
Expectation-Maximization (EM) is a method used to find the maximizer of a likelihood func-
tion. EM is designed for latent variable models, where the observed variable y can be regarded
as ‘incomplete data’ where the ‘complete’ data (x, y) includes a latent variable x also. The joint
distribution of x, y is assumed to depend on some parameter θ ∈ Θ, hence shown as pθ(x, y). Since
we observe y only, a maximum likelihood estimation procedure for θ seeks to find

θMLE = argmax
θ∈Θ

pθ(y),

where

pθ(y) =

∫
pθ(x, y)dx.

I am using the integral sign in a general sense here. If x is a discrete random variable, the above
integral would reduce to pθ(y) =

∑
x pθ(x, y).

EM is an iterative algorithm, producing iterates θ(1), θ(2), . . . starting from an initial point θ(0).
One iteration of EM can be expressed as

θ(j+1) = argmax
θ∈Θ

Q(θ(j), θ), j ≥ 0.

Here, Q(θ(j), θ) is called the intermediate function of EM and it is an expectation of the form

Q(θ′, θ) =

∫
log pθ(x, y)pθ′(x|y)dx, θ, θ′ ∈ Θ.

The evaluation of the above expectation is called the E-step and its maximization is called the
M-step.

EM guarantees that pθ(j+1)(y) ≥ pθ(j)(y). Why? Firstly, observe that

log pθ(y) = log pθ(x, y)− log pθ(x|y).

Taking the integral of both sides with respect to pθ′(x|y), we get

log pθ(y) =

∫
log pθ(y)pθ′(x|y)dx =

∫
(log pθ(x, y)− log pθ(x|y))pθ′(x|y)dx.

Reorganizing, we have

log pθ(y) =

∫
log pθ(x, y)pθ′(x|y)dx−

∫
log pθ(x|y)pθ′(x|y)dx

= Q(θ′, θ)−
∫

log pθ(x|y)pθ′(x|y)dx.

Note that this holds for any θ, θ′ ∈ Θ. Now, let θ = θ(j+1) and θ′ = θ(j) and rewrite the above as

log pθ(j+1)(y) = Q(θ(j), θ(j+1))−
∫

log pθ(j+1)(x|y)pθ(j)(x|y)dx

Again, let θ = θ(j) and θ′ = θ(j) and rewrite the equality as

log pθ(j)(y) = Q(θ(j), θ(j))−
∫

log pθ(j)(x|y)pθ(j)(x|y)dx.
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Subtracting the second equation from the first, we get

log pθ(j+1)(y)− log pθ(j)(y) = Q(θ(j), θ(j+1))−Q(θ(j), θ(j))−
∫
[log pθ(j+1)(x|y)− log pθ(j)(x|y)]pθ(j)(x|y)dx

= Q(θ(j), θ(j+1))−Q(θ(j), θ(j))−
∫

log
pθ(j+1)(x|y)
pθ(j)(x|y)

pθ(j)(x|y)dx

Lets look at the differences Q(θ(j), θ(j+1)) − Q(θ(j), θ(j)) and −
∫
log

p
θ(j+1) (x|y)
p
θ(j)

(x|y) pθ(j)(x|y)dx. Since

θ(j+1) is the maximizer of Q(θ(j), θ) over θ, it holds necessarily that

Q(θ(j), θ(j+1))−Q(θ(j), θ(j)) ≥ 0.

The second difference is also positive. This is because logarithm is a concave function, hence minus
logarithm is a convex function. A convex function f : R 7→ R, Jensen’s inequality states that

E[f(U)] ≥ f(E[U ]) for any distribution for U . Applying it to f(u) = − log u and U =
p
θ(j)

(X|y)
p
θ(j+1) (X|y) ,

we get ∫
− log

pθ(j)(x|y)
pθ(j+1)(x|y)

pθ(j+1)(x|y)dx ≥ − log

∫
pθ(j)(x|y)
pθ(j+1)(x|y)

pθ(j+1)(x|y)dx = − log 1 = 0.

Combining both inequalities, we finally obtain log pθ(j+1)(y) ≥ log pθ(j)(y).

2


