

» Synthesis is the process of analyzing a VHDL
program and inferring digital circuit that
implements the behavior implied by this VHDL
description.

» The circuit is constructed using a fixed set of
hardware primitives.

- AND, OR, NOT,

- XOR, XNOR

- Multiplexor, decoder

+ Efficient implementation

- inference techniques and subsequent optimizations
are specific tfo target hardware primitives.

» The actual circuit also depends on the vendor-
specific synthesis compiler

- FPGA Express

- Synplify Pro

- Synopsys FPGA_Complier2 (FC2)

« Here, we are interested in hardware inference
from concurrent signal assignment (CSA)
statements.

* For the following class of CSA, we will show
the inferred circuits for both gate level and
FPGA

- simple concurrent assignments

- conditional concurrent assignments

- selected concurrent assignments

» To study each language constructs in order to
anticipate the hardware that are going to be
inferred for each construct.

- There are more than one way to model a hardware
component.

- For example, how many bits are required to
represent a signal?

- Order in conditional and selected CSA will affect
the inferred logic.

» If we can know what is going to be inferred

from the code we write, we model our digital

system in VHDL in such a way that the most

effective circuit is produced.

| i brary | EEE;
use | EEE. std logic 1164. all;

entity synth is

port (a, b, c ,d: in integer;
sel: in std |ogic vector(1l downto 0);
Z. out integer);

end entity synth;

architecture behavioral of synth is
begi n

with sel select
Z <= a + b when “00",
c + d when “10",
O when ot hers;
end architecture behavioral ;

» In programming languages, variable and
constant declarations mean a memory location

» Inference for signals
- Wires, latches, and flip-flops

- In combinational circuits, signals corresponds to
wires connecting components.

- In sequential circuits, flip-flops or latches are
inferred for signals when they are stored.

- Inference depends on the way we write the code
- Goal is to avoid unnecessary storage elements.

éignal result: std logic vector(1l2 downto 0);
signal count: integer;
signal index: integer range O to 18;

type state_type is (stateO, statel, state2, state3);
signal next state:state type;

| i brary | EEE;
use | EEE. std |l ogic 1164. al | ;

entity synth is

port (a, b, ¢ ,d: in integer range 0 to 18;
sel: in std |ogic vector(1l downto 0);
Z. out integer);

end entity synth;

architecture behavioral of synth is
begi n

Wth sel select
Z <= a + b when “00",
c + d when “10",
0O when ot hers:;
end architecture behavioral ;

uni_c[31:27]

»+ Simple CSA corresponds to combinational logic
- Value of a signal is computed from other signals
* Operator inferencing

- Compiler infers logical operations from VHDL CSA
statements

- Utilize gate primitives to implement these operations

» Interconnection between gates are determined
by the dependencies between signals

»+ The way compiler extract these dependencies
are not always obvious

12

| i brary | EEE;
use | EEE. std logic 1164. all;

entity concurrent is
port(s,t,u,w in std | ogic;

v: out std logic);
end entity concurrent;

architecture datafl ow of concurrent iIs
signal sl1, s2: std_|ogic;

begi n

L1: s1 <= s and t and u and w,

L2: s2 <= (s and t) and (u and w);
L3: v <= sl or s2;
end architecture datafl ow

i brary | EEE;
use | EEE. std logic 1164. all;

entity full _adder is
port(inl,in2,c_in: in std _l ogi c;

sum c out: out std | ogic);
end entity full _adder;

architecture dataflow of full adder is
signal sl1, s2, s3: std_|ogic;

begi n

sum <= inl xor in2 xor c_in;

c_out <= (inl and in2) or (|n1 and c_in) or (in2 and c_in);
end architecture datafl ow

| i brary | EEE;
use | EEE. std |l ogic 1164. all;

entity nmux4 is

port(inO, inl, in2, in3: in std_|ogic;
sO, sl1: in std |logic;
z: out std |ogic);

end entity nmux4;

N

architecture behavi oral of nux

begi n

z <= 1 n0 when
I N1 when
I N2 when
I N3 when
(01.

‘0" and sl
‘0" and sl
‘1" and sl
‘1" and sl

end architecture behavi or al ;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity priority is
port(datain: in std |ogic vector(3 downto 0);
valid: in std_| ogic;
z: out std |ogic vector(1l downto 0));
end entity priority;

architecture behavioral of priority is

begi n

z <= “00” when datain(0) 1l and
“10” when datain(2) 1l and
“01” when datain(l) 1l and
“11” when dat ai n(3) 1l and
“007;

end architecture behavi oral;

|

M

Nn Gk BB b ny

8

:}_._

L =
w1 _unl_uns =

| i brary | EEE;
use | EEE. std logic 1164. all;

entity priority is
port(datain: in std |ogic vector(3 downto 0);

valid: in std logic;
z: out std |ogic vector(1l downto 0));
end entity priority;

architecture behavioral of priority is

begi n

z <= “00” when datain “---1" and
“10" when dat ai n “-100" and
“01” when datain “--10" and
“11” when datai n “1000” and
“00";

end architecture behavioral ;

| i brary | EEE;
use | EEE. std logic 1164. all;

entity encoder is

port(datain: in std_|logic_vector(3 dowmto O0);
result: out std |ogic vector(l downto 0));
end entity encoder;

archi tecture behavioral of encoder is
begi n
wth datain sel ect
result <= “00" when “0001",
“01” when “00107,
“10” when “0100",
“11" when “10007,
“XX' when others; -- outputs are undefined
end architecture behavioral;

&u oo oo ny

0
i
3

j_._

urnl__uml__datain_ 2

W th datain sel ect

result <= “00” when “0001”,
“01” when “00107,
“10" when “01007,
“11” when “1000",
unaf f ect ed when ot hers;

S TR

i

q
_Hnd_un_datain_1

i brary | EEE;

use | EEE. std | ogic_1164. al | ;

entity resol is

port (a, b, ¢, d: in std logic; Z: out std |logic);
end entity resol;

architecture behavioral of resol is
begi n

Z <= not a;

Z <= not b;

Z <= not c;

Z <= not d;

end architecture behavioral;

i brary | EEE;

use | EEE. std | ogic 1164. all;

entity reso2 is

port (a, b, c, d: in std logic; Z out std |ogic);
end entity resoz;

architecture behavioral of reso2 is
begi n

/Z <= a;

Z <= b;

/ <= C;

Z <= d;

end architecture behavioral;

deelgn= reaealu deelgnar: Erkay Savae ! "
tachnelogy: ce=_HROLIH conpany: Sabencl Unlvarslty shemt: 1 of 1

deelgn= reealu deelgrer: Erkay Savae date: 1B-22-2HRI

technelogy: conpany: Sabencl UnLlvarsl iy shemt: 1 of 1

Semantic mismatch

Simulation model of the VHDL model and the
simulation of the synthesized hardware may not
produce an identical behavior

Delay Statements: In simulation model we can use

any delay value for the components. In synthesis,
those values are derived from the specifications
of the real components.

. Comparison Logic: Comparisons to don't cares(-),

high |mpedance (Z), or other literals do not have
meaningful hardware counterparts. Equality tests
to o’rher than 1/0 values return always FALSE for
synthesis. However, recall that we can assign
values such as Z or U to the signals in simulation.

35

1. Do not specify initial values in your
declaration of signals.

Most synthesis compilers ignore them. If you have
to, do it using explicitly under the control of
(probably asynchronous) reset signal. Constants
can be initialized.

2. Specify the number of the bits necessary for
a signal explicitly in a declaration

This will tell the compiler exactly how many bits a
signal would need. This will lead to less hardware in
the form of the widths of signal paths, the number
of gates necessary to process the signals, and the
number of latches or flip-flops to store signal
values.

36

. Use of unaf f ect ed keyword in branches of
signal assignments may cause latches

. Using don’t care values to cover when

ot her s case in a selected signal assignments
can enable synthesis compiler to optimize the
logic and create a smaller logic. Use it
consciously, though.

. Use parentheses to control concurrency that
may affect the speed of the logic

. Use of selected signal assignments will
produce less logic since priority among the
options is not implied.

37

Process of hardware inference from basic
CSA.

- Every construct has a semantic as to how a
construct is synthesized to logic.

- Simple and conditional signal assignments will lead
to the synthesis of combinational circuit.

- unaffected clause in selected signal assignment can
lead to synthesis of a latch since the output value
must be "remembered” across execution.

Inferring signal data widths
Operator inferencing

Use of parentheses to control precedence and
structure of synthesized circuit.

38

