
EL 310 Hardware Description Languages – Midterm

1 2 3 4 5 Total

Name:
ID :

Notes:
1) Please answer the questions in the provided space after each question.
2) Duration is 110 minutes
3) Closed books and closed notes.

Question 1 – VHDL (10 pts)
i) Write down a signal assignment statement (using the concatenation operator -
&) that creates

a. a rotate right operation by seven bit positions (1 pts)
b. a logic shift right by four bit positions (1 pts)
c. an arithmetic shift right by three bit positions (1 pts)
on the following signal:
SIGNAL s : std_logic_vector(15 DOWNTO 0);

a. s(15 downto 0) <= s(6 downto 0) & s(15 downto 7);

b. s(15 downto 0) <= “0000” & s(15 downto 4);
c. s(15 downto 0) <= s(15)&s(15)&s(15)&s(15 downto 3);

ii) Circle the statement type (4 pts)

a <= b; sequential concurrent either
mux: mux2to1

port map(a=>bi b=>c); sequential concurrent either
happy<=’1’ when(exam=easy) sequential concurrent either

else ‘0’;
a:=b and c; sequential concurrent either

iii) Generate the following repeating waveform x and non-repeating reset signal
using VHDL constructs. (3pts)

reset

2 ns 4 ns 6 ns 8 ns 10 ns 12 ns

x

architecture beh of two-signal is
begin

reset_process: reset <= ‘1’, ‘0’ after 10 ns;
x_process: process
begin

x <= ‘1’, ‘0’ after 2 ns, ‘1’ after 3 ns, ‘0’ after 4 ns,
‘1’ after 5 ns, ‘0’ after 7 ns, ‘1’ after 8 ns,
‘0’ after 11 ns;

wait for 12 ns;
end process x_process;

end architecture;

Question 2 – Delays (15 pts)
Write the two lines in VHDL to generate input signals x and y. Complete the
timing diagram of s1, s2, z1, and z2 for given input signals x and y. The output
signals are derived from input signals x and y as follows:

x <= '1', '0' after 5 ns, '1' after 8 ns,
'0' after 12 ns,'1' after 14 ns, '0' after 17 ns;

y <= '1', '0' after 5 ns, '1' after 7 ns, '0' after 11 ns,
'1' after 16 ns, '0' after 21 ns;

s1 <= transport x and y after 4 ns;
s2 <= reject 2 ns inertial (x and y) after 4 ns;
z1 <= s1 nor s2;
z2 <= s1 nor s2 after 2 ns;

9

4 ns

x

8 ns 12 ns 16 ns 20 ns 24 ns 28 ns

5 14

5

y

7 11 21

s1

s2

z1

z2

Question 3 – Design with ASM Charts (20 pts)
A state machine has two inputs, A and B, and one output, Z. If the sequence of
input pairs
 A = 1, B = 1 (1st pair)

A = 1, B = 0 (2nd pair)
A = 0, B = 0 (3rd pair)

is detected, Z is asserted during the final cycle of the sequence, otherwise
output remains at 0. Draw the ASM chart first, and utilize it to write a two-
process VHDL model of a state machine to implement this system. Choose one-
hot state encoding for the state encoding.

A
0

B

1
0

1

A
0

B

1
1

0

A
1

B

0
1

0

Z

No match

1st match

2nd match

B

1
0

s0

s1

s2

entity asm02 is
port(clock, reset, A, B: in std_logic; Z: out std_logic);
end entity asm02;

architecture beh of asm02 is
signal state, next_state: std_logic_vector(2 downto 0);
constant s0: std_logic_vector(2 downto 0) := "001"İ
constant s1: std_logic_vector(2 downto 0) := "010";
constant s2: std_logic_vector(2 downto 0) := "100";

begin

clk_process: process(clock) is
begin

if (reset = '1') then state <= s0;
else

if (falling_edge(clock)) then state <= next_state;
end if;

end if;
end process;

com_process: process(state, A, B) is
begin

Z <= '0';
next_state <= s0;
case state is

when s0 =>
if A = '0' then next_state <= s0;
else
if B = '0' then next_state <= s0;
else next_state <= s1;
end if;

end if;
when s1 =>

if A = '0' then next_state <= s0;
else

if B = '1' then next_state <= s1;
else next_state <= s2;
end if;

end if;
when s2 =>

if A = ‘1’ then
if B = ‘1’ then next_state <= s1;
else next_state <= s0;

else
next_state <= s0;
if B = '0' then Z <= '1';

end if;
when others => null;

end case;
end process;
end architecture;

Question 4 – Timing in ASM Charts (20 pts)
For the given ASM chart:

A

Complete the following timing diagram (assume that X1=1, X2=0, X3=0, X5=1, and
X4 is as shown). Flip-flops change state on the falling edge of clock.

1

X1
0 1

0

Z1

S0

X2

S1 S2

1

X3 X4

Z2 Z3
1

X5

00

0

001 (Q2Q1Q0)

010 100

Q1

20 ns 40 60 80 100

Z3

Q2

X4

clock

reset

1

Question 5 – Counter Designs (35 pts)
i) Binary counter: Write a VDHL code for binary up/down counter. It must have
an asynchronous reset to initialize it to 0. In addition, the range of the counter
and whether it is counting up or down must be parameterized. It must have two
outputs: one indicating current counting value (count) and another output (z)
that must be asserted when the counter reaches its upper or lower limit. Ensure
that no latch is inferred for z. When the counter reaches this limit, it must
wrap around and the next value will be zero. (10 pts)

entity updown is
generic(n:integer:=4; up:integer:=-1);
port(clk, reset: in std_logic;

count: out integer range -n+1 to n-1; z: out std_logic);
end entity updown;
architecture beh of updown is
begin
process(clk, reset)

variable cnt: integer range -n+1 to n-1;
begin

z <= '0';
if reset = '1' then

cnt := 0;
elsif(rising_edge(clk)) then

if cnt = n-1 then cnt := 0; z <= '1';
elsif cnt = -n+1 then cnt := 0; z <= '1';
else cnt := cnt + up;
end if;
end if;

count <= cnt;
end process;
end architecture beh;

ii) Möbius counter: Write a VHDL code for Möbius (or Johnson) counter which is
counting in a different way: the least significant value of the counter is inverted
and fed back to the most significant bit in the next clock cycle. All the other
bits are shifted one bit to the right. A normal counting sequence of a Möbius
counter must include all zeros string. The number of bits (say n) must be
parameterized. Calculate the number of states in Möbius counter and give the
formula for number of states in terms of n. What is the advantage of Möbius
counter? (10 pts)

architecture beh of mobius is
begin
process(clk, reset)

variable reg: std_logic_vector(n-1 downto 0);
begin

if reset = '1' then
reg := (when others => ‘0’);

elsif(rising_edge(clk)) then
reg := not reg(0) & reg(n-1 downto 1);

end if;
count <= reg;

end process;
end architecture beh;

It is a very simple synchronous counter. It takes little space.

iii) Self-correcting Möbius counter: Möbius counter has many unused state that
it never enters in the normal circumstances. Because of these unused states,
there are many other autonomous counters. If the counter enters one of these
unused states as a result of a parasitic influence, such as the one of a power
supply glitch, the counter can never return to its normal sequence. An example
for this phenomenon is given as follows:

Normal counting
sequence

Parasitic counting sequence

0000 0010 (an error occurs in the 2nd bit)
1000 1001
1100 0100
1110 1010
1111 1101
0111 0111
0011 0110
0001 0101

Whatever the size of n, the unused states form a single parasitic counter.
Propose a practical solution to make the counter self-correcting. In other words,
when the counter enters one of the illegal states, it must be able to return to
its normal counting sequence eventually. Write a VHDL program implementing
your solution. (15 pts)

The only legal state that has 0 in both the most significant and the least
significant bits is the all zeros state. On the other hand, three of the parasitic
states have zeros in those positions. The solution is that whenever the counter
enters a state that has zeros in those positions, the next state is set ‘1000’.

architecture beh of self_correcting_mobius is
begin
process(clk, reset)

variable reg: std_logic_vector(n-1 downto 0);
begin

if reset = '1' then
reg := (when others => ‘0’);

elsif(rising_edge(clk)) then
if reg(n-1) = ‘0’ and reg(0) = ‘0’ then

reg := (others => ‘0’);
reg(n-1) := ‘1’;

else
reg := not reg(0) & reg(n-1 downto 1);

end if;
end if;
count <= reg;

end process;
end architecture beh;

Appendix
You can utilize the following template in your answers.

library IEEE;
use IEEE.std_logic_1164.all;

entity entity_name is
generic(param: type := default-value)
port(input signals: in type;

output signals: out type);
end entity entity_name;

architecture arch_name of entity_name is

component component1-name is
generic(param: type := default-value)
port (input signals: in type;

output signals: out type);
end component component1-name ;

component component2-name is
generic(param: type := default-value)
port (input signals: in type;

output signals: out type);
end component component2-name ;

signal internal signals: type:=initialization;

begin
-- label each component and connect its ports to signals or --
-- entity ports
Label1: component1-name port map(port=>signal, ...);
Label2: component2-name port map(port=>signal, ...);

concurrent signal assignment-1;

concurrent signal assignment-2;

process-1:...

process-2:...

end architecture arch_name;

�

