
1

VHDL
Miscellaneous

EL 310
Erkay Savaş

Sabancı University

2

VHDL as a High-Level Synthesis Tool
• VHDL is proposed to model the behavior of the

existing hardware
• VHDL was not originally intended for automatic

synthesis of hardware.
• In 1987, when the VHDL standard was written, there

were no automatic synthesis tools in widespread use.
• The meanings of some VHDL constructs in hardware

are derived later.
• As a consequence, some parts of VHDL are not suitable

for synthesis.
• Aim is to fully automate the design process using high-

level behavioral model.

3

VHDL as a High-Level Synthesis Tool

Specification

Architectural
design

state machine/
RTL design

gate-level
logic design

place and
route

RTL
synthesis

Behavioral

synthesis

4

RTL Synthesis vs. Behavioral Synthesis
• RTL synthesis tools take a VHDL description

of a design in terms of registers, state
machines and combinational logic functions and
generate a netlist of gates and library cells.

• Behavioral synthesis tools take algorithmic
VHDL models and transform them to gates and
cells.
– For example,there is no need to specify clock inputs
– one may simply specify a certain time interval in

which a particular operation is completed.
• RTL synthesis tools are in widespread use

while behavioral synthesis tools are rare.

5

RTL Synthesis
• Starting point is a model described in terms of

combinational and sequential building blocks and state
machines.

• We have to know all the inputs and outputs of the
system, including the clock and resets.

• We may also have to know the number of states in
state machines
– RTL synthesis tools, in general, do not perform state

minimization.
• Constraints can be specified

– particular form of state encoding, area and speed constraints,
etc.

– Constraints are not part of VHDL and unique to particular
tools, but some of them may be included in the VHDL
description.

6

RTL Synthesis
• Three styles of VHDL
1. Structural
2. Dataflow (CSA)

• was originally intended for RTL modeling,
• most of dataflow constructs are synthesizeable.

3. Behavioral
• intended for high-level, algorithmic modeling

7

IEEE 1076.6-1999 Standard
• It defines a subset of VHDL for synthesis
• The purpose is a minimum subset that can be

accepted to any synthesis tool.
• Certain constructs, for example delays and

floating-point operators are not
synthesizeable.
– Floating-point data types will be rejected by

synthesis tools because they require at least 32
bits and the hardware required for many operations
is too large for most ASICs and FPGAs.

8

Non-synthesizeable VHDL
• The following VHDL constructs are either

ignored or rejected by RTL synthesis tools
• after, transport, inertial keywords.

– A model can be synthesized to meet various
constraints, but cannot be synthesized to meet
some exact timing model.

– For example, it is not possible to specify that a gate
will have a delay of exactly 5 ns.

– But it is reasonable to require synthesis tool to
generate a block of combinational logic such that its
total delays is less than, say 20 ns.

9

Non-synthesizeable VHDL
• wait for construct is also ignored

– we may not be able to built a piece of hardware
whose delay is exactly specified.

• File operations
• default values must be specified for

parameterized models.
• pointers, specified by the access keyword are

not recognized by synthesis tools.
– high-level data structures, such as linked lists and

trees, that is possible with pointers are not,
therefore, supported.

• Initial values of signals and variables are
ignored.

10

Constraints
• For any non-trivial digital function, there exist

a number of alternative implementations.
• What we want is a infinitely fast,

infinitesimally small, and totally testable
system that consumes no power.

• The designer should decide the objectives
• These objectives are expressed to synthesis

tools as constraints.
– a design must fit on a particular FPGA, has to

operate at a particular clock frequency, etc.
– But sometimes, these objectives may not be met.

11

Constraints
A
B C

D
E

Implementation 1: 16 transistor, 4 gate delays

D
C

A
B
D

E
Implementation 2: 18 transistor, 3 gate delays

12

Timing Constraints
• Assume we want a circuit to operate

synchronously with a clock at a particular
frequency, say 20 MHz
– Then, the maximum delay through the state

registers and the next state logic must be at most
50 ns.

– A constraint can be expressed as the clock
frequency or maximum delay through the
combinational logic.

DFF
Q

clk (clock frequency is 50 MHz, maximum delay through combinational logic is
48 ns)

DFF
Qcombinational

logic

delay 1 ns delay 1 ns

13

Timing Constraints
• What synthesis tool does is

– delay through combinational logic can only be
estimated.

– exact delay depends on how the combinational logic
is laid out.

– Synthesis is performed using an estimate of the
likely delays

– In the end, the design objectives may not be met.
– Synthesis must be restarted.
– to speedup the hardware more operations are

performed concurrently, which means that the
design is larger.

14

Synthesis for FPGAs
• Xilinx and Actel FPGAs
• Xilinx is based on Static RAM technology,

– volatile
– it has tri-state buffers

• Actel is based on antifuse technology.
– A connection is normally open circuit, but the

application of a suitably large voltage causes a short
circuit to be formed.

– not reversible.
– no tri-state buffers

15

Synthesis for FPGAs
• Both FPGA technologies feature high ratio of

flip-flops to combinational logic.
– emphasis is not on minimizing the number of flip-

flops, but the combinational logic surrounding them.
– One-hot state encoding is popular, particularly for

relatively small state machines.
• A single asynchronous set or reset is the most

efficient way of initializing all the flip-flops in
an FPGA device
– Each flip-flop has an asynchronous set and reset,

but only only one of these may be used at one time.

16

Synthesis for FPGAs
• In both technologies, the flip-flops are edge-

sensitive
– level-sensitive latches have to be synthesized from

combinational logic.
– This can waste flip-flops and they are best avoided.

• It is desirable to instantiate predefined
library components for certain functions.
– It is safer (talk about it later)
– Not only the logic is defined, but the configuration

of logic blocks is already known
– This potentially simplifies both RTL synthesis and

place and route tasks.

17

Synthesis for FPGAs
• ACTEL technology does not support tri-state

buffers,
– language constructs that will result in tri-state

buffer usage must be avoided.
• The two technologies have different

limitations with respect to fan-outs.
– In antifuse technology, one output can drive up to

16 inputs without degradation of the signal.
– CMOS SRAM technology has higher fan-out limit.
– A design that can easily be synthesized to a Xilinx

technology may not be synthesized to an ACTEL
FPGA without rewriting.

18

Fan-Out Limitations: Example

signal a, b: std_ulogic_vector(31 downto 0);

begin

p0: process (enable, b) is
begin

if enable = ‘1’ then
a <= b;

else

a <= (others => ‘0’);

end if;

end process

end;

– this simple VHDL code fragment may not be synthesized
since enable signal is controlling 32 multiplexers.

– Instead, it must be split into two using buffers, and each
buffered signal then controls half the bus.

19

Fan-Out Limitations: Example
signal a, b: std_ulogic_vector(31 downto 0);

signal en0, en1: std_ulogic;

begin

b0: buf port map (enable, en0);

b1: buf port map (enable, en1);

p0: process (en0, en1, b) is
begin
if en0 = ‘1’ then a(15 downto 0) <= b (15 downto 0);

else a (15 downto 0) <= (others => ‘0’);

end if;

if en1 = ‘1’ then a(31 downto 16) <= b (31 downto 16);

else a (31 downto 16) <= (others => ‘0’);

end if;

end process

end;

• A good synthesis tool should recognize the fan-out limits,
and automatically insert buffers

20

Asynchronous Sequential Design
• Why bother with asynchronous logic design?

– power considerations
– Due to ultra fast clocks (as a result high clock

skews) systems may consist of synchronous islands
that communicate asynchronously.

• However, it is better to avoid asynchronous
structures
– synthesis tools are intended for the design of

synchronous systems, normally with a single clock.
• For example, the following concurrent VHDL

construct
q <= d when c = ‘1’ else q;

would be synthesized to an asynchronous
circuit structure.

21

Asynchronous Sequential Design

• Similarly the above sequential block would also
be synthesized to an asynchronous latch.

• But the circuit structures for these two
constructs are not identical.

• In fact, a IEEE 1076.6 compliant synthesis
tool would infer a latch from the incomplete
if statement and use a latch from library.

process (d, c) is
begin
if c = ‘1’ then q <= d;
end if;

end process;

22

Asynchronous Latch Inference
• The latch created by Boolean minimization (the

first case) and the library latch is not the
same.

• Indeed, the RTL synthesis standard, IEEE
1076.6, explicitly forbids the use of such
concurrent statements

• It only permits the use of incomplete if and
case statements.

• To see why, we have to look at a basic D latch
and its timing characteristics.

23

D-Latch

• Assume each gate has a delay of 1 unit time,
say 1 ns.

• We will show that oscillatory behavior will
occur.

D
C

C’

E

F

Q

q <= (d and c) or (q and not c);

24

Oscillatory Behavior of D-Latch
D

C

C’

E

F

Q

1 ns 2 3 4 5 6 7 8 9

25

Gate Level Implementation of D-Latch
library ieee;
use ieee.std_logic_1164.all;

entity d_latch is

generic (delay: Time := 1 ns);

port(q: inout std_logic;

q_bar: out std_logic;

d, c: in std_logic);

end entity d_latch;

architecture concurrent of d_latch is

signal e, f, c_bar: std_logic;

begin

e <= d nand c after delay;

c_bar <= not c after delay;

f <= c_bar nand q after delay;

q <= e nand f after delay;

q_bar <= not q;

end architecture concurrent;

26

Test Bench for D-Latch
library ieee;

use ieee.std_logic_1164.all;

entity d_latch_tb is

end entity d_latch_tb;

architecture concurrent of d_latch_tb is

component d_latch is

generic (delay: Time := 1 ns);

port(q: inout std_logic; q_bar: out std_ulogic;

d, c: in std_ulogic);

end component d_latch;

signal D, C, Q: std_ulogic := '1';

signal Q_bar: std_ulogic := '0';

begin

d0: d_latch port map(q => Q, q_bar => Q_bar, d => D, c => C);

C <= '0' after 1 ns;

Q_bar <= not Q;

end architecture concurrent;

27

Simulation Results

28

More Realistic Model for Timing
library ieee;
use ieee.vital_primitives.all;

...

architecture vtl of d_latch is

signal e, f, c_bar: std_logic;

begin

VitalNAND2(e, d, c, (delay, delay), (delay, delay));

VitalINV(c_bar, c, (delay, delay));

VitalNAND2(f, c_bar, q, (delay, delay), (delay, delay));

VitalNAND2(q, e, f, (delay, delay), (delay, delay));

q_bar <= not q;

end architecture vtl;

29

Behavioral Synthesis
• RTL synthesis requires that the design be

specified in terms of register operations.
• Behavioral synthesis takes the process one

stage further
– the hardware to be synthesized in terms of an

algorithm. from which, the registers and logic are
derived.

• Main obstacle is the inefficient or infeasible
hardware generated by the behavioral
synthesis tools
– with the decreasing cost of silicon, it seems safe to

predict that behavioral synthesis will become in
widespread usage in the future.

30

Behavioral Synthesis: Example

package iir_defs is

constant precision: positive := 16;

subtype int is integer range –2**(precision – 1) to

2**(precision –1) – 1;

type integer_array is array (natural range <>) of int;

constant order: positive := 5;

end package iir_defs;

5th order infinite impulse response (IIR) filter

31

IIR Filter Design
use work.iir_defs.all;

entity iir is

generic(coeffa: integer_array(0 to order);

coeffb: integer_array(0 to order-1));

port(input: in int;

strobe: in bit;

output: out int);

end entity iir;

32

IIR Filter Design
architecture beh of iir is
begin

process is

variable input_sum, output_sum: int;

variable delay:integer_array(0 to order):=(others => 0);

begin

input_sum := input;

for j in 0 to order-1 loop
input_sum := input_sum + (delay(j)*coeffb(j))/1024;

end loop;

output_sum := (input_sum*coeffa(order))/1024;

for k in 0 to order-1 loop
input_sum := input_sum + (delay(k)*coeffa(k))/1024;

end loop;

...

33

IIR Filter Design
...

for m in 0 to order-1 loop
delay(m) := delay(m+1);

end loop;

delay(order) := input_sum;

output <= output_sum;

wait on strobe;

end process;

end architecture beh;

• A C version of the algorithm would look very similar
• It has neither a clock nor a reset.
• If this code is given to RTL synthesis tool, the resulting

hardware would have 12 16-bit combinational multipliers
11 16-bit adders.

• The same operation can be done by using one adder and
one multiplier.

34

Principles of Behavioral Design
• For sake of simplicity, consider a first-order

filter.
input_sum := input + delay(0)*coeffb(0);

output_sum := input_sum*coeffa(1);

output_sum := output_sum + delay(0)*coeffa(0);

output := output_sum + delay(1)*coeffa(1);

• To figure out the data dependency, rewrite
the code fragment as follows

input_sum := input + delay(0)*coeffb(0);

output_sum0 := input_sum*coeffa(1);

output_sum1 := output_sum0 + delay(0)*coeffa(0);

output := output_sum1 + delay(1)*coeffa(1);

35

Principles of Behavioral Design
• Data dependency graph of first-order IIR filter

∗

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

∗
input_sum

+
output_sum0

+
output_sum1

∗

∗

36

Principles of Behavioral Design
• ASAP schedule

+

∗

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1) cycle

1

2

3

4

5

∗ ∗ ∗

37

Principles of Behavioral Design
• Unconstrained ALAP Schedule

∗

+

∗

+

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

∗

∗

cycle

1

2

3

4

5

38

Principles of Behavioral Design
• Resource constrained schedule

∗

+

∗

+

+
output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1)

∗

∗

cycle

1

2

3

4

5

6

7

39

Mapping of Operations onto Resources

∗

+

∗

∗

+

∗

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1) cycle

1

2

3

4

5

40

Schedule Showing Registers

∗

+

∗

∗

+

∗

+

output

input delay(0) coeffb(0) coeffa(1) coeffa(0) delay(1) cycle

1

2

3

4

5

R1 R2 R3

R4 R5 R6

R7 R8 R9

R10 R11

41

Hardware Implementation of First-Order Filter

∗

+

delay(0) coeffa(1)
coeffb(0)

∗

delay(1)
coeffa(0)

coeffa(1)

delay(0)

R2/R7 R3/R6

R5/R9

R8/R11
R1

input

R4/R10
output

42

ASM Chart of Controller

R1 �input
R2�delay(0) * coeffb(0)
R3�delay(0) * coeffa(0)

R4 �R1 + R2
R5�R3
R3�delay(1) * coeffa(1)

R2 �R4 * coeffa(1)
R8�R5
R5�R3

R4 �R2 * R8
R8�R5

output �R4 + R8

43

VHDL Standards
• IEEE Std 1076-1993

– Formal definition of VHDL
• IEEE Std 1076.1-1999 (VHDL-AMS)

– Analog and mixed extensions to IEEE Standard
VHDL

• IEEE Std 1076.2-1996
– IEEE standard VHDL mathematical packages
– real and complex functions for VHDL

• IEEE Std 1076.3-1997
– IEEE standard VHDL synthesis packages
– define signed and unsigned types and arithmetic

functions, for use with synthesis tools

44

VHDL Standards
• IEEE Std 1076.4-1995

– IEEE standard VITAL ASIC modeling
– VITAL (VHDL Initiative Towards ASIC Libraries) is

a set of low-level primitives for accurate timing
simulations of gate-level models.

• IEEE Std 1076.6-1999
– IEEE standard for VHDL register transfer level

synthesis
– defines a subset of VHDL appropriate to RTL

synthesis.
• IEEE Std 1164-1993

– IEEE standard multivalue logic system for VHDL
model interoperability.

45

VHDL Standards
• IEEE Std 1029.1-1998

– IEEE standard for waveform and vector exchanges
(WAVES)

– WAVES (Waveform and Vector Exchange to
Support Design and Test Verification) is a set of
VHDL methods to assist in verifying and testing
hardware.

– The motivations is to allow test vector files to be
shared between VHDL simulators and hardware
testers.

46

Verilog
• Seen as an alternative to VHDL
• developed in early 1980s by Gateway Design

Automation, which was later taken over by
Cadence.

• It is an IEEE standard (1364).
• Resembles the C programming language while

VHDL is closer to Ada.
• Said to be simpler and closer to hardware than

VHDL.
• It can be used to model logic circuits at the

transistor or switch level.

47

Verilog
• Fault simulators have been developed to use

Verilog, while such tools are almost non-
existent for VHDL.

• On the other hand, VHDL has high-level
constructs and abstract data types that
Verilog does not have
– This feature makes VHDL much more suitable to

behavioral modeling.
• Many simulation and RTL synthesis tools

accept both.
– use VHDL for high-level design and Verilog for low-

level post-synthesis timing and fault simulation

48

Basics of Verilog
• A Verilog Model of two-input NAND gate
// comment

module NAND (in1, in2, out);

input in1, in2;

output out;

assign out = ~(in1 & in2);

endmodule // Note no semicolon

• Verilog is case-sensitive
• It does not have separate interface and implementation

section – everything in a module.
• Signals do not have types.
• A signal can take the values: 0, 1, X, Z.
• assign introduces a assignment statement analogous

to CSA.

49

Basics of Verilog
• The bitwise operators: ~, &, |, ^.
• To instantiate a module, it simply has to be

invoked.
module simple (a, b, c, d);

input a, b, c;

output d;

wire p, q; // can be omitted

NAND g1(a, b, p);

NAND g2(a, c, q);

NAND g3(p, q, d);

endmodule

50

Procedures with Verilog
module MUX (SEL, A, B, C, D, Y);

input [1:0] SEL; // two bit vector

input A, B, C, D;

output Y;

reg Y; // needed for procedural assignment

always @(SEL or A or B or C or D)

case (SEL)

2’b00 : Y = A;

2’b01 : Y = B;

2’b10 : Y = C;

2’b11 : Y = D;

default : Y = A;

endcase

endmodule

51

Basics of Verilog

module LATCH (enable, D, Q);

input enable, D;

output Q;

reg Y; // needed for procedural assignment

always @(enable or D)

if (enable)

Q = D;

endmodule

• Level-sensitive latch can be modeled using an
incomplete if statement (as in VHDL)

52

Non-Blocking Assignment Statements
module LATCH (enable, D, Q);

input enable, D;

output Q;

reg Y;

reg M;

always @(enable or D)

if (enable)

begin

M <= D

Q <= M;

end

endmodule

• Like VHDL signal assignments, all non-blocking
assignments are completed at the end of the
current time period.

• No concept of delta delays
• This example will synthesize to two latches.

53

Blocking Assignment Statements
module LATCH (enable, D, Q);

input enable, D;

output Q;

reg Y;

reg M;

always @(enable or D)

if (enable)

begin

M = D;

Q = M;

end

endmodule

• A blocking statement must be completed
before control passes to the next statement.

• This is similar to variable assignment in VHDL.

• One latch will be inferred.

54

Edge-Triggered Flip-Flop
module DFF (clock, D, Q);

input clock, D;

output Q;

reg Q;

always @(posedge clock)

Q = D;

endmodule

A negative edge would be detected using negedge

55

Flip-Flop with Asynchronous Reset
module DFF (clock, reset, D, Q);

input clock, reset, D;

output Q;

reg Q;

always @(posedge clock or negedge reset)

if (!reset)

Q = 0;

else

Q = D;

endmodule

• Verilog does not have enumerated types
• State machines require that the state

assignment to be explicitly stated.

56

State Machines with Verilog
module vending (clock, reset, twenty, ten, ready, dispense,

ret, coin);

input clock, reset, twenty, ten;

output ready, dispense, ret, coin;

reg ready, dispense, ret, coin;

parameter A = 0, B = 1, C = 2, D = 3, F = 4, I = 5;

reg [0:2] present_state, next_state;

always @(posedge clock or posedge reset)

if (reset)

present_state = A;

else

present_state = next_state;

...

endmodule

57

State Machines with Verilog
module vending (clock, reset, twenty, ten, ready, dispense,

ret, coin);

...

always @(twenty or ten or present_state)

begin
ready = 0;

dispense = 0;

ret = 0;

coin = 0;

case (present_state)

A: begin

ready = 1;

if (twenty) next_state = D;

else if (ten) next_state = C;

else next_state = A;

end

...

endmodule

58

State Machines with Verilog
case (present_state)

...

B: begin

dispense = 1; next_state = A;

end

C: begin

coin = 1;

if (twenty) next_state = F;

else if (ten) next_state = D;

else next_state = C;

end

...

endmodule

59

State Machines with Verilog
case (present_state)

...

D: begin

coin = 1;

if (twenty) next_state = B;

else if (ten) next_state = F;

else next_state = D;

end

F: begin

coin = 1;

if (twenty) next_state = I;

else if (ten) next_state = B;

else next_state = F;

end

...

endmodule

60

State Machines with Verilog
...

case (present_state)

...

I: begin

ret = 1;

next_state = A;

end

default next_state = A;

endcase

end

endmodule

61

Testbench with Verilog
‘timescale 1ns / 100 ps

module testbench;

reg clock, reset, twenty, ten;

wire ready, dispense, ret, coin;

vending vm (clock, reset, twenty, ten, ready, dispense, ret, coin);

initial clock = 0;

always #10 clock = !clock;

initial

begin

reset = 1; twenty, = 0; ten = 0;

#1 reset = 0;

#64 twenty = 1;

#80 twenty = 0;

#20 ten = 1;

#20 ten = 0;

#20 twenty = 1;

#20 twenty = 0;

end

endmodule

62

Switch-Level Modeling with Verilog HDL
• Two types of MOS switches are specified in

Verilog HDL
– nmos (drain, source, gate);
– pmos (drain, source, gate);

• Switch level implementation of an inverter
– module inverter(Y, A);

input A;
output Y;
supply1 PWR;
supply0 GRD;
pmos(Y, PWR, A);
nmos(Y, GRD, A);

endmodule

63

Switch-Level Modeling with Verilog HDL
• Switch level implementation of 2-input NAND

gate
– module NAND2(Y, A, B);

input A, B;
output Y;
supply1 PWR;
supply0 GRD;
wire W1;
pmos(Y, PWR, A);
pmos(Y, PWR, B);
nmos(Y, W1, A);
nmos(W1, GRD, B);

endmodule

