Expectation-Maximization (EM) is a method used to find the maximizer of a likelihood func-
tion. EM is designed for latent variable models, where the observed variable y can be regarded
as ‘incomplete data’ where the ‘complete’ data (z,y) includes a latent variable z also. The joint
distribution of x,y is assumed to depend on some parameter § € ©, hence shown as py(z,y). Since
we observe y only, a maximum likelihood estimation procedure for 8 seeks to find

0 = arg ma
MLE rg eeé(pe(y%

where

m@%i/mwwﬂw

I am using the integral sign in a general sense here. If x is a discrete random variable, the above
integral would reduce to pp(y) = >, po(z,y).

EM is an iterative algorithm, producing iterates (1), () .. starting from an initial point (%),
One iteration of EM can be expressed as

pli+1) — 9\ g P> 0.
argmax Q(97,6), j =0

Here, Q(Q(j), 0) is called the intermediate function of EM and it is an expectation of the form

Q'.0) = [ g mole.ypelaly)ds, 0.6 €6,
The evaluation of the above expectation is called the E-step and its maximization is called the

M-step.
EM guarantees that py+1)(y) > ppii) (y). Why? Firstly, observe that

log pg(y) = log pe(x,y) — log pe(x|y).

Taking the integral of both sides with respect to py/ (z]y), we get

log pa(y) = / log pg (y)per (x]y)dx = / (log pg(z,y) — log pe(z|y))per (x|y)dz.

Reorganizing, we have

logpa(y) = [ log (e ppw (aly)do — [ og pa(aly)pw (aly)da
= Q(0'.0) ~ [ 1ogpa(aly)po(aly)ds
Note that this holds for any 6,6’ € ©. Now, let # = 80U+ and ¢’ = #U) and rewrite the above as
log g+ (y) = QO 09+Y)) — / log pyts v (2ly)pgc (2ly)d
Again, let § = 0 and ¢’ = 019 and rewrite the equality as

logpg(]-)(y) = Q(e(j),e(j)) - /logp(,(j>(x]y)p9(]-)(x\y)d:r.



Subtracting the second equation from the first, we get

log paii+1) () — log poii (y) = Q(OW), 00Dy — (8D, 910 — / [log ppii+v) (2]y) — log peoy) (|y)pee (x|y)da

— Q(0), UtV — (a0, gy — /log Poue(Tly) oty
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Lets look at the differences Q(07), 0U+1)) — Q(9U),0\0)) and — [log %Pem(ﬂwdﬂ Since
o (i

00U+ is the maximizer of Q(8Y), ) over 6, it holds necessarily that
QW) 9U+Dy — () 919y > 0.

The second difference is also positive. This is because logarithm is a concave function, hence minus
logarithm is a convex function. A convex function f : R — R, Jensen’s inequality states that

E,[f (l/)] > f(E[l/]) f()r any diSlIil)llli()Il f()I Z/. Ap[)lying it to ?(U) = —].()g u and L ~p (gfj)li()(wé)?
0(d+
we get
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Combining both inequalities, we finally obtain log py(;+1)(y) > log pyi) (y)-



