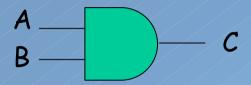
VHDL Logic Design Overview

EL 310 Erkay Savaş Sabancı University

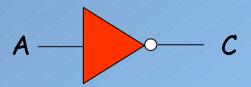
Combinational Logic

· Basic Gates

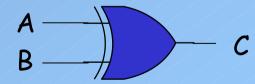


AND: C = AB

OR: C = A + B



NOT: C = A'



 $XOR: C = A \oplus B$

Truth Tables and Algebraic Expressions

· Full Adder

X	/y /	Cin	Cout	Sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Minterm and Maxterm Expansions

Minterm expansion

Sum = X' Y' Cin + X' Y Cin' + X Y' Cin' + X Y Cin =
$$\sum$$
 m(1, 2, 4, 7)
Cout = X' Y Cin + X Y' Cin + X Y Cin' + X Y Cin = \sum m(3, 5, 6, 7)

· Maxterm expansion

Sum =
$$(X+Y+Cin)(X+Y'+Cin')(X'+Y+Cin')(X'+Y'+Cin) = \prod M(0,3,5,6)$$

Cout =
$$(X+Y+Cin)(X+Y+Cin')(X+Y'+Cin)(X'+Y+Cin) = \prod M(0,1,2,4)$$

Minterm expansion Maxterm expansion

Algebraic Simplification 1

- 1. Combining Terms (XY + XY'=X)-ABC'D' + ABCD' = ABD' (C + C') = ABD'
 - Cout = X' Y Cin + X Y' Cin + X Y Cin' + X Y Cin = X' Y Cin + X Y' Cin + X Y Cin' + XY Cin + X Y Cin + X Y Cin = X' Y Cin + X Y Cin + X Y' Cin + X Y Cin + X Y Cin' + XY Cin = Y Cin + X Cin + XY

2. Eliminating Terms

- -A'B + A'BC = A'B
- -Consensus theorem: XY + X'Z + YZ = XY + X'Z

Algebraic Simplification 2

· Eliminating Literals

```
-X+X'Y=X+Y
```

```
- A'B + A'B'C'D' + ABCD' = A'(B + B'C'D') + ABCD'

= A'(B + C'D') + ABCD' = A'B + A'C'D' + ABCD'

= B (A' + ACD') + A'C'D'

= B (A' + CD') + A'C'D' = A'B + BCD' + A'C'D'
```

· Adding Redundant Terms

- Adding XX', multiplying by (X+X'),
- Adding YZ to XY + X'Z or adding XY to X
- AB + AD + A'C' + DB'C' = AB + DC'B' + AD + A'C' + DC' = AB + AD + A'C' + DC' = AB + AD + A'C'

Duality Principle

· Important property of Boolean algebra

- If
$$x + 0 = x$$
 then $x \cdot 1 = x$

x + x = x	$x \cdot x = x$
x + x' = 1	$x \cdot x' = 0$
x + 1 = 1	$\times \cdot 0 = 0$
$(x + y +)' = x' \cdot y'$	$(x \cdot y \cdot)' = x' + y' +$
$x + x \cdot y = x$	$x \cdot (x+y) = x$
xy + x'z + yz = xy + x'z	(x+y)(x'+z)(y+z) = (x+y)(x'+z)
(x+y)(x'+z) = x z + x' y	xy + x'z = (x+z)(x'+y)

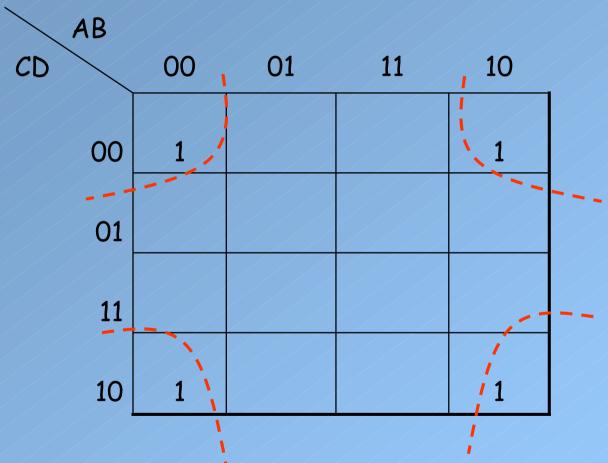
Exclusive OR (XOR)

· Some rules

- X ⊕ 0 = X
- X ⊕ 1 = X'
- $-X \oplus X = 0$
- X ⊕ X' = 1
- Commutative, associative, and distributive laws hold.
- $X \oplus Y = X'Y + XY'$
- $(X \oplus Y)' = X \oplus Y' = X' \oplus Y = XY + X'Y'$

Karnaugh Maps (1)

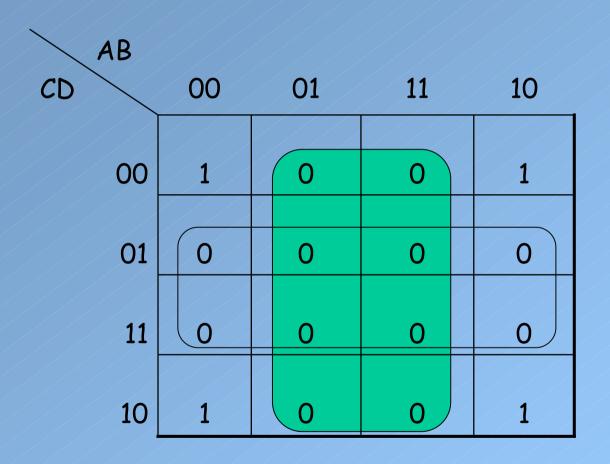
· F = A'B'C'D' + AB'C'D' + A'B'CD' + AB'CD'



• F = A'B'C'D' + AB'C'D' + A'B'CD' + AB'CD' = B'D'

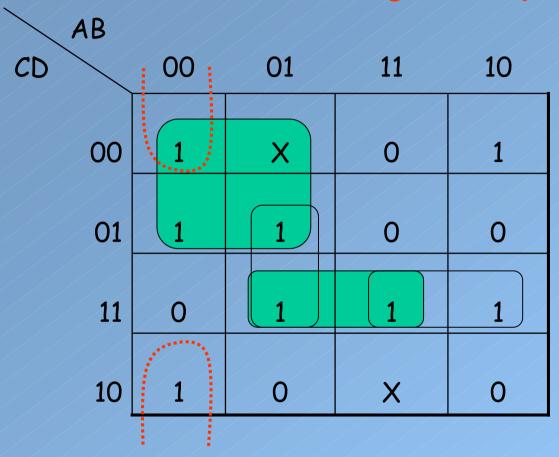
Karnaugh Maps (2)

· F = A'B'C'D' + AB'C'D' + A'B'CD' + AB'CD'



F = (B+D)' = B'D' (DeMorgan's Law)

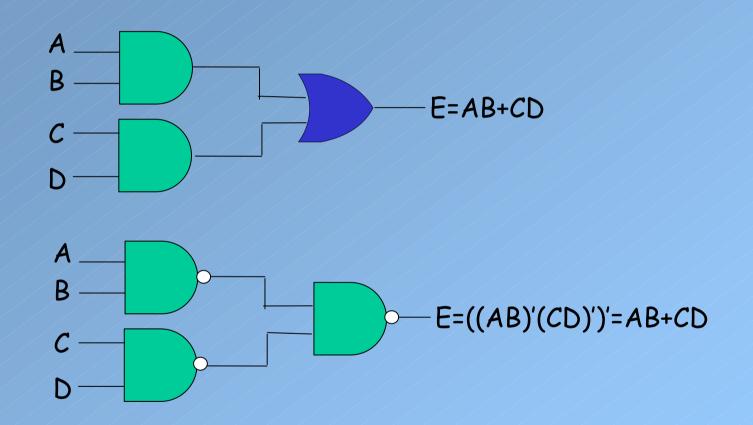
Karnaugh Maps (3)



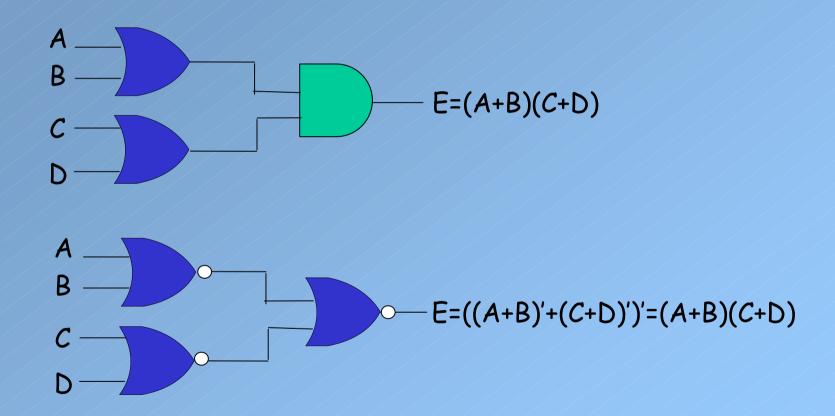
- In many technologies, implementation of NAND or NOR gates is easier than that of AND or OR gates
 - Any logic function can be realized using only NAND gates or only NOR gates

NOR: C = (A+B)' = A'B'

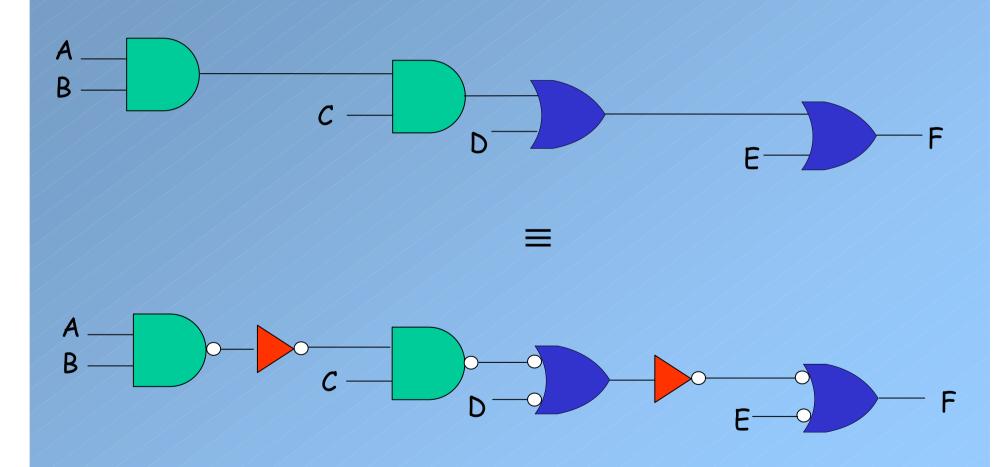
· Conversion of AND-OR network to NAND gates



· Conversion of AND-OR Network to NOR gates



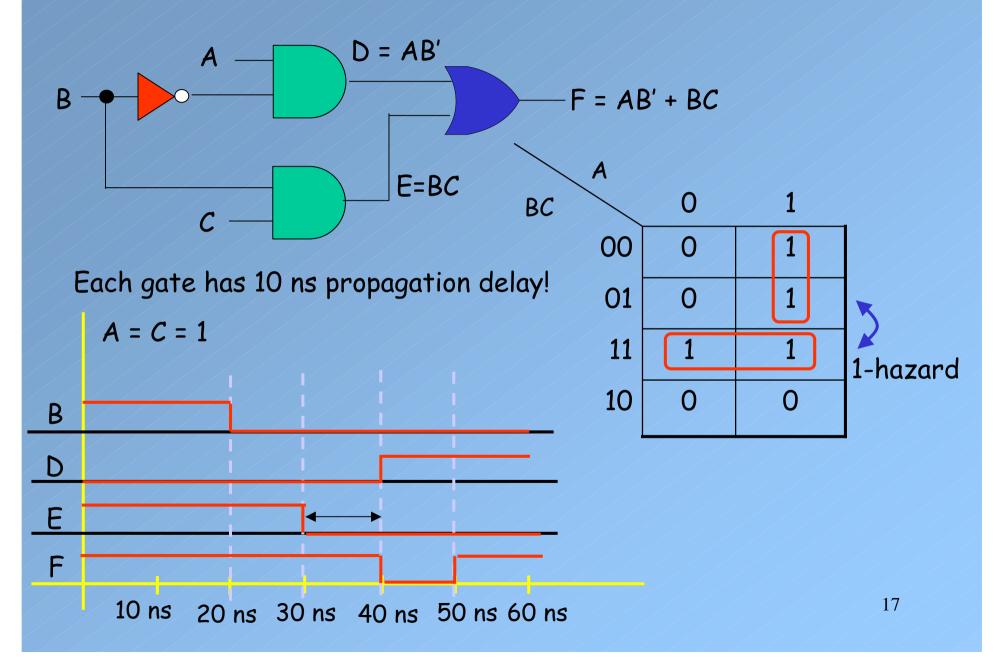
· Conversion of AND-OR network to NAND gates



Hazards in Combinational Networks - 1

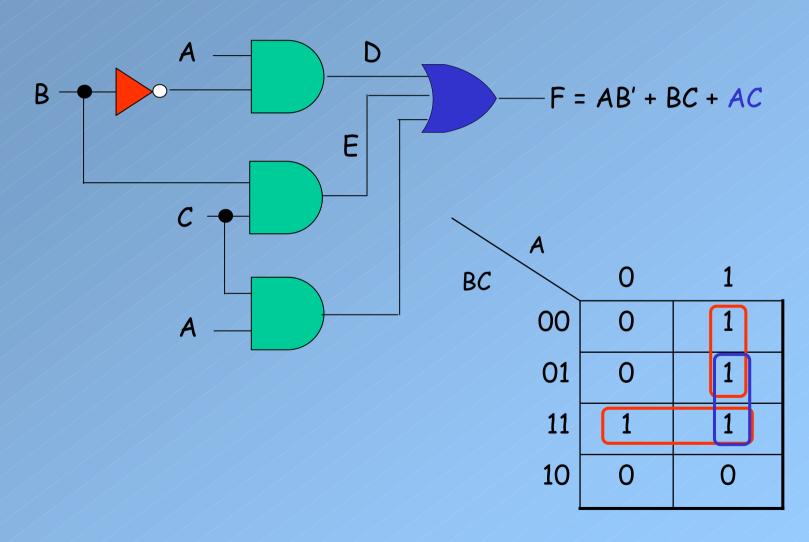
- · Unwanted switching transients
 - Occur when different paths from input to output have different propagation delays
 - 1-hazard: network output may momentarily go to 0 when it should remain a constant 1
 - 0-hazard: network output may momentarily go to 1 when it should remain a constant 0
 - Dynamic-hazard: when the output is supposed to change (1-0 or 0-1), the output may change three times (e.g. 1-0-1-0)

Hazards in Combinational Networks -2



Hazards in Combinational Networks -3

· Remedy



Flip-Flops

D Flip-Flop

D	Q	Q^{\dagger}
0	0	0
0	1	0
1	0	1
1	1	1

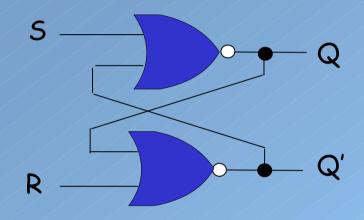
Clocked JK Flip-Flop

$$Q = JQ' + K'Q$$

J	K	Ø	
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Latches - 1

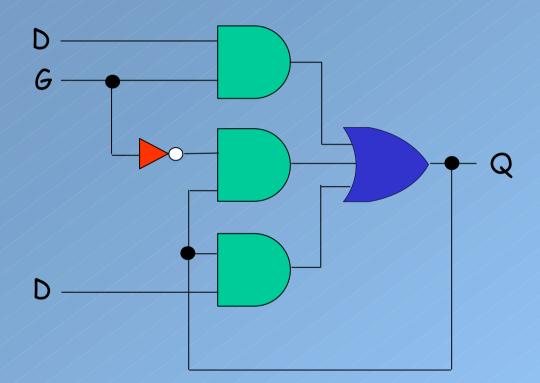
S-R Latch



5	R	Q	Q ⁺
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	-/-
1	1	1	

Latches - 2

Gated D Latch

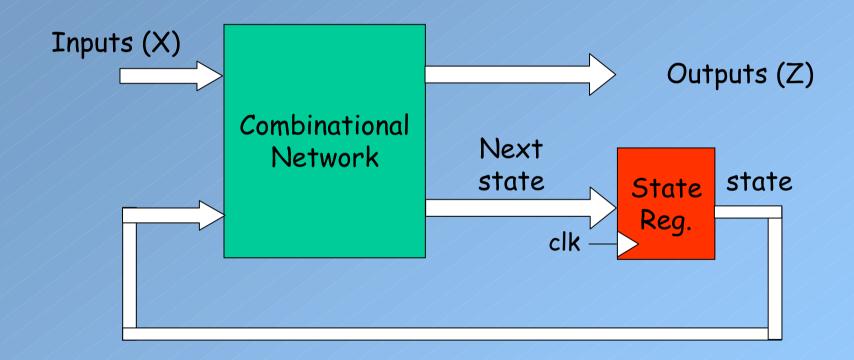


		//	
G	D	Ø	Q [†]
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0/	0
1	0	1	0
1	1	0	1
1	1	1	1

$$Q^+ = DG + G'Q + DQ$$

Mealy Sequential Network Design

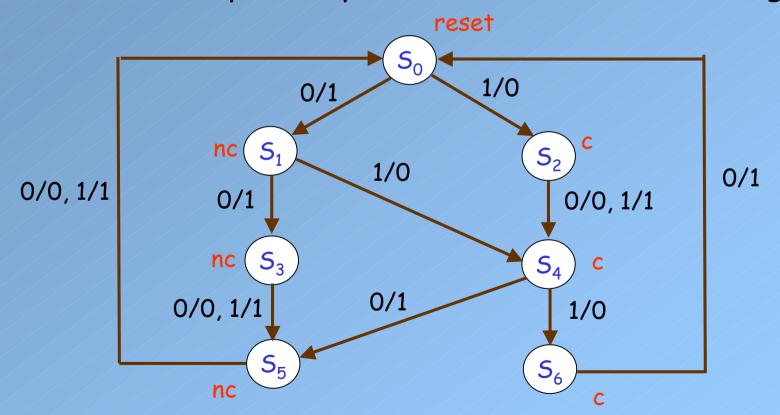
General Model of Mealy Sequential Design



Outputs depend on both present state and present input

Mealy Machine – Example (1)

- · Problem: code conversion
 - Convert a BCD digit to another code by adding 3.
 - For example, $(1001)_2 + (0011)_2 = (1100)_2$
 - Serial input/output, one bit at a time starting LSB.



Mealy Machine – Example (2)

· State table

Present	Next State		Output	
State	input=0	input=1	input=0	input=1
S ₀	S ₁	52	1	0//
S ₁	S ₃	S ₄	1	0/
S ₂	S ₄	S ₄	0//	1
S ₃	S ₅	S ₅	0	1
S ₄	S ₅	S ₆	1	0/
S ₅	S ₀	S ₀	0	1
S ₆	S ₀		1	<u> </u>

- Seven states → three flip-flops
- <u>Challenge</u>: state assignment to FF so that logic is the simplest

Mealy Machine – Example (3)

· State Assignments

Q_1		
Q_2Q_3	0	1
00	5 ₀	51
01	0	52
11	S ₅	5 ₃
10	56	54

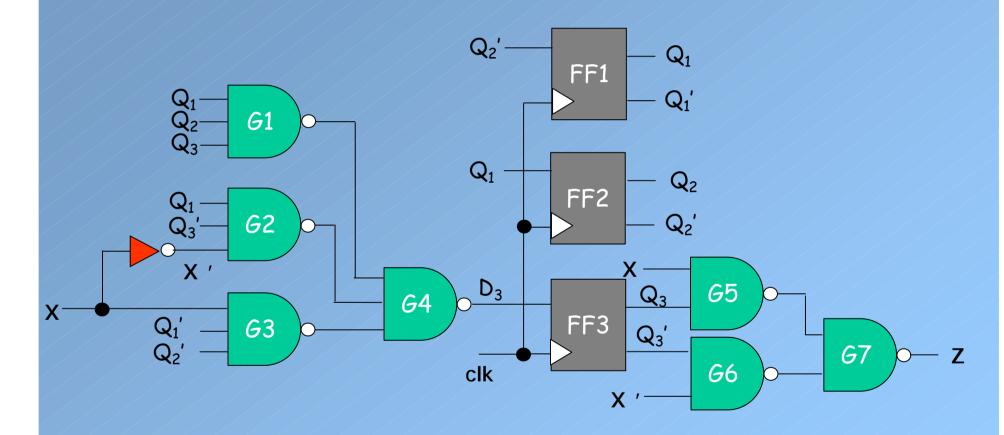
Assignment map

		$Q_1^+ Q_2^+ Q_3^+$		Z	
Q_1Q_2	Q_3	X=0	X=1	X=0	X=1
00	0//	100	101	1	0
10	0	111	110	1	0/
10	1	110	110	0//	1
11	1	011	011	0	1
110	0	011	010	1	0
01	1	000	000	0	1
01	0//	000	xxx	1	X
00	1	xxx	xxx	X	X

Transition Table

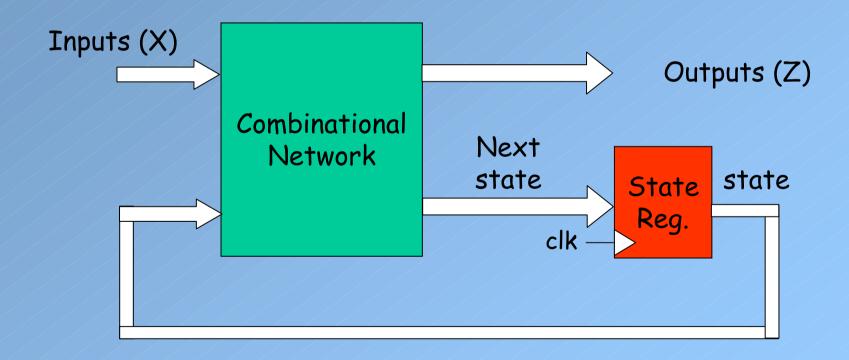
Mealy Machine – Example (4)

· Realization of Code Converter



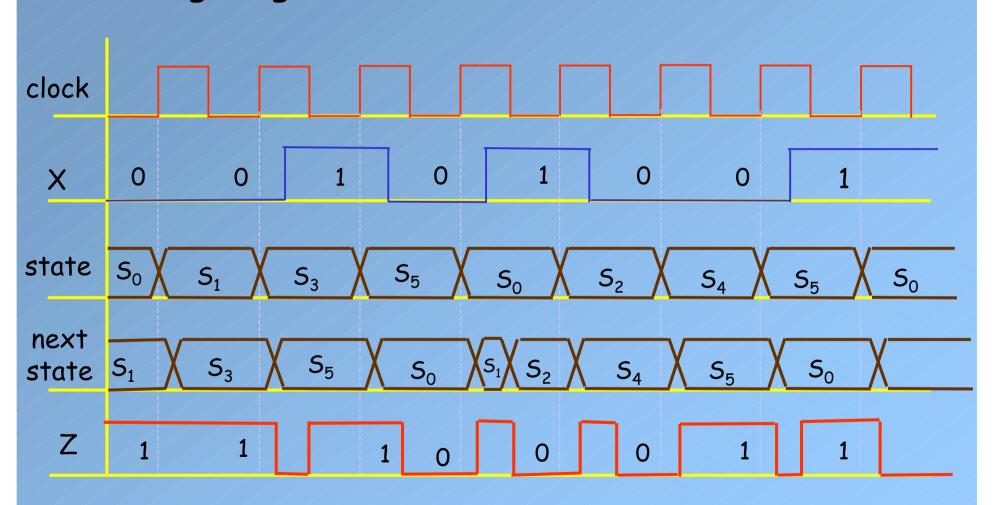
Moore Machine

- The output is only function of the present state, independent of the input.
- · Input determines the next state.



Sequential Network Timing

· Timing diagram for Code Converter



Setup and Hold Times 1

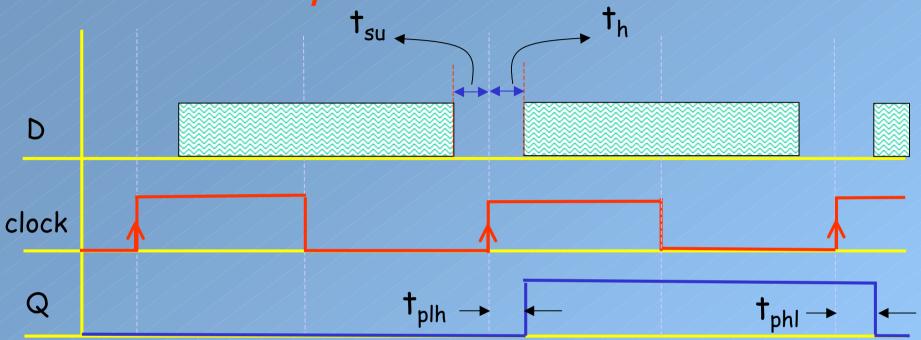
· For an ideal D flip-flop

- If the D input changes at exactly the same time as the active edge of the clock, flip-flop operate correctly

In reality

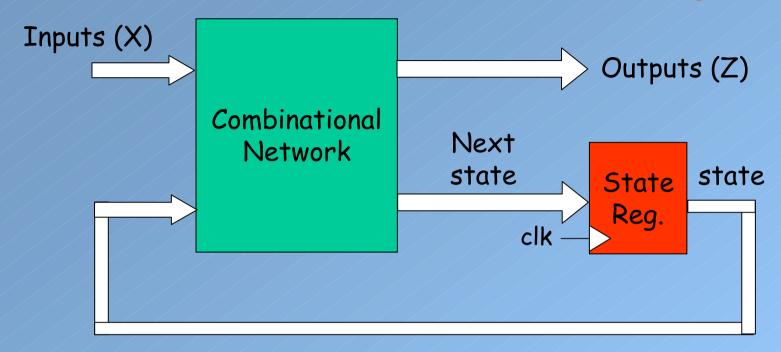
- The D input must be stable for a certain amount of time before the active edge of the clock; <u>setup</u> <u>time</u>
- Furthermore, D must be stable for a certain amount of time after the active edge of the clock; <u>hold</u> <u>time</u>

Setup and Hold Times 2



- · In shaded interval above D may be changed
- Otherwise, it cannot be determined whether the flipflop will change state
- Even worse, the flip-flop may malfunction and output a short pulse and even go into oscillation

Maximum Clock Frequency

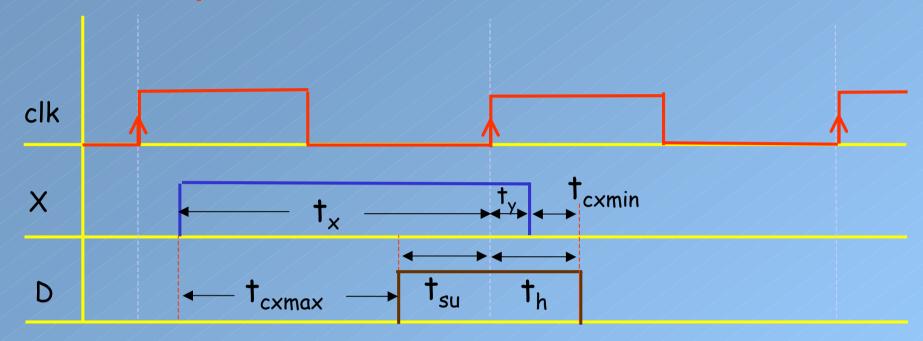


- t_{ck}: clock period; t_{pmax} = max(t_{plh}, t_{phl})
- t_{cmax}: maximum propagation delay through combinational network
- Then, $t_{pmax} + t_{cmax} \le t_{ck} t_{su}$.

Setup and Hold-time Violations (1)

- · Hold-time violation
 - If the change in Q fed back through the combinational network and caused D to change too soon after the clock edge.
 - t_{pmin} + t_{cmin} ≥ t_h (t_{pmin} > t_h for normal flip-flops)
- Usually, setup or hold-time violation occurs if the input X to the network changes too close to the active edge of the clock.
 - We must make sure that an input change propagates to the flip-flop inputs such that setup time is satisfied before the active edge of the clock.

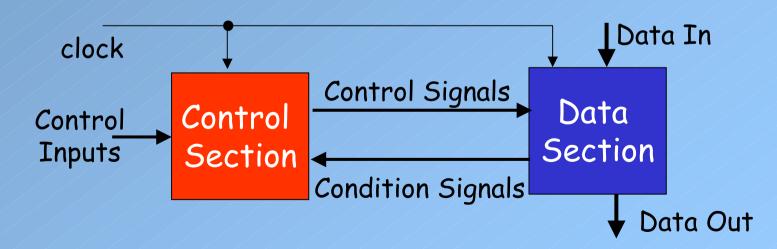
Setup and Hold-time Violations (2)



- · For setup time: t_x ≥ t_{cxmax} + t_{su}
- For hold-time: $t_y \ge t_h t_{cxmin}$ or $(t_y + t_{cxmin} \ge t_h)$

Synchronous Design

- A clock is used
 - To synchronize the operation of all flip-flops, registers, and counters in the system
 - All state changes occur following the active edge of the clock
 - The clock period must be long enough so that all flip-flop and register inputs will have time to stabilize before the next active edge of the clock

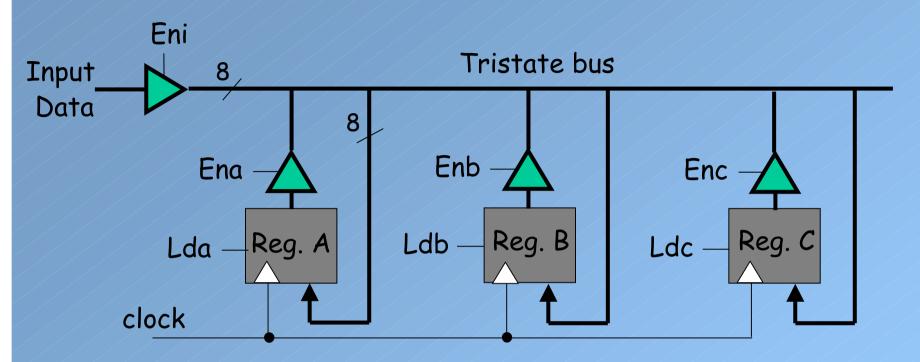


Tristate Logic and Buses

Tristate buffers

- · Hi-Z: high-impedance which is equivalent to an open circuit.
- We use tristate buffers to connect the outputs of more than one gates or flip-flops.

Tristate Bus



- If Enb = Ldc = 1 (all others 0), then the data in register B will be copied into register C when the active edge of the clock occurs.
- If Eni = Lda = Ldc = 1 then the input data will be loaded in registers A and C when the registers are clocked.