VHDL Modeling Digital Systems

EL 310
Erkay Savaş
Sabancı University

Simulation and Synthesis

- VHDL programs are unlike programs written in Pascal, C, C++.
- VHDL is for describing a digital system for mainly two purposes
 - Simulation
 - Synthesis
- The idea is to come up with a description that behaves like the real system with a desired level of accuracy

Describing System

- A system is an assemblage of objects united by some form of regular interaction or interdependence
 - Could be anything from single chips to large supercomputers
- What aspects of a digital system we want to describe
 - Interface
 - Function: Structural or Behavioral
 - Structural and behavioral descriptions are complementary of each other and are expected to be supported by any HDL.

A digital system

- · Consists of
 - Binary signals that may take values of 1 or 0.
 - Components
 - · Gates, flip-flops, counters, etc.
 - · Transforms input signals to output signals
 - Wires that connect components.

· Half adder

Events and Propagation Delays

- Event: when a signal changes values (1-to-0, 0-to-1)
- Propagation delay: time elapsed before changes at input will produce a change at output (5 ns for this example)

Concurrency of Operations

- · From our previous example
 - When a change occurs at one of the inputs, say a, the two gates concurrently compute the values of output signals, sum and carry.
 - New events occur at these signals → trigger more events

Events on signals lead to computations that may generate events on other signals

Full Adder 1

· Truth table

α	Ь	c_in	sum	carry
0//	0//	0	//0//	//0//
0//	//0//	1	1	0
0	1	0//	1	0
0//	1	1	0	1
1	/ 0 //	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Waveforms and Timing

 The sequence of events that occur on a signal produces a <u>waveform</u> on that signal

S'	R'	clk	D	Q	Q'
0	1	X	/X/	1	0
1	0	X	X	0	1
1	1	R	1	1	0
1	1	R	0	0	1
0	0	X	X	3	3

9

Synchronous Circuit

- · Synchronous circuits operate with a periodic signal commonly referred to as <u>clock</u>.
 - clock serves as a common time base
 - The transition in clock (rising or falling) determines when the computation of output events is initiated.
 - The input value on signal is sampled at clock transition,
 - if there is an event on input signal before the clock transition occurs, the output may also change.
 - This change, of course, takes some time (propagation time).

Asynchronous 1

- No global clock
 - Request-acknowledge protocols
 - Or handshaking
 - Need to wait for events on specific signals
 - Example: Asynchronous communication channels

Asynchronous 2

Signal Values

- Binary values
 - 0 or 1 (driven by a power supply or the output of a gate)
 - Voltage values
 - [0-0.8] V → logic 0
 - [2.0 3.3] V → logic 1
 - What if a signal is disconnected? (high-impedance)
 - What if a signal is currently driven to both a 0 and a 1 value? (unknown)
 - What if the initial value of a signal is unknown?
 - How about the signal strength.
- Recall that we want to describe a digital system as accurately as possible.

Signal Values

- Question: Why do we want to represent a situation which apparently corresponds to a design error?
 - ·we may want to observe the effects of a design error.
 - ·how is it propagated?

Signal Values: IEEE 1164

Value	Interpretation	
U	Uninitialized	
//X//	Forcing Unknown	
0	Forcing 0	
1	Forcing 1	
Z	High impedance	
W	Weak unknown	
L	Weak 0	
H	Weak 1	
	Don't care	

This nine valued
 system is not a part
 of VHDL language; but
 rather a standard
 definition that
 vendors are motivated
 to support for
 portability.

- · Use the package that contains this definition.
- · Not all these values are synthesizeable.

Signal Values: IEEE 1164

- · IEEE 1164 package defines multivalue logic values
- · logic operations for multivalue logic
- and some conversion routines from this logic to other types that are part of language
 - function TO_BIT(S: STD_ULOGIC, XMAP:BIT:='0')
 return BIT;
 - function TO_BITVECTOR(S: STD_ULOGIC_VECTOR, XMAP:BIT:='0')

return BIT_VECTOR;

- function TO_STDULOGIC(B:BIT)
 return STD_ULOGIC;

Shared Signals

- Multiple drivers for input and multiple destinations for output signals
 - Bus construction
 - <u>Drivers (transmitters)</u>: tri-state buffers can be controlled by a decoder to ensure that only one source is driving the bus at a time
 - There may be multiple receivers listening the bus

Multiple Drivers

- · Wired logic
 - Buses permit one transmitter at a time
 - However, certain forms of switching circuits are designed based on <u>wired logic</u> and permit multiple transmitters.
 - Wires in these circuits produce AND and OR Boolean functions.
 - wired-AND logic: if at least one device driving the signal to a 0, the value of the signal will be 0.
 - HDL must be expressive enough to describe such circuits for accurate simulation.
 - See <u>resolved signals</u> for this.
 - Synthesis compilers produce logic that arbitrates among accesses to shared signals. For example, when only one source is permitted then a decoder must be synthesized to control multiple drivers. 18

Overview

- We seek to describe attributes of digital systems common to multiple levels of abstraction
 - Events, propagation delays, concurrency
 - Waveforms and timing (synchronous vs. asynchronous)
 - Shared signals
- Hardware description languages must provide constructs for naturally describing these attributes of a specific design
 - Simulators use such descriptions for mimicking the physical system
 - Synthesis compilers use such descriptions for synthesizing hardware