

+ VHDL is proposed to model the behavior of the
existing hardware

+ VHDL was not originally intended for automatic
synthesis of hardware.

- In 1987, when the VHDL standard was written, there

were no automatic synthesis tools in widespread use.

* The meanings of some VHDL constructs in hardware
are derived later.

» As a consequence, some parts of VHDL are not suitable
for synthesis.

» Aim is to fully automate the design process using high-
level behavioral model.

Specification

Architectural
design

state machine/
RTL design

gate-level
logic design

place and
route

* RTL synthesis tools take a VHDL description
of a design in ferms of registers, state
machines and combinational logic functions and
generate a netlist of gates and library cells.

» Behavioral synthesis tools take algorithmic

VHDL models and transform them to gates and

cells.

- For example,there is no need to specify clock inputs

- one may simply specify a certain time interval in
which a particular operation is completed.

* RTL synthesis tools are in widespread use

while behavioral synthesis tools are rare.

Starting point is a model described in terms of
combinational and sequential building blocks and state
machines.

We have to know all the inputs and outputs of the
system, including the clock and resets.

We may also have to know the number of states in

state machines

- RTL synthesis tools, in general, do not perform state
minimization.

Constraints can be specified

- particular form of state encoding, area and speed constraints,
etc.

- Constraints are not part of VHDL and unique to particular
tools, but some of them may be included in the VHDL
description.

» It defines a subset of VHDL for synthesis

» The purpose is a minimum subset that can be
accepted to any synthesis tool.

» Certain constructs, for example delays and
floating-point operators are not
synthesizeable.

- Floating-point data types will be rejected by
synthesis tools because they require at least 32
bits and the hardware required for many operations
is oo large for most ASICs and FPGAs.

» The following VHDL constructs are either
ignored or rejected by RTL synthesis tools

« after,transport,inertial keywords.

- A model can be synthesized to meet various
constraints, but cannot be synthesized to meet
some exact timing model.

- For example, it is not possible to specify that a gate
will have a delay of exactly 5 ns.

- But it is reasonable to require synthesis tool to
generate a block of combinational logic such that its
total delays is less than, say 20 ns.

 wai t for construct is also ighored

- we may not be able to built a piece of hardware
whose delay is exactly specified.
 Fi | e operations

» default values must be specified for
parameterized models.

+ pointers, specified by the access keyword are
not recognized by synthesis tools.

- high-level data structures, such as linked lists and
trees, that is possible with pointers are noft,
therefore, supported.

» Initial values of signals and variables are
ighored.

* For any non-trivial digital function, there exist
a number of alternative implementations.

* What we want is a infinitely fast,
infinitesimally small, and totally testable
system that consumes no power.

» The designer should decide the objectives

+ These objectives are expressed to synthesis
tools as constraints.

- a design must fit on a particular FPGA, has to
operate at a particular clock frequency, etc.

- But sometimes, these objectives may not be met.

10

+ What synthesis tool does is

- delay through combinational logic can only be
estimated.

- exact delay depends on how the combinational logic
is laid out.

- Synthesis is performed using an estimate of the
likely delays

- In the end, the design objectives may not be met.
- Synthesis must be restarted.

- to speedup the hardware more operations are
performed concurrently, which means that the
design is larger.

13

+ Both FPGA technologies feature high ratio of
flip-flops o combinational logic.

- emphasis is not on minimizing the number of flip-
flops, but the combinational logic surrounding them.

- One-hot state encoding is popular, particularly for
relatively small state machines.

* A single asynchronous set or reset is the most

efficient way of initializing all the flip-flops in

an FPGA device

- Each flip-flop has an asynchronous set and resef,
but only only one of these may be used at one time.

15

* In both technologies, the flip-flops are edge-
sensitive

- level-sensitive latches have to be synthesized from
combinational logic.

- This can waste flip-flops and they are best avoided.

» It is desirable to instantiate predefined
library components for certain functions.
- It is safer (talk about it later)

- Not only the logic is defined, but the configuration
of logic blocks is already known

- This potentially simplifies both RTL synthesis and
place and route tasks.

16

* ACTEL technology does not support tri-state
buffers,

- language constructs that will result in tri-state
buffer usage must be avoided.

* The two technologies have different

limitations with respect to fan-outs.

- In antifuse technology, one output can drive up to
16 inputs without degradation of the signal.

- CMOS SRAM technology has higher fan-out limit.

- A design that can easily be synthesized to a Xilinx
technology may not be synthesized to an ACTEL
FPGA without rewriting.

17

signal a, b: std ulogic vector(31 downto 0);
begi n
pO: process (enable, b) is
begi n
I f enable = 1" then
a <= b;
el se

a <= (others => *0");
end if;
end process
end;

signal a, b: std ulogic vector(31 downto 0);
signal enO, enl: std ul ogic;
begi n
bO: buf port map (enable, en0);
bl: buf port map (enable, enl);
pO: process (en0O, enl, b) is
begi n
If en0 = ‘1 then a(l1l5 downto 0) <= b (15 downto 0);
el se a (15 downto 0) <= (others => ‘0");
end if;
if enl = ‘1 then a(31 downto 16) <= b (31 downto 16);
else a (31 downto 16) <= (others => ‘0’);
end if;
end process
end;

* Why bother with asynchronous logic design?
- power considerations

- Due to ultra fast clocks (as a result high clock
skews) systems may consist of synchronous islands
that communicate asynchronously.

- However, it is better to avoid asynchronous
structures

- synthesis tools are intended for the design of
synchronous systems, normally with a single clock.

* For example, the following concurrent VHDL
construct
q <=dwhen c = ‘1 else q;

would be synthesized to an asynchronous
circuit structure. 20

process (d, c) is

begi n
If ¢ =1 then g <= d;
end if;

end process;

* The latch created by Boolean minimization (the
first case) and the library latch is not the
same.

* Indeed, the RTL synthesis standard, TEEE
1076.6, explicitly forbids the use of such
concurrent statements

» It only permits the use of incomplete i f and
case statements.

* To see why, we have to look at a basic D latch
and its timing characteristics.

22

g <= (d and ¢) or (g and not c);

| ibrary i eee;
use ieee.std logic 1164. all;

entity d latch is
generic (delay: Tinme := 1 ns);
port(qg: inout std | ogic;
g _bar: out std | ogic;
d, c: in std |logic);
end entity d | atch;
architecture concurrent of d latch is
signal e, f, c_bar: std_|logic;
begi n
e <= d nand c after del ay;
c_bar <= not c after del ay;
f <= c_bar nand q after del ay;
g <= e nand f after del ay;
g_bar <= not q;
end architecture concurrent;

| i brary i eee;
use ieee.std logic 1164.all;
entity d latch tb is
end entity d latch_thb;
architecture concurrent of d latch tb is
conponent d latch is
generic (delay: Tinme := 1 ns);
port(qg: inout std logic; g bar: out std ul ogic;
d, ¢c: in std ulogic);
end conponent d_| atch;
signal Db C, Q std ulogic :="
signal Qbar: std ulogic :="0";
begi n
dO: d latch port map(qg => Q qgq bar => Qbar, d => D, ¢ = O;
C<="'0" after 1 ns;
Q bar <= not Q

end architecture concurrent;

——wave-defaui =181 x|

=S LR b X ([yom | ® S W B xF) D

[l /ot |
[
B o Laich o'y b

D -

E K 0= =

O n=ba 11 =3
Aset| | JE DDA FHeomd i J iSO 000H0 AR @ 123 PM
{ Agae i} | - & hiep | '|I'I-=: ﬁ"::‘.- | 0 e - T | == process| T sgnals :-| =) | Ec::_-' o] B =m-n= 'H-: EH o

27

|ibrary ieee;
use ieee.vital _primtives.all;

architecture vtl of d latch is
signal e, f, c_bar: std _|logic;

begi n
Vital NAND2(e, d, c, (delay, delay), (delay, delay));
Vital Il NV(c_bar, c, (delay, delay));

Vital NAND2(f, c_bar, g, (delay, delay), (delay, delay));
Vital NAND2(q, e, f, (delay, delay), (delay, delay));
g_bar <= not q;

end architecture vtl;

* RTL synthesis requires that the design be
specified in terms of register operations.

» Behavioral synthesis takes the process one
stage further

- the hardware to be synthesized in terms of an
algorithm. from which, the registers and logic are
derived.

« Main obstacle is the inefficient or infeasible

hardware generated by the behavioral
synthesis tools

- with the decreasing cost of silicon, it seems safe to
predict that behavioral synthesis will become in
widespread usage in the future.

29

package iir_defs is
constant precision: positive := 16;

subtype int is integer range —-2**(precision — 1) to
2**(precision -1) - 1;
type integer _array is array (natural range <>) of int;
constant order: positive := 5;
end package iir_defs;

use work.iir_defs.all;
entity iir is
generic(coeffa: integer _array(0O to order);
coeffb: integer _array(0O to order-1));
port(input: in int;
strobe: in bit;
out put: out int);

end entity iir;

architecture beh of iir is
begi n
process is
vari abl e i nput_sum output_sum int;
vari abl e delay:integer _array(0 to order):=(others => 0);
begi n
| nput _sum : = i nput;

for j in O to order-1 |oop

| nput _sum : = i nput_sum + (delay(j)*coeffb(j))/1024;
end | oop;
out put _sum : = (i nput_suntcoeffa(order))/ 1024,

for kin O to order-1 | oop
| nput _sum : = i nput_sum + (del ay(k)*coeffa(k))/1024;
end | oop;

for min O to order-1 | oop
del ay(m := delay(mtl);
end | oop;

del ay(order) := input_sum
out put <= out put _sum
wait on strobe;

end process;

end architecture beh:

| nput _sum : = input + delay(0)*coeffb(0);

out put _sum : = i nput _suntcoeffa(l);

out put _sum : = out put _sum + del ay(0) *coeffa(0);
out put := output _sum + delay(1l)*coeffa(l);

| nput _sum : = i nput + delay(0)*coeffb(0);

out put _sunD : = input_sunrcoeffa(l);

out put _sunil : = output _sunD + del ay(0)*coeffa(0);
out put := output_sunl + delay(1l)*coeffa(l);

R1 <input
R2<delay(0) * coeffb(0)
R3<delay(0) * coeffa(0)

R4 <R1 +R2
RH <R3
R3<delay(1) * coeffa(l)

R2 €<R4 * coeffa(l)
R8<RH
RH<R3

R4 <R2 * R8
R8<R5

output <R4 + R8

- IEEE Std 1076-1993

- Formal definition of VHDL
- TEEE Std 1076.1-1999 (VHDL-AMS)

- Analog and mixed extensions to TEEE Standard
VHDL

- IEEE Std 1076.2-1996

- IEEE standard VHDL mathematical packages
- real and complex functions for VHDL

- IEEE Std 1076.3-1997

- TEEE standard VHDL synthesis packages

- define si gned and unsi gned types and arithmetic
functions, for use with synthesis tools

43

- IEEE Std 1076.4-1995

- TEEE standard VITAL ASIC modeling

- VITAL (VHDL Initiative Towards ASIC Libraries) is
a set of low-level primitives for accurate timing
simulations of gate-level models.

- IEEE Std 1076.6-1999

- IEEE standard for VHDL register transfer level
synthesis

- defines a subset of VHDL appropriate to RTL
synthesis.

- IEEE Std 1164-1993

- IEEE standard multivalue logic system for VHDL
model interoperability.

44

- Seen as an alternative to VHDL

» developed in early 1980s by Gateway Design
Automation, which was later taken over by
Cadence.

+ It is an IEEE standard (1364).

* Resembles the C programming language while
VHDL is closer to Ada.

» Said to be simpler and closer to hardware than
VHDL.

* It can be used to model logic circuits at the
transistor or switch level.

46

» Fault simulators have been developed to use
Verilog, while such tools are almost non-
existent for VHDL.

* On the other hand, VHDL has high-level
constructs and abstract data types that
Verilog does not have

- This feature makes VHDL much more suitable to
behavioral modeling.

* Many simulation and RTL synthesis tools
accept both.

- use VHDL for high-level design and Verilog for low-
level post-synthesis timing and fault simulation

47

/'l comment

modul e NAND (inl, in2, out);
| nput inl, in2;
out put out;
assign out = ~(inl & in2);

endnodul e // Note no seni col on

nodul e sinple (a, b, c, d);
i nput a, b, c;
out put d;

wrep, q; // can be omtted
NAND gl(a, b, p);
NAND g2(a, ¢, Q);
NAND g3(p, g, d);
endnodul e

nmodule MUX (SEL, A B, C D Y);
input [1:0] SEL; // two bit vector
| nput A, B, C D
out put Y,
reg v; /'l needed for procedural assignnent
al ways @SEL or A or Bor Cor D
case (SEL

2’ b00 :
2' b0O1 :
2' b10 :
2'bll :
def aul t
endcase
endnodul e

nodul e LATCH (enable, D, Q;
| nput enabl e, D
out put Q
reg v, /'l needed for procedural assignnent
al wvays @enable or D)
I f (enable)

Q=D

endnodul e

nodul e LATCH (enable, D, Q;

| nput enabl e, D
out put Q
reg v,
reg M
al ways @enable or D)

i f (enable)

begi n

M<= D

Q<=M
end
endnodul e

nodul e LATCH (enable, D, Q;

| nput enabl e, D
out put Q
reg v,
reg M
al ways @enable or D)

I f (enable)

begi n

M= D

Q=M
end
endnodul e

modul e DFF (clock, D, Q;
| nput cl ock, D
out put Q
reg Q
al ways @ posedge cl ock)
Q=D

endnodul e

nodul e DFF (clock, reset, D Q;
| nput cl ock, reset, D
out put Q
reg Q
al ways @ posedge clock or negedge reset)
I f (!reset)

endnodul e

nodul e vendi ng (cl ock, reset, twenty, ten, ready, dispense,
ret, coin);

| nput clock, reset, twenty, ten;

out put ready, dispense, ret, coin;

reg ready, dispense, ret, coin;

paraneter A=0, B=1, C=2, D=3, F =4,
reg [0:2] present state, next state;

al ways @ posedge clock or posedge reset)
i f (reset)
present _state A
el se
present state next st ate;

endnodul e

nodul e vendi ng (cl ock, reset, twenty, ten, ready, dispense,
ret, coin);

al ways @twenty or ten or present _state)
begi n

ready = O;

di spense = 0;

ret = 0;

coin = 0;

case (present _state)
A:. begin

ready = 1;

i f (twenty) next _state =
else if (ten) next _state
el se next _state = A

end

endnodul e

case

B:

endnodul e

(present _state)

begi n

di spense = 1; next _state

end

begi n

coin = 1;

I f (twenty) next _state = F;
else if (ten) next _state = D
el se next _state = C,

end

case

D:

endnodul e

(present _state)

begi n

coin = 1;

I f (twenty) next _state = B;
else if (ten) next _state =
el se next _state = D

end

begi n

coin = 1;

I f (twenty) next _state = I;
else if (ten) next _state = B;
el se next _state = F;

end

F

case (present _state)

begi n
ret = 1;
next _state = A

end

default next _state = A

endcase
end
endnodul e

‘“timescale 1ns / 100 ps
nodul e testbench;
reg clock, reset, twenty, ten;
w re ready, dispense, ret, coin;
vending vm (cl ock, reset, twenty, ten, ready, dispense, ret, coin);
initial clock = 0;
al ways #10 cl ock = !cl ock;
initial
begi n
reset = 1; twenty, = 0; ten = 0;
#1 reset = 0;
#64 twenty = 1,
#80 twenty = O;
#20 ten = 1,
#20 ten = O;
#20 twenty =
#20 twenty
end
endnodul e

