
1

VHDL
Complex Sequential Systems

EL 310
Erkay Savaş

Sabancı University

2

Partitioned Design
• Any synchronous sequential system could be

described by an ASM chart.
• It does not make much sense to design the

whole system using a single ASM chart.
• What makes the design process manageable is

to partition the design in some way.
• The most straightforward way to partition a

design is to split it in two:
– datapath: consists of components that store and

manipulate data
– control: can be designed as a state machine that

controls functioning of those datapath components.

3

Our Old Example

major=Green
minor=Red

G

major=Red
minor=Green

R

car

start_timer

timed

0

0

1

1

Major road

Minor road
sensor

4

Our Old Example
• Traffic light controller with a timer:

major=Green
minor=Red

G

car
1s0

s255

0

• Assume that the clock
frequency is such that
the timed interval is
completed in 256 clock
cycles.

• There is an abundance
of states.

• states from s0 to
s255 map to a simple
controller

• we can just separate
the traffic light
controller from the
timer.

5

Linked ASM Charts

major=Green
minor=Red

G

car
1R

0

timed
1 0

start

IDLE

start
1

timed

0

s0

s255

Hardware subroutine model

6

Alternative Linked ASM Chart

G

car
1

enable

R

0

timed
1 0

IDLE

enable
1

timed

0

s0

s255

enable

timed

1

0

A conventional counter

7

Datapath/Controller Partitioning
• In our previous example, the ASM chart in the

right hand side is a simple 8-bit counter.
• It would be more efficient to use an existing

8-bit controller instead of designing it using
our ASM chart.
– Existing counter may correspond to an existing

hardware or a VHDL model.
• Then it is convenient to think of a sequential

system in terms of
– the datapath whose components that have been

previously designed (or can be adapted)
– the controller which is a design-specific state

machine

8

Datapath/Controller Partitioning

Controller Datapath

Control Signals

Status Signals

System Inputs

System Outputs

clock, reset

9

Datapath/Controller Partitioning

G

car
1

enable

R

0

timed
1 0

IDLE

enable
1

timed

0

s0

s255

enable

timed

1

0

Controller
Datapath

10

Register Transfer Operations
• The datapath would normally contain registers.
• The functionality of the system can be

described in terms of register transfer
operations.

• We can express register transfer operations
in the extended ASM chart notation.

Z � 1

• The notation means that Z takes the value 1 at the end of
the state indicated, and holds that value until it is set to
another value or reset.

11

Extended ASM Chart Notation
• If Z is reset to 0 and it is only set to 1 in the present

state, the registered output would be implemented as
a flip-flop and a multiplexor.

Z � 1
Z

1

ENABLE
clock

1

0

Z

1
clock

ENABLEENABLE

12

A More Complex Example

B0 � X0
B1 � X1
B2 � X2

A

B0 �0
B1 � B0
B2 � B1

B0 � B0 ⊕ B1
B1 � B1 ⊕ B2
B2 � B2·B1·B0

X0

B0 � B1
B1 � B2
B2 � 0

0 1

1 0

00

01 10 11

13

Implementation of Controller
• Next state equations for the controller

)(1 000 XASSS +⋅⋅=+

ASSS ⋅⋅=+ 101

14

Implementation of Datapath

0
1
2
3

0
1
2
3

0
1
2
3

S1S0

S1S0

S1S0

D

D

D

Q

Q

Q

B2

B1

B0

X2

X1

X0

&

⊕

⊕

0

0

clock

15

A Simple Microprocessor Design
• High level language expressions
• Assembler instructions
• Machine instructions.

– 8, 16, 32-bit numbers
• Example: 8-bit processor (opcode three bits,

operands are five bits)
– a = b + c;

translated into
– LOAD b 00000001

– ADD c 01000010

– STORE a 00100011

16

A Simple Microprocessor Design
• Example

– opcode
LOAD 000
ADD 010
STORE 001

– addresses
a 00001
b 00010
c 00011

• Datapath/controller partition
• controller (a.k.a. sequencer) is a state machine.
• Bits of the opcode are input to the controller

– the opcode may be decoded to generate a larger set of inputs
to the controller (micro-coding approach)

17

A Simple Microprocessor Design
• In our instructions,

– first three bits are the opcode
– the remaining five bits are the address
– direct addressing mode.

• Other addressing mode (immediate)
– a = b + 5;
– LOAD b
ADD #5
STORE a

– The opcodes for direct add and immediate add will
be different.

– Controller will go through different states when
executing these two instructions

18

Designing the Simple Microprocessor
• Design approach

– Partition the design into datapath and controller
• 8-bit microprocessor

– datapath components and bus are all 8-bit wide.
• Features

– A single bus
– Each component uses a three-state buffers so that

only one component is attempting to drive the bus.
– Fully synchronous with a single clock
– a synchronous reset

19

Block Diagram of the Processor

Control Signals

IRPC

ACC

Flags RAM

MDR MAR

Controller
opcode

20

Inside the CPU
• Memory

– Main memory is commonly implemented as
asynchronous SRAM.

– Synchronous registers act as buffers between the
main memory and the CPU.
• Memory Address Register (MAR)
• Memory Data Register (MDR)

• Arithmetic Logic Unit
– performs operation such as add, sub, and, or, etc.
– combinational
– One input is the ACC and the other is the bus.

21

Inside the CPU
• ALU (cont.)

– It usually has other outputs called flags (for testing
overflow, zero result, etc).

– Flags act as inputs to the controller (status signals)
• ACC (accumulator)

– a synchronous register
– It always acts as one of the source and destination

registers.
• PC (program counter)

– Instructions in a program are held sequentially in
memory

– The PC register holds the address of the current
instruction to be executed

22

Inside the CPU
• PC (cont.)

– The content of PC is automatically updated.
– It must also be possible to load a new address in

case of branch and jump instructions.
• IR (instruction register)

– The instruction to be executed is read from the
memory

– IR holds the current instruction during the
execution of it.

– bits of opcode (operation code) field of the
instruction are input to the controller.

23

Controller (Sequencer)

Perform a subtract operation in the ALUALU_sub

Perform an add operation in the ALUALU_add

Read, Not Write. When false, contents of MDR are stored
in memory

R_NW

Chip Select. Use contents of MAR to set up memory addressCS

drive bus with operand part of instruction held in IRAddr_bus

Increment PC and save the result in PCINC_PC

Load ACC with result from ALUALU_ACC

load MDR from busload_MDR

drive bus with contents of MDRMDR_bus

load MAR from busload_MAR

load IR from busload_IR

drive bus with contents of PCPC_bus

load ACC from busload_ACC

drive bus with contents of ACC (enable three-state output)ACC_bus

ExplanationControl signal

24

Reminder: Block Diagram of the Processor

PC IR Controller

Control Signals

ACC

Flags RAM

MDR MDR

opcode

25

ASM Chart for the Controller
MAR �PC
PC � PC+1

s0

CS
R_NW

s1

IR�MDR
s2

op=store

MAR�Addr
s3

CS
s5

op=load

op=add

Fe
tc

h

MDR�ACC
s4

1

ACC � MDR
s7

1

ACC�
MDR + ACC

1

CS
R_NW

s6

0

s8

0

ACC�
MDR - ACC

0

Ex
ec

ut
e

26

ASM Chart with Control Signals
PC_bus

Load_MAR
INC_PC

s0

CS
R_NW

s1

MDR_bus
load_IR

s2

op=store

Addr_bus
load_MAR

s3

CS
s5

op=load

op=add

Fe
tc

h
ACC_bus

load_MDR

s4

1

MDR_bus
load_ACC

s7

1

ALU_add

1

CS
R_NW

s6

0

ALU_sub

0

Ex
ec

ut
eMDR_bus

ALU_ACC

0

s8

27

ASM Chart with Branching

op=load

op=add

ACC�
MDR + ACC

1

CS
R_NW

s6

s8

0

ACC�
MDR - ACC

0

ACC � MDR
s7

1

op=bne

0

z_flag

PC � MDR
s9

1

0

28

Reminder: Block Diagram of the Processor

PC IR Controller

Control Signals

ACC

Flags RAM

MDR MDR

opcode

29

Methods to Synthesize Bus

library IEEE;

use IEEE.std_logic_1164.all;

entity multiplexor is

port(a, b, c, d, e: in std_ulogic;

s: in std_ulogic_vector(4 downto 0);

y: out std_ulogic);

end entity multiplexor;

– Recall that tri-state buffers are used for
constructing busses.

– The following method can be used with Xilinx FPGA;
but not with Actel FPGA since this technology does
not support three-state logic.

30

Methods to Synthesize Bus
architecture version1 of multiplexor is

begin
p0: process(s, a, b, c, d, e) is
begin

case s is
when "00001" => y <= a;
when "00010" => y <= b;
when "00100" => y <= c;
when "01000" => y <= d;
when others => y <= e;

end case;
end process p0;

end architecture version1;

architecture version2 of multiplexor is
begin

y <= a when s(0) = '1' else 'Z';
y <= b when s(1) = '1' else 'Z';
y <= c when s(2) = '1' else 'Z';
y <= d when s(3) = '1' else 'Z';
y <= e when s(4) = '1' else 'Z';

end architecture version2;

31

Synthesis Results with SinplifyPro

• Version 1 Architecture

32

Synthesis Results with SinplifyPro
• Version 2 Architecture

three–state buffers

33

Synthesis Results with Synopsys

34

VHDL Model: Package Declaration
library ieee;
use ieee.std_logic_1164.all;

package cpu_defs is

type opcode is (load, store, add, sub, bne);
constant word_w: natural := 8; -- # of bits for bus
constant op_w: natural := 3; -- # of bits for opcode
constant rfill: std_ulogic_vector(op_w-1 downto 0):=

(others => ‘0’); -- padding for address

-- two functions to do conversion between opcode bits of
-- std_ulogic_vector and opcode type

function slv2op (slv: in std_ulogic_vector) return opcode;
function op2slv (op: in opcode) return std_ulogic_vector;

end package cpu_defs;

package body cpu_defs is ...

35

VHDL Model: Package Body
...
package body cpu_defs is

type optable is array(opcode) of
std_ulogic_vector(op_w – 1 downto 0);

constant trans_table: optable
:= (“000”, “001”, “010”, “011”, “100”);

function op2slv (op: in opcode) return std_ulogic_vector is
begin
return trans_table(op);

end function op2slv;

function slv2op (slv: in std_ulogic_vector) return opcode is
begin

...

end function slv2op;

end package body cpu_defs;

36

VHDL Model: Package Body
...
package body cpu_defs is
...
function slv2op (slv: in std_ulogic_vector) return
opcode is

variable transop: opcode;
begin
-- this is how it should be done, but some synthesis
-- tools may not support it.
for i in opcode loop
if slv = trans_table(i) then
transop := i;

end if;
end loop;

end function slv2op;

end package body cpu_defs;

37

VHDL Model: Package Body
...
package body cpu_defs is
...

function slv2op (slv: in std_ulogic_vector) return opcode is

variable transop: opcode;
begin
-- this is a less elegant method;

-- if the definitions of the opcode and/or trans_table are
-- changed, then this code also has to be changed.
-- There is therefore potential for inconsistency
case slv is
when “000” => transop := load;
when “001” => transop := store;
when “010” => transop := add;
when “011” => transop := sub;
when “100” => transop := bne;

end case;

return transop;

end function slv2op;

end package body cpu_defs;

38

Controller: Entity Declaration
library ieee;
use ieee.std_logic_1164.all;
use work.cpu_defs.all;

entity controller is
port(clock, reset: in std_logic;

op: in opcode;

z_flag: in std_ulogic; -- status signal

ACC_bus, load_ACC, PC_bus, load_PC,

load_IR, load_MAR, MDR_bus, load_MDR,

ALU_ACC, ALU_add, ALU_sub, INC_PC,

Addr_bus, CS, R_NW: out std_ulogic);

end entity controller;

architecture rtl of controller is
...
end architecture rtl;

39

Controller: Sequential Part
architecture rtl of controller is

type state is (s0, s1, s2, s3, s4, s5, s6, s7, s8, s9);

signal present_state, next_state: state;

begin

seq: process(clock, reset) is

begin

if reset = ‘1’ then

present_state <= s0;

elsif rising_edge(clock) then

preset_state <= next_state;

end if;

end process seq;

...
end architecture rtl;

40

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

-- reset all the control signals to a default

ACC_bus <= ‘0’;
load_ACC <= ‘0’;
PC_bus <= ‘0’;
load_PC <= ‘0’;
load_IR <= ‘0’;
load_MAR <= ‘0’;
MDR_bus <= ‘0’;
load_MDR <= ‘0’;
ALU_ACC <= ‘0’;
ALU_add <= ‘0’;
ALU_sub <= ‘0’;
INC_PC <= ‘0’;
Addr_bus <= ‘0’;
CS <= ‘0’;
R_NW <= ‘0’;

...
end process com;

end architecture rtl;

41

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

when s0 => -- current inst address to be loaded in
-- MAR, PC incremented, etc.

PC_bus <= ‘1’;

load_MAR <= ‘1’;

INC_PC <= ‘1’;
load_PC <= ‘1’;

next_state <= s1;

...
end case;

end process com;

end architecture rtl;

42

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s1 => -- memory is read, MDR contains the inst.

CS <= ‘1’;

R_NW <= ‘1’;

next_state <= s2;

when s2 => -- inst. transferred from MDR to IR

MDR_bus <= ‘1’;

load_IR <= ‘1’;

next_state <= s3;

...
end case;

end process com;

end architecture rtl;

43

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s3 => -- direct address to be loaded in MAR

Addr_bus <= ‘1’;

load_MAR <= ‘1’;

if op = store then
next_state <= s4;

else
next_state <= s6;

end if;

...
end case;

end process com;

end architecture rtl;

44

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s4 => -- store (memory to be written)

ACC_bus <= ‘1’;

load_MDR <= ‘1’;

next_state <= s5;

when s5 => -- select memory to write it with MDR

CS <= ‘1’;

next_state <= s0;

...
end case;

end process com;

end architecture rtl;

45

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s6 =>

CS <= '1'; R_NW <= '1'; -- read the memory just in case

if op = load then next_state <= s7;

else

if op = bne then

if z_flag = '1' then next_state <= s9; -- taken

else next_state <= s0; -- not taken

end if;

else next_state <= s8; -- not a branch

end if;

end if;

...
end case;

end process com;

end architecture rtl;

46

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s7 => -- load instruction

MDR_bus <= ‘1’; -- ACC gets content of MDR

load_ACC <= ‘1’;

next_state <= s0;

...
end case;

end process com;

end architecture rtl;

47

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s8 => -- ALU operation

MDR_bus <= ‘1’; -- one operand from MDR

ALU_ACC <= ‘1’; -- the other from ACC
if op = add then

ALU_add <= ‘1’;
elsif op = sub then

ALU_sub <= ‘1’;

end if;

next_state <= s0;

...
end case;

end process com;

end architecture rtl;

48

Controller: Combinational Part
...

comm: process(present_state, op, z_flag) is
begin

...
case present_state is

...

when s9 => -- completing the branch instruction

MDR_bus <= ‘1’;

load_PC <= ‘1’;

next_state <= s0;
end case;

end process com;

end architecture rtl;

49

IEEE.NUMERIC_STD Package
-- Library : This package shall be compiled into a library symbolically

-- : named IEEE.

-- :

-- Developers : IEEE DASC Synthesis Working Group, PAR 1076.3

-- :

-- Purpose : This package defines numeric types and arithmetic functions

-- : for use with synthesis tools. Two numeric types are defined:

-- : --> UNSIGNED : represents unsigned number in vector form

-- : --> SIGNED : represents a signed number in vector form

-- : The base element type is type STD_LOGIC.

-- : The leftmost bit is treated as the most significant bit.

-- : Signed numbers are represented in two's complement form.

-- : This package contains overloaded arithmetic operators on

-- : the SIGNED and UNSIGNED types. The package also contains

-- : useful type conversions functions.

-- :

-- : If any argument to a function is a null array, a null array is

-- : returned (exceptions, if any, are noted individually).

50

Datapath Design: ALU
library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
use work.cpu_defs.all;

entity ALU is
port (clock, reset: in std_ulogic;

ACC_bus, load_ACC, ALU_ACC, ALU_add, ALU_sub: in
std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0);

z_flag: out std_ulogic);

end entity ALU;

architecture rtl of ALU is

...

end architecture rtl;

51

Datapath Design: ALU
architecture rtl of ALU is

signal acc: unsigned(word_w-1 downto 0);

constant zero: unsigned(word_w-1 downto 0)
:= (others => ‘0’);

begin
system_bus <= std_ulogic_vector(acc) when ACC_bus = ‘1’

else (others => ‘Z’);

z_flag <= ‘1’ when acc = zero else ‘0’;

process(clock, reset) is
begin

...

end process;

end architecture rtl;

52

Datapath Design: ALU
architecture rtl of ALU is

...

process(clock, reset) is
begin

if reset = ‘1’ then acc <= (others => ‘0’);

elsif rising_edge(clock) then

if ALU_ACC = ‘1’ then

if ALU_add = ‘1’ then
acc <= acc + unsigned(system_bus);

elsif ALU_sub = ‘1’ then
acc <= acc - unsigned(system_bus);

end if;

elsif load_ACC = ‘1’ then
acc <= unsigned(system_bus);

end if;

end if;

end process

end architecture rtl;

53

Datapath Design: PC
library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
use work.cpu_defs.all;

entity PC is
port (clock, reset: in std_ulogic;

PC_bus, load_PC, INC_PC: in std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0));

end entity PC;

architecture rtl of PC is

...

end architecture rtl;

54

Datapath Design: PC
architecture rtl of PC is

signal count: unsigned (word_w – op_w – 1 downto 0);

begin
system_bus <= refill & std_ulogic_vector(count)

when PC_bus = ‘1’ else (others => ‘Z’);

process (clock, reset) is
begin
if reset = ‘1’ then count <= (others => ‘0’);
elsif rising_edge(clock) then
if load_PC = ‘1’ then
if INC_PC = ‘1’ then
count <= count + 1;

else
count <= unsigned(system_bus(word_w-op_w-1 downto 0);

end if;
end if;

end if;

end process;

end architecture rtl;

55

Datapath Design: IR
library ieee;
use ieee.std_logic_1164.all;
use work.cpu_defs.all;

entity IR is
port (clock, reset: in std_ulogic;

Addr_bus, load_IR: in std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0);

op: out opcode);

end entity IR;

architecture rtl of IR is

...

end architecture rtl;

56

Datapath Design: IR
architecture rtl of IR is

signal instr_reg: std_ulogic_vector(word_w – 1 downto 0);

begin

system_bus <= refill & instr_reg(word_w-op_w-1 downto 0)

when Addr_bus = ‘1’ else (others => ‘Z’);

op <= slv2op(instr_reg(word_w – 1 downto word_w – op_w));

process(clock, reset)

begin

if reset = ‘1’ then
instr_reg <= (others => ‘0’);

elsif rising_edge(clock) then
if load_IR = ‘1’ then
instr_reg <= system_bus;

end if;

end process;

end architecture rtl;

57

Datapath Design: RAM
library ieee;
use ieee.std_logic_1164.all;

use ieee.numeric_std.all;
use work.cpu_defs.all;

entity RAM is
port (clock, reset: in std_ulogic;

MDR_bus, load_MDR, load_MAR, CS, R_NW: in std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0));

end entity RAM;

architecture rtl of RAM is

...

end architecture rtl;

58

Datapath Design: RAM
architecture rtl of RAM is

signal mdr: std_ulogic_vector(word_w-1 downto 0);

signal mar: std_ulogic_vector(word_w – op_w -1 downto 0);

begin
system_bus <= mdr when MDR_bus = ‘1’ else (others => ‘Z’);

process (clock, reset) is

type mem_array is array(0 to 2**(word_w-op_w-1) of
std_ulogic_vector(word_w-1 downto 0);

variable mem: mem_array;

...

end process;

end architecture rtl;

59

Datapath Design: RAM
...

process (clock, reset) is

type mem_array is array(0 to 2**(word_w-op_w-1) of
std_ulogic_vector(word_w-1 downto 0);

variable mem: mem_array;

constant prog: mem_array := (
0 => op2slv(load)&

std_ulogic_vector(to_unsigned(4, word_w - op_w)),

1 => op2slv(add)&
std_ulogic_vector(to_unsigned(5, word_w - op_w)),

2 => op2slv(store)&
std_ulogic_vector(to_unsigned(6, word_w-op_w)),

3 => op2slv(bne)&
std_ulogic_vector(to_unsigned(7, word_w-op_w)),

4 => std_ulogic_vector(to_unsigned(2, word_w)),

5 => std_ulogic_vector(to_unsigned(3, word_w)),

others => (others => ‘0’));

...

end process;

end architecture rtl;

60

Datapath Design: RAM
...

process (clock, reset) is

begin

if reset = ‘1’ then

mdr <= (others => ‘0’);

mar <= (others => ‘0’);

mem <= prog;

elsif rising_edge(clock) then

...
end if;

end process;

end architecture rtl;

61

Datapath Design: RAM
process (clock, reset) is

begin

...

elsif rising_edge(clock) then

if load_MAR = ‘1’ then

mar <= unsigned(system_bus(word_w-op_w-1 downto 0));

elsif load_MDR = ‘1’ then

mdr <= system_bus;

elsif CS = ‘1’ then

if R_NW then mdr <= mem(to_integer(mar));

else mem(to_integer(mar)) := mdr;

end if;

end if;
end if;

end process;

end architecture rtl;

62

Putting Everything Together
• Structural Modeling

– Components can be put together by instantiating
them.

• Issues
– system bus must be resolved at this level
– it must be declared with the type
std_logic_vector.

– system bus is chosen to be treated as a port; it
could have been a signal

– Type conversion during instantiation
– if the port is an input (mode in)
x => to_bit(y) where x is of type bit while y is
of type std_ulogic.

63

Putting Everything Together
• Type conversion during instantiation

– if the port is an output (mode out)
to_std_ulogic(x) => y

simply means that x is converted to std_ulogic
before being assigned to y.
– if the port is bidirectional (mode inout)
to_std_ulogic(x) => to_bit(y)

64

CPU: Entity
library ieee;
use ieee.std_logic_1164.all;
use work.cpu_defs.all;

entity CPU is
port (clock, reset: in std_ulogic;

system_bus: inout
std_logic_vector(word_w-1 downto 0));

end entity CPU;

architecture top of CPU is

...

end architecture CPU;

65

CPU: Architecture
architecture top of CPU is

component controller is
port(clock, reset: in std_logic;

op: in opcode;

z_flag: in std_ulogic;

ACC_bus, load_ACC, PC_bus, load_PC,

load_IR, load_MAR, MDR_bus, load_MDR,

ALU_ACC, ALU_add, ALU_sub, INC_PC,

Addr_bus, CS, R_NW: out std_ulogic);

end component controller;

component IR is
port (clock, reset: in std_ulogic;

Addr_bus, load_IR: in std_ulogic;

system_bus: inout std_ulogic_vector(word_w-1 downto 0);
op: out opcode);

end component IR;

...

end architecture CPU;

66

CPU: Architecture
architecture top of CPU is

...

component PC is
port (clock, reset: in std_ulogic;

PC_bus, load_PC, INC_PC: in std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0));

end component PC;

component RAM is
port (clock, reset: in std_ulogic;

MDR_bus, load_MDR, load_MAR, CS, R_NW: in std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0));

end component RAM;

...

end architecture CPU;

67

CPU: Architecture
architecture top of CPU is

...

component ALU is
port (clock, reset: in std_ulogic;

ACC_bus, load_ACC, ALU_ACC, ALU_add, ALU_sub: in
std_ulogic;

system_bus: inout
std_ulogic_vector(word_w-1 downto 0);

z_flag: out std_ulogic);

end component ALU;

signal ACC_bus, load_ACC, PC_bus, load_PC,
load_IR, load_MAR, MDR,bus, load_MDR,
ALU_ACC, ALU_add, ALU_sub, INC_PC,
Addr_bus, CS, R_NW: std_ulogic;

signal z_flag: std_ulogic;

signal op: opcode;

begin

...

end architecture CPU;

68

CPU: Architecture
architecture top of CPU is

...

begin

CNTRL1: controller port map(

clock => clock, reset => reset, op => op,

z_flag => z_flag, ACC_bus => ACC_bus,

load_ACC => load_ACC, PC_bus => PC_bus,

load_PC => load_PC, load_IR => load_IR,

load_MAR => load_MAR, MDR_bus => MDR_bus,

load_MDR => load_MDR, ALU_ACC => ALU_ACC,

ALU_add => ALU_add, ALU_sub => ALU_sub,

INC_PC => INC_PC, Addr_bus => Addr_bus,

CS => CS, R_NW => R_NW);

...

end architecture CPU;

69

CPU: Architecture
architecture top of CPU is

...

begin

I1: IR port map(

clock => clock, reset => reset, Addr_bus => Addr_bus,

load_IR => load_IR, op => op,

std_logic_vector(system_bus) =>
std_ulogic_vector(system_bus));

P1: PC port map(

clock => clock, reset => reset, PC_bus => PC_bus,

load_PC => load_PC, INC_PC => INC_PC,

std_logic_vector(system_bus) =>
std_ulogic_vector(system_bus));

...

end architecture CPU;

70

CPU: Architecture
architecture top of CPU is

...

begin

A1: ALU port map(

clock => clock, reset => reset, ACC_bus => ACC_bus,

load_ACC => load_ACC, ALU_add => ALU_Add,

ALU_sub => ALU_sub,

std_logic_vector(system_bus) =>
std_ulogic_vector(system_bus),

z_flag => z_flag);

R1: RAM port map(

clock => clock, reset => reset, MDR_bus => MDR_bus,

load_MDR => load_MDR, load_MAR => load_MAR,

CS => CS, R_NW => R_NW,

std_logic_vector(system_bus) =>
std_ulogic_vector(system_bus));

end architecture CPU;

71

A Simple Testbench
library ieee;
use ieee.std_logic_1164.all;
use work.cpu_defs.all;

entity test_cpu is

end entity cpu;

architecture tb of testcpu is

component CPU is
port (clock, reset: in std_ulogic;

system_bus: inout
std_logic_vector(word_w-1 downto 0));

end component CPU;

...

end architecture tb;

72

A Simple Testbench
architecture tb of testcpu is

component CPU is
port (clock, reset: in std_ulogic;

system_bus: inout
std_logic_vector(word_w-1 downto 0));

end component CPU;

signal clock, reset: std_ulogic := ’0’;

signal system_bus: std_logic_vector(word_w – 1 downto 0);

begin

C1: CPU port map (clock, reset, system_bus);

reset <= ‘1’ after 1 ns, ‘0’ after 2 ns;

clock <= not clock after 10 ns;

end architecture tb;

73

Configuration Unit
configuration mapping of testcpu is

for tb

for C1: CPU use entity work.cpu(top);

for top

for CNTRL1: Controller use entity work.controller(rtl);
end for;

for I1: IR use entity work.ir(rtl); end for;

for P1: PC use entity work.pc(rtl); end for;

for A1: ALU use entity work.alu(rtl); end for;

for R1: RAM use entity work.ram(rtl); end for;

end for;

end for;

end for;

end configuration mapping;

