

* Any synchronous sequential system could be
described by an ASM chart.

* It does not make much sense to design the
whole system using a single ASM chart.

* What makes the design process manageable is
to partition the design in some way.

+ The most straightforward way to partition a

design is to split it in two:

- datapath: consists of components that store and
manipulate data

- control: can be designed as a state machine that
controls functioning of those datapath components.

2

major=Green
minor=Red

start_timer

major=Red
minor=Green

major=Green
minor=Red

major=Green
minor=Red

* In our previous example, the ASM chart in the
right hand side is a simple 8-bit counter.

» It would be more efficient to use an existing
8-bit controller instead of designing it using
our ASM chart.

- Existing counter may correspond to an existing
hardware or a VHDL model.

* Then it is convenient to think of a sequential

system in terms of

- the datapath whose components that have been
previously designed (or can be adapted)

- the controller which is a design-specific state
machine

Controller Datapath

» The datapath would normally contain registers.

- The functionality of the system can be

described in ferms of register transfer
operations.

- We can express register transfer operations
in the extended ASM chart notation.

l

<1

l

- The notation means that Z takes the value 1 at the end of
the state indicated, and holds that value until it is set to
another value or reset. 10

ENABLE

Controller

+ ALU (cont.)

- It usually has other outputs called flags (for testing
overflow, zero result, etc).

- Flags act as inputs to the controller (status signals)

+ ACC (accumulator)
- a synchronous register
- It always acts as one of the source and destination
registers.
* PC (program counter)

- Instructions in a program are held sequentially in
memory

- The PC register holds the address of the current
instruction to be executed

21

Controller (Sequencer)

Control signal

Explanation

ACC bus drive bus with contents of ACC (enable three-state output)

| oad_ACC load ACC from bus

PC bus drive bus with contents of PC

| oad IR load IR from bus

| oad_MAR load MAR from bus

MDR _bus drive bus with contents of MDR

| oad_MDR load MDR from bus

ALU ACC Load ACC with result from ALU

| NC_PC Increment PC and save the result in PC

Addr _bus drive bus with operand part of instruction held in IR

CS Chip Select. Use contents of MAR to set up memory address

R NW Read, Not Write. When false, contents of MDR are stored
in memory

ALU_add Perform an add operation in the ALU

ALU sub Perform a subtract operation in the ALU 23

Controller

sO

MAR <PC
PC &< PC+1

CS
R_NW

IR<MDR

AR<Addr

s4
S5

S6

R_NW

s/

ACC&
MDR + ACC

s8

ACC&
MDR - ACC

sO

PC _bus
Load_MAR =7

ACC_bus
1 - R_NW
= S load_MDR =
E
s2

MDR_bus 5/ =
load_IR MDR_bus MDR_ bus
load_ ACC ALU_ACC
s3

Addr_bus
load_MAR

s/

s9

ACC& ACC&
MDR + ACC MDR - ACC

Controller

| i brary | EEE;
use | EEE. std logic 1164. all;

entity multiplexor is
port(a, b, ¢, d, e: in std ulogic;
s: in std ulogic vector(4 downto 0);
y: out std ulogic);
end entity nmultipl exor;

architecture versionl of nultiplexor is
begi n
pO: process(s, a, b, c, d, e) is
begi n
case s is
when "00001" =>
when "00010" =>
when "00100" =>
when "01000" =>
when ot hers =>
end case;

end process poO;
end architecture versionl;

architecture version2 mul ti plexor is

begi n
<= a when s(0)
<= b when s(1)
<= ¢ when s(2)
<= d when s(3) 1' else 'Z';
<= e when s(4) 1' else 'Z';
archi tecture version2z,

1" else 'Z';
1" else 'Z';
1" else 'Z;

00 0T 00 00 00 &

T

uni_ s

=

three-state buffers

[EEEEE

ap a® Ao a0 2o
|

-
=
t
W)

H

H

H

H

| ibrary i eee;
use ieee.std logic 1164. all;

package cpu defs is

type opcode is (load, store, add, sub, bne);

constant word w. natural :=8; -- # of bits for bus

constant op w. natural := 3; -- # of bits for opcode

constant rfill: std ulogic vector(op w1 downto 0): =
(others => *0'); -- padding for address

-- two functions to do conversi on between opcode bits of
-- std ul ogic_vector and opcode type

function slv2op (slv: in std ulogic vector) return opcode;
function op2slv (op: in opcode) return std ul ogi c_vector;

end package cpu_defs;

package body cpu defs is ...

package body cpu defs is

type optable is array(opcode) of
std ulogic vector(op w—- 1 downto 0);

constant trans_table: optable
.= (*000", “0017, *“O0O10", “011", *“1007);
function op2slv (op: in opcode) return std ul ogic_vector is
begi n
return trans_tabl e(op);
end function op2slv;

function slv2op (slv: in std ulogic vector) return opcode is
begi n

end function slv2op;
end package body cpu_defs;

package body cpu_defs is

functlon slv2op (slv: in std_ulogic_vector) return
opcode is

vari abl e transop: opcode;
begi n
-- this is howit should be done, but sone synthesis

-- tools may not support it.
for i in opcode | oop
I f slv = trans_table(i) then
transop = 1i;
end if;
end | oop;

end function slv2op;
end package body cpu_defs;

béékage body cpu defs is

function slv2op (slv: in std ulogic vector) return opcode is

vari abl e transop: opcode;
begi n

-- this is a less el egant nethod;

-- i1f the definitions of the opcode and/or trans table are

-- changed, then this code al so has to be changed.

-- There is therefore potential for inconsistency

case slv is
when “000” => transop
when “001” => transop :
when “010” => transop :
when “011” => transop :
when “100” => transop :

end case;

return transop;
end function slv2op;
end package body cpu_defs;

| oad;
st ore;
add;
sub;
bne;

|ibrary ieee;
use ieee.std logic 1164. all;
use work.cpu defs. all;

entity controller is
port(clock, reset: in std | ogic;

op: i n opcode;
z flag: in std ulogic; -- status signal
ACC bus, |oad ACC, PC bus, |oad PC
| oad IR, | oad MAR, MDR bus, |oad MR,
ALU ACC, ALU add, ALU sub, | NC PC,
Addr _bus, CS, R NW out std ulogic);

end entity controller;

architecture rtl of controller is

end architecture rtl:

architecture rtl of controller is
type state is (s0O, sl1, s2, s3, s4, s5, s6,
signal present _state, next _state: state;
begi n
seq: process(clock, reset) is
begi n
If reset = ‘1" then
present state <= sO;
el sif rising _edge(clock) then
preset state <= next_state;
end if;
end process seq;

end architecture rtl:

s7,

comm process(present _state, op, z flag) is
begi n

-- reset all the control signals to a default

ACC bus <= ‘0’;

| oad_ACC <= ‘0’ ;

PC bus <= '0’;

| oad _PC <= ' 0’ ;

load IR <= ‘0’ ;

| oad_MAR <= ‘0’ ;

MDR bus <= ‘0’

| oad_MDR <= ‘0’ ;

ALU ACC <= ‘0’;

ALU add <= ‘0’ ;

ALU sub <= ‘0’ ;

| NC PC <= ' 0’ ;

Addr _bus <= "0’ ;

G <=0,

R NW<= 0"

end process coni
end architecture rtl;

comm process(present _state, op, z flag) is
begi n

case present _state is
when s0 => -- current inst address to be | oaded in
-- MMAR, PC increnented, etc.

PC bus <= *1’;

| oad MAR <= ‘1’ ;
I NC PC <= 1’ ;

| oad PC <= *1’;
next state <= sl;

end case;
end process com

end architecture rtl:

comm process(present _state, op, z flag) is
begi n

case present_state is

when s1 => -- menory is read, MDR contains the inst.
CS <= ‘1";
R NW<= *1";
next state <= s2;
when s2 => -- inst. transferred fromMDR to IR
MDR bus <= ‘1’;
load IR <= ‘1";
next state <= s3;

end case;
end process con

end architecture rtl;

comm process(present _state, op, z flag) is
begi n

case present _state is

when s3 => -- direct address to be | oaded in MAR
Addr _bus <= ‘1’;
| oad MAR <= ‘' 1’;

If op = store then
next state <= s4;
el se
next _state <= s6;

end i f;:

end case;
end process com

end architecture rtl:

comm process(present _state, op, z flag) is
begi n

case present _state is

when s4 => -- store (nmenory to be witten)
ACC bus <= '1’;
| oad MDR <= ' 17;
next state <= s5;
when s5 => -- select nenory to wite it with MOR
CS <= "'1";
next state <= sO;

end case;
end process com

end architecture rtl:

comm process(present _state, op, z flag) is
begi n

case present_state is

when s6 =>
CS<="1; RNW<="1"; -- read the nenory just in case
if op = |oad then next _state <= s7;
el se
i f op = bne then
If z flag = '1 then next _state <= s9; -- taken
el se next _state <= s0; -- not taken
end if;
el se next _state <= s8; -- not a branch
end if;
end if;

end case;
end process comn

comm process(present _state, op, z flag) is
begi n

case present _state is

when s7 => -- load instruction
MDR bus <= ‘1'; -- ACC gets content of MNDR
| oad ACC <= *'1’;
next state <= sO0;

end case;
end process com

end architecture rtl:

comm process(present _state, op, z flag) is
begi n

case present_state is

when s8 => -- ALU operation
MDR bus <= ‘1'; -- one operand from NMDR

ALU ACC <= ‘1"; -- the other from ACC
i f op = add then

ALU add <= ‘1’;
el sif op = sub then

ALU sub <= ‘' 1’;
end if;
next state <= sO0;

end case;
end process comn

end architecture rtl;

comm process(present _state, op, z flag) is
begi n

case present _state is

when s9 => -- conpleting the branch instruction
MOR bus <= '1’;
| oad PC <= *1';

next state <= sO0;
end case;
end process com

end architecture rtl:

Li brary . This package shall be conpiled into a library synbolically
. nanmed | EEE.

Devel opers : | EEE DASC Synt hesis Wirking G oup, PAR 1076.3

Pur pose . Thi s package defines nuneric types and arithnetic functions

for use with synthesis tools. Two nuneric types are defi ned:
--> UNSI GNED : represents unsigned nunber in vector form
--> SIGNED : represents a signed nunber in vector form

The base el enent type is type STD LOQ C.

The leftnost bit is treated as the nost significant bit.

Si gned nunbers are represented in tw's conpl enent form

Thi s package contains overl oaded arithnetic operators on

the SI GNED and UNSI GNED types. The package al so contai ns

useful type conversions functions.

| f any argunent to a function is a null array, a null array is
returned (exceptions, if any, are noted individually).

|ibrary ieee;
use ieee.std logic 1164.all;
use ieee.nuneric_std.all;
use work. cpu_defs. all;
entity ALU i s
port (clock, reset: in std ul ogic;
ACC bus, |oad ACC, ALU ACC, ALU add, ALU sub: in
std _ul ogic;
system bus: i nout
std ul ogic_vector(word w1 downto 0);
z flag: out std ulogic);
end entity ALU,
architecture rtl of ALU is

end architecture rtl:

architecture rtl of ALUis
signal acc: unsigned(word w1 downto 0);
constant zero: unsigned(word w1 downto 0)
.= (others => ‘0");
begi n
system bus <= std ul ogic _vector(acc) when ACC bus =
el se (others => ‘Z");
z flag <= ‘1" when acc = zero else ‘0’ ;

process(cl ock, reset) is
begi n

end process;
end architecture rtl:

architecture rtl of ALU i s

process(cl ock, reset) is
begi n
If reset = ‘1 then acc <= (others => ‘0");
el sif rising_edge(clock) then
If ALU ACC = ‘1" then
If ALU add = ‘1" then

acc <= acc + unsigned(system bus);

elsif ALU sub = ‘1" then
acc <= acc - unsigned(system bus);

end if;

elsif load ACC = ‘1" then
acc <= unsigned(system bus);

end if;
end if;
end process
end architecture rtl;

|ibrary ieee;
use ieee.std logic 1164. all;

use ieee.nuneric_std.all;
use work.cpu_defs. all;

entity PCis
port (clock, reset: in std ul ogic;
PC bus, load PC, INC PC. in std ul ogic;

syst em bus: i nout
std_ul ogi c_vector(word_w1 downto 0));

end entity PC,
architecture rtl of PCis

end architecture rtl:

architecture rtl of PCis
signal count: unsigned (word w—- op_ w - 1 downto 0);
begi n
systembus <= refill & std ulogic_vector(count)
when PC bus = ‘1" else (others => *2Z");
process (clock, reset) is
begi n
If reset = *'1 then count <= (others => ‘0");
el sif rising _edge(clock) then
If load PC = “1" then
If INC PC = "1 then
count <= count + 1;
el se
count <= unsi gned(system bus(word wop w1 downto 0);
end if;
end if;
end if;
end process;
end architecture rtl;

|ibrary ieee;

use ieee.std logic 1164.all;

use work.cpu defs. all;

entity IRIs

port (clock, reset: in std ul ogic;
Addr bus, load IR in std ul ogic;
syst em bus: i nout
std ul ogic vector(word w1 downto 0);

op: out opcode);

end entity IR

architecture rtl of IRIis

end architecture rtl:

architecture rtl of IRIS
signal instr _reg: std ulogic vector(word w—- 1 downto 0);
begi n
systembus <= refill & instr_reg(word wop w1 downto 0)
when Addr bus = ‘1" else (others => "'Z");
op <= slv2op(instr reg(word w—- 1 dowmnto word w — op_wW));
process(cl ock, reset)

begi n
If reset = ‘1" then
i nstr_reg <= (others => ‘0");
el sif rising _edge(clock) then
If load IR = "1 then
I nstr_reg <= system bus;
end if;

end process;
end architecture rtl:

|ibrary ieee;
use ieee.std logic 1164.all;
use ieee.nuneric_std.all;
use work. cpu_defs. all;
entity RAMi s
port (clock, reset: in std ul ogic;
MDR bus, |oad MDR, |oad MAR, CS, R NW in std ul ogic;
system bus: i nout
std ulogic vector(word w1 downto 0));
end entity RAM

architecture rtl of RAMi s

end architecture rtl:

architecture rtl of RAMIi s

signal ndr: std ulogic vector(word w1 downto 0);

signal mar: std ulogic vector(word w— op w-1 downto 0);
begi n

system bus <= ndr when MDR bus = ‘1’ else (others => “Z");

process (clock, reset) is

type nemarray is array(0 to 2**(word wop _w 1) of
std ul ogic_vector(word w1 downto 0);

vari able nem nem array;

end process;
end architecture rtl:

process (clock, reset) is

type nemarray is array(0 to 2**(word_w op_w 1) of
std ul ogic _vector(word w1 downto 0);

variable nmem nem array;
constant prog: nemarray := (
0 => op2slv(load) &
std ul ogic _vector(to_unsigned(4, word w- op_w)),
1 => op2slv(add) &
std ul ogic_vector(to_unsigned(5 word w- op w),
2 => op2slv(store)&
std ul ogic_vector(to_unsigned(6, word wop w),
3 => op2slv(bne)&
std ulogic_vector(to_unsigned(7, word wop_w)),
4 => std ulogic vector(to_unsigned(2, word w)),
5 => std ulogic_vector(to_unsigned(3, word w)),
others => (others => ‘0"));

end process;
end architecture rtl;

process (clock, reset) is
begi n
I f reset = ‘1" then
nmdr <= (others => *‘0");
mar <= (others => ‘0");
mem <= prog;
el sif rising_edge(clock) then

end if;

end process;
end architecture rtl;

process (clock, reset) is
begi n

el sif rising _edge(clock) then
If load MAR = ‘1" then
mar <= unsi gned(system bus(word wop w1 downto 0));
elsif load MDOR = ‘1" then
mdr <= system bus;

elsif CS ="'1 then
I f RNWthen mdr <= nenm(to_integer(mar));
el se nen(to_integer(mar)) := ndr;
end if;

end if;
end i f;:

end process;
end architecture rtl;

|ibrary ieee;
use ieee.std logic 1164.all;
use work.cpu defs. all;
entity CPU IS
port (clock, reset: in std ul ogic;
system bus: i nout
std | ogic vector(word w1 downto 0));

end entity CPU,
architecture top of CPU is

end architecture CPU;

architecture top of CPU is

conponent controller is
port(clock, reset: in std_|logic;

op: i n opcode;

z flag: in std_ul ogic;

ACC bus, load ACC, PC bus, |oad PC,

| oad IR, |oad MAR, NMDR bus, | oad MDR,

ALU ACC, ALU add, ALU sub, | NC_PC,

Addr bus, CS, R NW out std ulogic);
end conponent controller;

conponent IR is

port (clock, reset: in std_ulogic;
Addr bus, load IR in std ul ogic;
system bus: inout std ulogic vector(word w1 downto 0);
op: out opcode);

end conponent IR,

end architecture CPU;

architecture top of CPU is

conponent PCis
port (clock, reset: in std ul ogic;
PC bus, load PC, INC PC. in std ul ogic;

syst em bus: i nout
std_ul ogi c_vector(word_w1 downto 0));

end conponent PC

conponent RAM i s
port (clock, reset: in std ul ogic;
MDR bus, load MDR, load MAR, CS5, R NW in std ul ogic;

system bus: i nout
std_ul ogi c_vector(word_w1 downto 0));

end conmponent RAM

end architecture CPU;

architecture top of CPU is

conponent ALU is
port (clock, reset: in std_ulogic;
ACC bus, load ACC, ALU ACC, ALU add, ALU sub: in
std _ul ogic;
system bus: i nout
std ul ogic _vector(word w1 downto 0);
z flag: out std ulogic);
end conponent ALU;
si gnal ACC bus, |oad ACC, PC bus, |oad PC,
| oad IR, | oad MAR, MDR, bus, | oad MDR,
ALU ACC, ALU add, ALU sub, I NC PC,
Addr _bus, CS, R NW std _ul ogi c;
signal z flag: std_ul ogic;
si gnal op: opcode;
begi n

end architecture CPU;

architecture top of CPU is

begi n
CNTRL1: controller port map(
cl ock => clock, reset => reset, op => op,
z flag => z _flag, ACC bus => ACC bus,
| oad _ACC => | oad_ACC, PC bus => PC bus,

| oad PC => load PC, load IR => load IR,

| oad MAR => | oad _MAR, MDR bus => MDR bus,
| oad MDR => | oad MDR, ALU ACC => ALU ACC,
ALU add => ALU add, ALU sub => ALU sub,

| NC_ PC => I NC PC, Addr _bus => Addr _ bus,
CS == CS5, RNW= R NW;

end architecture CPU;

architecture top of CPU is

begi n
| 1: IR port map(
clock => clock, reset => reset, Addr_bus => Addr bus,
load IR => load IR, op => op,
std | ogic_vector(system bus) =>
std ul ogi c_vector(system bus));
PC port map(
clock => clock, reset => reset, PC bus => PC bus,
| oad PC => |l oad PC, I NC PC => | NC PC,
std | ogic_vector(system bus) =>
std ul ogic_vector(system bus));

end architecture CPU;

architecture top of CPU is

begi n
Al: ALU port nmap(
clock => clock, reset => reset, ACC bus => ACC bus,
| oad ACC => | oad_ACC, ALU add => ALU Add,
ALU sub => ALU sub,
std | ogic_vector(system bus) =>

std ul ogi c_vector(system bus),
z flag => z flag);
. RAM port map(
clock => clock, reset => reset, NMDR bus => MDR bus,
| oad_ MDR => | oad MDR, |oad MAR => | oad MAR,
CS => CS, R NW=> R NW
std | ogi c_vector(system bus) =>
std ul ogi c_vector(system bus));
end architecture CPU;

|ibrary ieee;
use ieee.std logic 1164. all;
use work.cpu defs. all;

entity test cpu is
end entity cpu;

architecture tb of testcpu is

conponent CPU is
port (clock, reset: in std ul ogic;
syst em bus: i nout
std |l ogic vector(word w1 downto 0));

end conmponent CPU,

end architecture tb;

architecture tb of testcpu is

conponent CPU is
port (clock, reset: in std ul ogic;
system bus: i nout
std | ogic vector(word w1 downto 0));

end conponent CPU;
signal clock, reset: std ulogic :="'0";
signal system bus: std |logic vector(word w—- 1 downto 0);

begi n
Cl: CPU port map (clock, reset, system bus);
reset <= *'1" after 1 ns, ‘0 after 2 ns;
clock <= not clock after 10 ns;

end architecture tb;

configurati on mappi ng of testcpu is
for tb
for Cl. CPU use entity work. cpu(top);
for top

for CNTRL1: Controller use entity work.controller(rtl);
end for;

for 11: IR use entity work.ir(rtl); end for;

for P1. PC use entity work.pc(rtl); end for;
for AL: ALU use entity work.alu(rtl); end for;
for Rl:. RAMuse entity work.ranm(rtl); end for;
end for;
end for;
end for;
end configuration nmappi ng;

