer range 0 to 3;

Aout, Bout: out integer range 0 to 3);
end entity edge;

architecture behavioral of edge is
begi n
process(clk, reset, Xx) is

begi n

If reset = ‘1" then
Aout <= Xx;

el se
Aout <= x+1;

end if;

I f(rising_edge(clk)) then
Bout <= x;

end if;

end process;

end architecture behavi oral;

1;
Xp 10— Y RouT >
Aout[1:0]

D[1:0] Q[1:0]
Bout[1:0]

| i brary | EEE;
use | EEE. std | ogic 1164. all;

entity semantics is

port (reset, clk, x, y, z: in std_|logic;
aout, bout: in std | ogic);

end entity semantics;

architecture behavioral of semantics is
signal sig a, sig b: std | ogic;
begi n
process
begi n
If reset="1" then
sig a
sig b
el se
sig a <= x and vy;
sig b <= sig a xor z;
end if;
aout <= sig a
bout <= sig b;
end process;
end architecture behavioral;

wait until (rising _edge(clKk));

< 0':
<= '0";:

| i brary | EEE;
use | EEE. std logic 1164. all;

entity semantics is

port (x, y, z: in std_|ogic;
w. out std |ogic);

end entity semanti cs;

architecture behavioral of semantics is
signal sl1, s2: std_| ogic;
begi n

process(x, y, z) is

begi n
L1: s1 <= x xor vy;
L2: s2 <= sl or z;
L3: w <= sl nor s2;
end process;
end architecture behavioral ;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity var _ wait is

port (x, y, z, clk: in std_|ogic;
w. out std |logic);

end entity var_wait;

architecture behavioral of var wait is

begi n
process is
variable a var, b _var: std_|ogic;
begi n
wait until (rising_edge(clk));
L1: a var := X or vy;
L2: b _var := a_var nor z;
L3: w <= b_var xor vy;
end process;
end architecture behavi oral;

Output Function

Next State Function

State
Elements

A

Output Function

Encoding of State Elements

- Function of number of states

- For example, eight states = 3 bits o represent
each state uniquely.

- Which state is numbered with what number?

State Sequential Gray Code One Hot

0 000 000 00000001
1 001 001 00000010
2 010 011 00000100
3 011 010 00001000
4 100 110 00010000
5 101 111 00100000
6 110 101 01000000
7 111 100 10000000
— _

most compact

+ FSM Compiler

- automatically recognizes state machines in your
design and optimizes them.

- extracts the state machines as symbolic graphs, and
then optimizes them by re-encoding the state
representations

- Optimization with respect to time and/or area.

- and generating a better logic optimization starting
point for the state machines.

+ FSM Explorer

- uses the state machines extracted by the FSM
Compiler when it explores different encoding styles.

20

* When FSM compiler is enabled

- default encoding style automatically assigns

encoding based on the number of states in the state
machine as follows:

- sequential for 0-4 states
- One Hot for 5-24 states
- gray for > 24 states

»+ Syn_state_directive allows to choose
- sequential

- gray

- One Hot

- Safe: default encoding & add reset logic to force
the state machine to a known state if it reaches an
invalid state.

21

| i brary | EEE;
use | EEE. std | ogic_1164. al | ;

entity state machine is

port (reset, x, clk: in std_|ogic;
w. out std | ogic);

end entity state nmachi ne ;

archi tecture behavioral of state machine is
type state type is (stateO, statel);
signal state, next _state: state type;
begi n
process is
begi n
wait until
I f reset =
w<="'0",
el se

end'if;

end process; _
end architecture behavioral ;

ri sing_edge(clk));
1’ then

(

process
begi n
wait until
i f reset =
w<=‘0";
el se
case state i s
when stateO0 =>
if x =0 then state <= statel; w<= "1";
el se state <= stateO; w<= "'0";
end if;
when statel =>
if x =1 then state <= state0; w<= "1";
el se state <= statel; w<= ‘0";
end if;
end case;
end if;
end process;
end architecture behavioral ;

This is a Mealy machine where output wis a
function of both the state and the input.

i sing _edge(clk));
" then

=S

stte(0]

IE O® CLib Lt ny
n

unnecessary flip-fla

one flip-flop for output signal
for encoding

two state

Nns_process:. process(state, x) is
begi n
case state is
when stateO =>
If x ="'0" then next _state <= statel;, w<="1";
el se next _state <= stateO; w <= 0;
end if;
when statel =>
If x ='0" then next_state <= state0; w<="'0";
el se next _state <= statel; w<="'1";
end if;
end case;
end process ns_process;

cl k_process: process(reset, clk)
begi n
I f (rising_edge(clk)) then
If (reset = '"1') then state <= state type'left;
el se state <= next_state;
end if;
end if;
end process cl k _process;

end architecture;

p p
%m ad od oo n.y
p

No unnecessary latch
for output signal which
is dependent on the
state and input

entity snml 2 is

port (x, clk:

end entity snl_2;

archi tecture behavioral of _
subtype s_type is integer range 0 to 7;
signal state, next _state

const ant
const ant
const ant
const ant
const ant
const ant
const ant
begi n

sO:
sl:
S2:
s3:
s4.
S5
S6:

cl k_process:

begi n

process(cl k)

in std logic; z: out std | ogic);

smL 2 is

. s_type;

i f (rising_edge(clk)) then
state <= next_state;

end i f;:

end process cl k _process;

NS_process: X) is
begi n
z <= "'0"; next_state <= s0;
case state is
when sO0 =>
if x ='0
el se z <=

process(state,

next _state

then z <= "1'; _
<= s2: end i

lOl;

when s1 =>
if x ='0
el se z <=
when s2 =>
if x ='0
el se z <=
when s3 =>
if x ='0
el se z <=
when s4 =>
if x ='0
el se z <=
when s5 =>
if x ='0
el se z <=

next state

then z <= '1";

lOl;

next state

then z <= '0";

1 1l ;

next state

then z <= '0";

1 1l ;

next state

then z <= "1'";

IOI;

next state

then z <= '0";

1 1I ;

next state

next state
<= s4;

next _state
<= s4;

next state
<= S5;

next state
<= S6;

next _state
<= sO0;

end |

end |

end |

end |

end |

when s6 =>
if x ="'0" then z <= "1";
when others => null;
end case;
end process;
end architecture;

next state

* a sequential statement that does not cause any
action to take place; execution continues with
the next statement.

- In the previous example,
when ot hers => nul | ;
implies that no action needs to be performed when
state is any other than specified in the case
statement.

- Recall that all choices must be covered in case
statements.

- Sometimes it is useful o explicitly say that no
action needs to be performed

- case or if statements.

29

» Develop the VHDL models and use simulation to
verify the functional correctness of the model.

* The model is then synthesized

» Synthesized model is simulated to verify the
performance.

- Simulation of VHDL model and simulation model
of the synthesized model may behave
differently.

- This is what is called semantic mismatch.

30

+ User specified delays may not match the
actual delays in the synthesized circuit.

- Simulation Overhead:
- Conditional and selected CSA can be modeled using
process.

- Since CSAs are always active, it has more simulation
overhead.

- CSAs, on the other hand, are better for synthesis.
» Speed:
- Use of variables in process will result in faster
simulation.

- Use of process may obscure the concurrency within
the process and may reduce the effectiveness of

the inference mechanisms. .

* The while-loop statement may not be supported by
some synthesis compiler, since iteration humber is data
dependent.

All for loop indices must have statically determinable
loop ranges.

» In order to avoid inference of an unnecessary latch
for a signal, every execution path through the process
must assign a value for that signal.

A latch will be inferred for a variable if it is used
before it is defined.

» Initialize your signals (if you must do so) explicitly
under the control of reset signal. Otherwise,
initialization may be ignored by the compiler.

34

* Include all signals in a process in the sensitivity list of
the process.

+ The VHDL code should imply hardware. Avoid purely
algorithmic descriptions of hardware.

» To avoid latches for a signal that appears in conditional
statements, make sure that default values are
assigned to this signals before a conditional block of
code.

» Try to minimize dependencies between statements.

Using don't care values to cover when ot hers case in
a case statement can enable the compiler to optimize

the logic. Try to avoid setting signals to specific values
"0000" or "1111" in when ot hers.

35

» If possible try to specify data ranges for signals.

* Minimize signal assignment statements in a process and
use variables.

Use i f -t hen- el se statements to infer flip-flops
rather than wai t statements. To infer flip-flop with a
wait statement necessitates that wait statement must
be the first and only wait statement in the process:;
thus leading to flip-flop inference for every signal in
the process.

Do not use don’ t car e symbols in comparisons. Such
comparisons will always return FALSE.

* Check vendor specific constraints on the permitted
types and range for the for-loop index

36

* Move common complex operations out of the branches
of conditional statements.

Using a case statement rather thanif-then-el si f
will produce less logic since priority logic will have to
be generated for the latter.

* The choice of coding style must be guided by the
building blocks that are available in the target
technology. For example, if latches are not available,
then level sensitive expressions will lead to the
synthesis of latches in gate level equivalents. This will
complicate the circuit and timing analysis.

37

