
1

VHDL
Basic Language Concepts:

Synthesis

EL 310
Erkay Savaş

Sabancı University

2

Preliminaries
• Synthesis is the process of analyzing a VHDL

program and inferring digital circuit that
implements the behavior implied by this VHDL
description.

• The circuit is constructed using a fixed set of
hardware primitives.
– AND, OR, NOT,
– XOR, XNOR
– Multiplexor, decoder

• Efficient implementation
– inference techniques and subsequent optimizations

are specific to target hardware primitives.

3

Preliminaries
• The actual circuit also depends on the vendor-

specific synthesis compiler
– FPGA Express
– Synplify Pro
– Synopsys FPGA_Complier2 (FC2)

• Here, we are interested in hardware inference
from concurrent signal assignment (CSA)
statements.

• For the following class of CSA, we will show
the inferred circuits for both gate level and
FPGA
– simple concurrent assignments
– conditional concurrent assignments
– selected concurrent assignments

4

Motivation
• To study each language constructs in order to

anticipate the hardware that are going to be
inferred for each construct.
– There are more than one way to model a hardware

component.
– For example, how many bits are required to

represent a signal?
– Order in conditional and selected CSA will affect

the inferred logic.
• If we can know what is going to be inferred

from the code we write, we model our digital
system in VHDL in such a way that the most
effective circuit is produced.

5

Compiler’s Job

• We need adders; but how many? and how large?,
• how many bits to represent Z?
• Integers must be at least 32 bits.
• What if we deal with smaller integers?

library IEEE;
use IEEE.std_logic_1164.all;

entity synth is
port (a, b, c ,d: in integer;

sel: in std_logic_vector(1 downto 0);
Z: out integer);

end entity synth;

architecture behavioral of synth is
begin

with sel select
Z <= a + b when “00”,

c + d when “10”,
0 when others;

end architecture behavioral;

6

How Compiler Synthesizes

7

Inference from Declarations 1
• In programming languages, variable and

constant declarations mean a memory location
• Inference for signals

– Wires, latches, and flip-flops
– In combinational circuits, signals corresponds to

wires connecting components.
– In sequential circuits, flip-flops or latches are

inferred for signals when they are stored.
– Inference depends on the way we write the code
– Goal is to avoid unnecessary storage elements.

8

Inference from Declarations 2
• Using integer type for a signal

– no additional information is needed for simulation
purposes

• However, in synthesis
– compiler needs to know how large it gets.

...
signal result: std_logic_vector(12 downto 0);
signal count: integer;
signal index: integer range 0 to 18;

type state_type is (state0, state1, state2, state3);
signal next_state:state_type;

...

Question: how many bits will a compiler use to implement
signals “count” and “index”?

9

Limiting the Range of an Integer 1

library IEEE;
use IEEE.std_logic_1164.all;

entity synth is
port (a, b, c ,d: in integer range 0 to 18;

sel: in std_logic_vector(1 downto 0);
Z: out integer);

end entity synth;

architecture behavioral of synth is
begin

with sel select
Z <= a + b when “00”,

c + d when “10”,
0 when others;

end architecture behavioral;

10

Limiting the Range of an Integer 2

11

Inference from Declarations 3
• Compilers may try to optimize

– even if we do not provide clues such as “range”
– But never count on that!

• What about
type state_type is (state0, state1, state2, state3);
signal next_state:state_type;

• We define a new type (enumerated type)
– A signal of the new type form can take at most 4

distinct values
– Compiler needs only 2 bits to encode all the states.
– We may want to have a control over the encoding

(recall One-Hot State Assignment for FPGA)

12

Inference from Simple CSA

• Simple CSA corresponds to combinational logic
– Value of a signal is computed from other signals

• Operator inferencing
– Compiler infers logical operations from VHDL CSA

statements
– Utilize gate primitives to implement these operations

• Interconnection between gates are determined
by the dependencies between signals

• The way compiler extract these dependencies
are not always obvious

13

Operator Inferencing: Example

• Delay information is redundant for synthesis
• Post-synthesis simulation uses the known delay values

of components
• Therefore, compilers usually ignores delay values

specified in VHDL source.

library IEEE;
use IEEE.std_logic_1164.all;

entity concurrent is
port(s,t,u,w: in std_logic;

v: out std_logic);
end entity concurrent;

architecture dataflow of concurrent is
signal s1, s2: std_logic;
begin
L1: s1 <= s and t and u and w;
L2: s2 <= (s and t) and (u and w);
L3: v <= s1 or s2;
end architecture dataflow;

14

Operator Inferencing: Example
• L1 and L2 are functionally equivalent
• However, they lead to different implementations
• Both implementation have three AND gates.
• However, L2 leads to a faster circuit. Why?
• L2 exploits the concurrency in logical expression.
• Use of parentheses may be useful.
s

s2u
w

v

s1t

synthesized gate-level implementation

s
t
u
w

v

FPGA implementation
Xilinx XC4000E

What is the precedence for s1?

16x1
LUT

15

Full Adder 1

• we need two Xilinx XC4000E series LUTs to
implement two Boolean functions with three
variables (i.e. sum and c_out)

library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is
port(in1,in2,c_in: in std_logic;

sum, c_out: out std_logic);
end entity full_adder;

architecture dataflow of full_adder is
signal s1, s2, s3: std_logic;
begin
sum <= in1 xor in2 xor c_in;
c_out <= (in1 and in2) or (in1 and c_in) or (in2 and c_in);
end architecture dataflow;

16

Full Adder 1

sum

c_out

in1

in2
c_in

synthesized gate-level implementation

16x1
LUT

c_in
in2
in1

FPGA implementation
Xilinx XC4000E

16x1
LUT

c_out

sum

17

Inference from Conditional Signal Assignment

• Purely combinational
• Priority order implied must be preserved in the text

when the conditions are not mutually exclusive.
• When conditions are mutually exclusive, synthesis

compiler usually eliminates the priority logic

library IEEE;
use IEEE.std_logic_1164.all;

entity mux4 is
port(in0, in1, in2, in3: in std_logic;

s0, s1: in std_logic;
z: out std_logic);

end entity mux4;

architecture behavioral of mux4 is
begin
z <= in0 when s0 = ‘0’ and s1 = ‘0’ else

in1 when s0 = ‘0’ and s1 = ‘1’ else
in2 when s0 = ‘1’ and s1 = ‘0’ else
in3 when s0 = ‘1’ and s1 = ‘1’ else
‘0’;

end architecture behavioral;

18

MUX4

Synthesized Gate-Level Implementation
(priority encoding preserved)

s0

s1

in3

z

in0
in1

in2

19

MUX4
• It implements

z = in0 (s1’s0’) +
in1 (s1s0’) (s1’s0’)’ +
in2 (s1’s0) (s1s0’)’(s1’s0’)’ +
in3 (s1s0) (s1’s0)’ (s1s0’)’ (s1’s0’)’

in2
in3

FPGA implementation
Xilinx XC4000E

s0
s1

in0
in1

z

F

G

H

F = in2 (s1’s0) + in3 (s1s0)
G = in0 (s1’s0’) + in1 (s1s0’)
H = F + G

It eliminates
the priority logic

20

MUX4

No priority logic indeed!

21

Priority Encoder

• Not mutually exclusive anymore.
• Priority encoding must be implemented.
• Conditional CSA presents very natural construct for

describing a priority logic.

library IEEE;
use IEEE.std_logic_1164.all;

entity priority is
port(datain: in std_logic_vector(3 downto 0);

valid: in std_logic;
z: out std_logic_vector(1 downto 0));

end entity priority;

architecture behavioral of priority is
begin
z <= “00” when datain(0) = ‘1’ and valid = ‘1’ else

“10” when datain(2) = ‘1’ and valid = ‘1’ else
“01” when datain(1) = ‘1’ and valid = ‘1’ else
“11” when datain(3) = ‘1’ and valid = ‘1’ else
“00”;

end architecture behavioral;

22

Priority Encoder

z(0) = [valid·datain(1)] [valid·datain(0)]’ [valid·datain(2)]’ +
[valid·datain(3)] [valid·datain(1)]’[valid·datain(0)]’ [valid·datain(2)]’

z(1) = [valid·datain(1)] [valid·datain(0)]’ +
[valid·datain(3)] [valid·datain(1)]’[valid·datain(0)]’ [valid·datain(2)]’

datain(3)

datain(1)

datain(2)

datain(0)

valid

z(0)

z(1)

23

Priority Encoder

24

How Don’t Cares is Synthesized
• Don’t care values cannot be represented in

hardware and cannot be compared against 0 or 1.

library IEEE;
use IEEE.std_logic_1164.all;

entity priority is
port(datain: in std_logic_vector(3 downto 0);

valid: in std_logic;
z: out std_logic_vector(1 downto 0));

end entity priority;

architecture behavioral of priority is
begin
z <= “00” when datain = “---1” and valid = ‘1’ else

“10” when datain = “-100” and valid = ‘1’ else
“01” when datain = “--10” and valid = ‘1’ else
“11” when datain = “1000” and valid = ‘1’ else
“00”;

end architecture behavioral;

25

Don’t Cares Cannot be Synthesized
• In synthesis, if one of the signals in

comparison operation is a don’t care, then the
comparison always returns FALSE!
– In the previous example, the output will have value

of either 11 or 00.

datain(0)

datain(1)

datain(3)
datain(2)

valid

z(0)

z(1)

26

Don’t Cares is Synthesized Incorrectly

27

Inference from Selected CSA
• In the selected signal assignment there is no

priority ordering among the options
• Consider a 4-to-2 encoder
library IEEE;
use IEEE.std_logic_1164.all;

entity encoder is
port(datain: in std_logic_vector(3 downto 0);

result: out std_logic_vector(1 downto 0));
end entity encoder;

architecture behavioral of encoder is
begin
with datain select
result <= “00” when “0001”,

“01” when “0010”,
“10” when “0100”,
“11” when “1000”,
“XX” when others; -- outputs are undefined

end architecture behavioral;

28

A simple 4-to-2 Encoder
• At most one of the input can have value 1 at

any given time, otherwise the output of the
circuit is undefined
– result(0) is 1 when datain(1) or datain(3) is 1
– result(1) is 1 when datain(2) or datain(3) is 1

• This encoder can be realized using two LUTs in
a CLB.

datain(1)

datain(3)
datain(2)

result(0)

result(1)

29

A simple 4-to-2 Encoder

30

The Keyword unaffected
• unaffected keyword can be used within the

select expression (VHDL’87 does not support)
– Be aware that a latch will be inferred when the

keyword unaffected is in the select expression.

– It has been reported that some synthesis compilers
do not support unaffected keyword.

with datain select
result <= “00” when “0001”,

“01” when “0010”,
“10” when “0100”,
“11” when “1000”,
unaffected when others;

31

Synthesis with unaffected Keyword

32

Synthesis of the Resolved Signals
library IEEE;
use IEEE.std_logic_1164.all;
entity reso1 is
port (a, b, c, d: in std_logic; Z: out std_logic);
end entity reso1;
architecture behavioral of reso1 is
begin
Z <= not a;
Z <= not b;
Z <= not c;
Z <= not d;
end architecture behavioral;

library IEEE;
use IEEE.std_logic_1164.all;
entity reso2 is
port (a, b, c, d: in std_logic; Z: out std_logic);
end entity reso2;
architecture behavioral of reso2 is
begin
Z <= a;
Z <= b;
Z <= c;
Z <= d;
end architecture behavioral;

33

Synthesis of the Resolved Signals

• Entity reso1

34

Synthesis of the Resolved Signals

• Entity reso2

35

Simulation Behavior vs. Synthesis Behavior
• Semantic mismatch

– Simulation model of the VHDL model and the
simulation of the synthesized hardware may not
produce an identical behavior

1. Delay Statements: In simulation model we can use
any delay value for the components. In synthesis,
those values are derived from the specifications
of the real components.

2. Comparison Logic: Comparisons to don’t cares(-),
high impedance (Z), or other literals do not have
meaningful hardware counterparts. Equality tests
to other than 1/0 values return always FALSE for
synthesis. However, recall that we can assign
values such as Z or U to the signals in simulation.

36

Synthesis Hints
1. Do not specify initial values in your

declaration of signals.
• Most synthesis compilers ignore them. If you have

to, do it using explicitly under the control of
(probably asynchronous) reset signal. Constants
can be initialized.

2. Specify the number of the bits necessary for
a signal explicitly in a declaration
• This will tell the compiler exactly how many bits a

signal would need. This will lead to less hardware in
the form of the widths of signal paths, the number
of gates necessary to process the signals, and the
number of latches or flip-flops to store signal
values.

37

Synthesis Hints
3. Use of unaffected keyword in branches of

signal assignments may cause latches
4. Using don’t care values to cover when

others case in a selected signal assignments
can enable synthesis compiler to optimize the
logic and create a smaller logic. Use it
consciously, though.

5. Use parentheses to control concurrency that
may affect the speed of the logic

6. Use of selected signal assignments will
produce less logic since priority among the
options is not implied.

38

Summary
• Process of hardware inference from basic

CSA.
– Every construct has a semantic as to how a

construct is synthesized to logic.
– Simple and conditional signal assignments will lead

to the synthesis of combinational circuit.
– unaffected clause in selected signal assignment can

lead to synthesis of a latch since the output value
must be “remembered” across execution.

• Inferring signal data widths
• Operator inferencing
• Use of parentheses to control precedence and

structure of synthesized circuit.

39

Summary
• Inference of combinational logic
• Inference of latches in selected signal

assignment statements.
• Mismatches between the behavior of the

simulation of VHDL code and simulation of the
synthesized circuit.

