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Abstract—We present a novel technique to fabricate conformal
and pliable substrates for microwave applications including
systems-on-package. The produced materials are fabricated
by combining ceramic powders with polymers to generate a
high-contrast substrate that is concurrently pliable (bendable).
Several such polymer–ceramic substrates are fabricated and used
to examine the performance of a patch antenna and a coupled
line filter. This paper presents the substrate mixing method while
measurements are given to evaluate the loss performance of the
substrates. Overall, the fabricated composites lead to flexible
substrates with a permittivity of up to = 20 and sufficiently
low loss.

Index Terms—Control of dielectric properties, high-contrast
substrates, particle dispersion technique, pliable substrates,
system-on-package (SoP).

I. INTRODUCTION

MANY COMPLEX, mobile structures (aircrafts, ships, and
automobiles) require conformal antennas for radio com-

munication. This requirement can be particularly challenging for
small platforms since a large antenna is needed at these frequen-
cies. Concurrent requirements for greater bandwidth and multi-
functionality imply an even greater need for conformality. Ex-
isting conformal antennas are still printed on rigid laminate sub-
strates with curved shapes, making them expensive and cumber-
some, if not impractical, to manufacture and, hence, not appli-
cable for such platforms. Further, an increasing demand for inte-
gration of antennas with radio-frequency (RF) front-end circuits
makes use of such high-contrast substrates very attractive since
they also allow for miniaturization.

Polymers are rapidly becoming important among materials
for microwave and electronic applications whether used in pure
form or combined with ceramic powders. For example, in opto-
electronics, polymers have been used to produce mechanically
flexible “electronic paper” [1] and high-efficiency light-emit-
ting diodes [2]. Liquid crystal polymers (LCPs) have been pro-
posed for system-on-package (SoP) applications, displaying at-
tractive properties like low loss, low water absorption, and low
cost [3]. As a result, the LCPs have been promoted as a less ex-
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pensive application than the system-on-chip (SoC) technology
[4]. For SoPs, a three-dimensional (3-D) fabrication capability is
needed, and this is done via stereolithography where traditional
lithography is applied to fabricate complex microwave compo-
nents [5]. Among example RF applications already reported, we
note the use of an electro-optic polymer in [6] to design photonic
RF arrays. In [7], polymer–ceramic composites were proposed
as substrate materials for a scanning antenna, and, in [8] and
[9], polymer–ceramic mixtures were used for thin-film capaci-
tors. What is important to note about polymers is that: 1) though
they are not intrinsically functional, they can be doped and made
functional and 2) their “soft” or pliable nature (unlike crystalline
materials) enables flexible free-standing substrates in a variety
of different shapes.

In this paper, we propose (for the first time, to the best of our
knowledge) ceramic-reinforced elastic polymer composite sub-
strates for truly conformal microwave applications suitable for a
wide range of operating frequencies, i.e., 100 MHz–20 GHz. A
key advantage of the polymer–ceramic mixtures is the capability
to specify a range of high-contrast substrates by controlling the
ceramic mixture. The ceramic is introduced into the polymer via
a particle dispersion process, and its inherent elasticity is main-
tained provided the ceramic powder mixture is kept below a cer-
tain percentage, e.g., 30%–40%. Nevertheless, this percentage
level of mixtures allows for a significant range of substrate di-
electric constants which can also vary within the substrate for
texturing or other material design applications [10].

The practicality of the proposed polymer–ceramic substrates
presents us with other benefits, including the capability for
metallic inclusions within the substrate with no limitation
on substrate thickness, whichis typically not the case with
low-temperature co-fired ceramic (LTCC) technology [11],
[12]. Additionally, SoP integration applications can be con-
sidered. Moreover, the proposed mixing method is simple and
avoids expensive machinery needed for composite fabrication. It
is being carried out at room temperature, the complete procedure
takes about a day, and it avoids issues often encountered with
hard ceramic substrates (e.g., thermal mismatches or cracks).

In this paper, we use composite substrates created by com-
bining polydimethylsiloxane (PDMS) polymers from Dow
Corning with various ceramic powders, namely barium titanate
(BT-BaTiO3), Mg-Ca-Ti (MCT) from Trans-Tech Inc., and
Bi-Ba-Nd-Titanate (BBNT) from Ferro Corporation. The di-
electric properties of the fabricated substrates are measured
using an Agilent impedance material analyzer, and measure-
ments are verified by manufacturing and testing simple patch
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Fig. 1. Fabrication procedure for the proposed substrates. From left to right: (a) PDMS is prepared by mixing silicone gel with a crossing agent, stirred and then
degassed to remove surface bubbles; (b) ceramic is added, mixture is stirred, poured into containers, degassed, and left to dry; and (c) schematic representation of
the procedure.

antennas on the polymer–ceramic substrates. A coupled line
filter is also designed and measured to ensure low-loss perfor-
mance. Both the filter and patch are measured after bending at
various angles to demonstrate the flexibility of the substrate. In
the next sections, we begin by presenting fabrication processes
followed by the characterization of the substrates performance
and suggested use for antennas and filter applications.

II. MATERIALS AND FABRICATION METHODS

A. Materials

Among available polymer materials, we chose to work with
silicone primarily due to its highly desired elastic behavior.
PDMS is the most widely used silicone-based organic polymer
and is known for its unusual rheological/flow properties: it
is nonflammable, water- and chemical-resistant, and stable at
high temperature. PDMS has been extensively used in MEMS
technology and for the production of various probes and chips
in medical applications [13].

Among the various shades of commercial ceramic powders,
namely LTCC and high-temperature co-fired ceramics (HTCC),
we chose to work with BT-, BBNT-, and MCT-type powders
because of their wide range of available dielectric constants.
BT has been widely employed in capacitor technology due to
its ferroelectric properties [14], [15]. It is usually mixed with
polymers [8], [9], [16] and demonstrates a wide range of attain-
able dielectric permittivity (from a few tens to a few thousands)
values depending on its chemical form, grain size, environment
temperature, and added dopants [17]. BBNT falls into the LTCC
group of ceramic powders. It displays a dielectric permittivity of
up to 100 [10]. The MCT powder is an HTCC and is commer-
cially available in different dielectric shades from 20 to 140.

B. Fabrication Procedure

The proposed particle dispersion process is particularly suited
for pliable substrates. Unlike other techniques, it is implemented
at ambient temperatures. The process starts with the preparation
of T2 Silastic PDMS by adding one part (mass) of a cross-linking

Fig. 2. Example fabricated polymer–ceramic substrates.

agent to ten parts (mass) of silicone gel. The resulting silicone gel
is mixed thoroughly and placed into a vacuum chamber where ex-
cessive gas is removed by venting the surface bubbles within the
preparedgel.Next,thedesiredamountofceramicpowderisadded
to the degassed silicone gel and is again mixed thoroughly. The
resulting ceramic–polymer slurry mixture is poured into a plastic
container (of the desired shape). Degassing of the resulting mix-
ture is then done by placing the containers into a vented vacuum
chamber as done for the pure silicone gel. This process is the most
tedious step and plays a critical role to achieving homogenous ce-
ramic-reinforced polymer substrates. An average degassing time
for a dish (of average thickness 6 mm and average diameter 30
mm, filled with 20% ceramic) is approximately 3 h. The resulting
fully degassed mixture is then left for ambient drying and solidi-
fication (lasting about 24 h). The procedure is displayed in Fig. 1
with examples of flexible manufactured samples shown in Fig. 2.

III. MATERIAL PROPERTIES OF POLYMER–CERAMIC

SUBSTRATES

Before using the bendable polymer–ceramic substrates, we
proceeded to characterize their dielectric material properties,
i.e., permittivity and loss tangents. We used an Agilent E4991A
RF Impedance/Material Analyzer and 16453A calibration kit.
The employed technique is actually based on capacitance mea-
surements, and, as a reference load, we used a 0.78-mm-thick
Teflon sample having a dielectric permittivity of .
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Fig. 3. (a) Dielectric permittivity. (b) Loss tangent for the BT/PDMS samples at different volume ratios.

Fig. 4. (a) Dielectric permittivity and (b) loss tangent for the MCT/PDMS samples at different volume ratios.

Fig. 5. (a) Dielectric permittivity and (b) loss tangent for BBNT/PDMS samples at different volume ratios.

Different volume percentages of BT, MCT, and BBNT in
a PDMS matrix as well as pure PDMS samples were fabri-
cated and measured. The reported dielectric values for BBNT
and MCT were and , respectively. For the
BT-PDMS composites, the maximum attainable volume per-
centage was 25%, whereas for MCT-PDMS and BBNT-PDMS
composites the corresponding percentage was 30%. It should be
noted that bubbles within the MCT and BBNT mixtures were
encapsulated leading to lower dielectric values than it would be
expected.

The measured permittivity and loss tangent versus fre-
quency for the BT-PDMS composites are shown in Fig. 3.

The permittivity remains almost constant in the measured
100-MHz–1-GHz window, except for a slight linear drop as
the frequency increases. The maximum permittivity value was
around for a 25% BT volume mixture, and similar
results were reported in [14] and [15] for BT mixtures with
polymers. However, the loss tangent increased as the volume
ratio of BT also increased and was worse for higher frequencies.
More specifically, the highest loss for a 10% BT mixture was

, whereas for the 25% mixture it was
at 1 GHz.

Corresponding measurements for MCT/PDMS and BBNT/
PDMS composites are shown in Figs. 4 and 5. The dielectric
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Fig. 6. (a) Dielectric permittivity and (b) loss tangent for the various volume ratios of the ceramics powders in the PDMS matrix.

Fig. 7. (a) Gain and (b) return loss for a 24 mm � 24 mm patch antenna placed on a BT/PDMS substrate (20% volume ratio), a MCT/PDMS substrate (10%
volume ratio) and a pure PDMS substrate.

permittivity is obviously lower as compared with the BT/PDMS
mixtures discussed above with the 30% BBNT volume sample
giving . Similar values are observed for the MCT/PDMS
mixtures as shown in Fig. 4(a). The nonlinear behavior of the
measured for the MCT and PDMS samples is likely due to
voids within the mixture. As far as the loss tangent is concerned,
the MCT and BBNT mixtures show a consistent and fairly low
loss tangent of in the 100-MHz–1-GHz range
and for all the volume percentages up to 30%. The losses are
primarily due to the PDMS content, and this is more apparent
in Fig. 6, where we present the mean values of permittivity
and loss tangent for all samples. As the volume ratio of the
MCT or BBNT increases, the loss tangent decreases slightly.
At the same time (see Fig. 6), we also observe that higher
permittivity of the BT mixtures is obtained at the expense of
higher losses.

IV. MICROWAVE APPLICATIONS PERFORMANCE ON

CERAMIC–POLYMER SUBSTRATES

The above mentioned materials were used as substrates for
two applications, namely, a patch antenna and a coupled line
filter. The goal with the patch, apart from evaluating the polymer
surface metallization process, was to evaluate the antenna gain
and assess the loss-tangent impact.

A set of three patches were fabricated with metal epoxy used
to print on the substrates. The rectangular patches having cross
section of mm were printed on 20% BT volume,

pure silicone, and 10% MCT volume mixtures 4-mm thick (see
Fig. 7). The patches were fed by a 50 coaxial cable and simu-
lations were carried out with Ansoft HFSS for comparison. As
shown in Fig. 7(b), the measured and simulated return losses
for the three samples are in agreement, thus verifying the previ-
ously found dielectric constants. A minor disagreement is only
observed in the “depth” of the resonance, and this is likely due
to the fact that feeding points between simulation and measure-
ment may be slightly misplaced. The antenna gain measure-
ments along with the corresponding simulated results for the
three substrates are shown in Fig. 7(a). As expected, the higher
BT/PDMS loss tangent leads to rather low gain of 0.5 dBi
at boresight. In contrast, when the substrate is pure PDMS, the
gain is recovered and is near 5 dBi. Moreover MCT/PDMS
substrates give also high gain measurements close to 5 dBi. The
difference (0.5 dB) between PDMS and MCT/PDMS substrates
falls inside the measurement error.

To demonstrate the flexibility of the polymer substrates, we
selected the MCT/PDMS substrate and printed on it a 36 cm

36 cm patch. The substrate was 4-mm thick and was formed
by mixing 10% MCT in volume with PDMS, resulting in an
equivalent permittivity of and loss tangent
9 10 . Referring to Fig. 8, the patch was measured at three
bending angles, namely 30 , 60 , and 90 , with the feed placed
7.5 mm from the center of the patch and along the dividing axis
A of the patch as shown. The bending was done along the cir-
cumferential direction [18] [around the A axis in Fig. 8(a)] and
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Fig. 8. Return loss patterns curves for a patch bent around circumferential (A axis) and axial (B axis) directions. The patch was 38 mm� 38 mm and was placed
on 4 mm mixed with a 10% MCT volume substrate to yield a dielectric constant of 3.5. (a) S for circumferential bending (around the A axis), (b) S for axial
bending (around the B axis), (c) geometrical display of the bending angle, and (d) patch projection showing the feed location and the axes of bending.

Fig. 9. (a) Transmission coefficient S and (b) return loss S of a four-coupled-line filter (c) flat and bent at different angles and (d) geometrical details of the
filter (mm). The filter was placed on BBNT/PDMS substrate (15% volume ratio) 1.5-mm thick.

the axial direction [around the B axis in Fig. 8(b)] for a total of
six configurations. It is clear from Fig. 8(a) that bending around
the A axis (circumferential) shifts the patch resonance to lower
frequencies. This is expected since the substrate is elongated due

to its elastic properties. However, bending around the B axis has
little effect [see Fig. 8(b)], as the resonance mode of the patch
antenna is not affected this time. The reader is referred to [18]
for a study on the radiation patterns and gain due to curvature.
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As would be expected, the radiation pattern broadens when the
bending increases.

Apart from the simple patches, we also designed, fabricated,
and tested a microwave filter. This consisted of a four-coupled-
line filter with its geometrical details given in Fig. 9(d). Two
50- SMA probes were used for the input and output ports.
They were matched to the filter by using a microstrip transmis-
sion line [see Fig. 9(d)]. The designed operating frequency of
the filter was 6.6 GHz, and its bandwidth was 800 MHz. It was
placed on a 1.5-mm-thick substrate of relative dielectric con-
stant and a loss tangent of 0.9.

The manufacturing phase was completed in three steps. First,
the substrate (a 15 vol% BBNT/PDMS sample) was prepared,
and subsequently the filter (printed on an FR4 thin film—thick-
ness less than 0.2 mm) was placed on the BBNT/PDMS sub-
strate. After applying the feeding and the ground plane (copper
tape), the structure was encapsulated into pure silicone (PDMS),
which stabilized the printed film and allowed for “hard” han-
dling of the filter. It was then measured in four different posi-
tions, flat and bent at three different angles 30 , 60 , and 90
[see Fig. 9(c)] as before for the patch. Shown in Fig. 9(a) is
the measured and simulated transmission coefficients for the flat
position. The results are seen to satisfy our goal giving values
over 2 dB for nearly 700 MHz at the central frequency of 6.4
GHz. Nevertheless, there are some differences in the response,
and this is attributed to the presence of air bubbles encapsu-
lated between the filter layer and the substrate. This statement is
supported by the return loss [see Fig. 9(b)] data showing good
agreement between measurements and calculations (the sub-
strate performance has been verified as well). Direct printing
on the PMDS substrate is expected to eliminate this issue.

When the filter is bent, the general band performance does not
change, but the transmission coefficient is decreased slightly.
The transmission coefficient is affected more, of course, when
the filter is bent at 90 presenting the highest value of 3 dB
(probably due to radiation leakage). As far as the return loss is
concerned [Fig. 9(b)], as the filter is bent, its return loss im-
proves, which is probably due to the fact that less signal arrives
at and reflects from the receiving side.

V. DISCUSSION AND CONCLUSION

We presented a novel approach for fabricating pliable sub-
strates used for SoP technologies. A particular advantage of the
ceramic–polymer mixtures relates to the capability of obtaining
a wide range of dielectric constants while retaining pliability.

Our measurements showed that the BT/PDMS composites
displayed high permittivity of up to but had losses

. In contrast, the MCT/PDMS and BBNT/PDMS
mixtures exhibited low losses but were as-
sociated with lower dielectric permittivities . To
demonstrate the substrate performance, we constructed and
measured patch antennas and a coupled line microwave filter
on the PDMS substrates loaded with ceramic powders and
showed satisfactory response in terms of predicted substrate
permittivity and loss behavior. The filter and a patch antenna
were measured in flat and in bent positions to demonstrate the
substrate pliability/flexibility.

A further development of the proposed substrates would be
the fabrication of mixtures having high dielectric permittivities

with low loss characteristics . To
generate substrates with large volume ratios, we can slightly
alter the fabrication method such us heating the produced mix-
tures during the fabrication process, since the original liquid gel
would present more fluidity. At the same time, heating of the
samples could lead to removal of unwanted air bubbles inside
the ceramic/polymer composites. Use of powders with different
grain size may also be considered to find an optimal composi-
tion for the desired substrate characteristics. Direct printing is
another issue to be addressed for commercial repeatable stages.
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