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Data analysis vs Privacy

Sensitive data set of n individuals: x1, . . . , xn

Two conflicting interests:
1. We want to work with sensitive data sets

I to perform inference about a population.
I for optimization
I etc.

2. Individuals contributing to data sets with their sensitive
information want to preserve their privacy.

A significant amount of research is devoted to developing useful
methods for data analysis while protecting data privacy.
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An outline

This lecture:
I Introduction to main concepts and tools of differential privacy
I A step-by-step application from data-driven optimization.

Tutorial:
I Python implementation of some differentially private

algorithms.
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Privacy framework

Individual i with sensitive information xi ∈ X.

Data collected from n individuals: x = (x1, . . . , xn) ∈ Xn.

(Statistics of) the x is to be shared with the public for analysis.

Data privacy: main question
How should (statistics of) x = (x1, . . . , xn) be shared so that
I privacy of each individual is protected, and
I the shared information is useful.
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A graphical summary
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Some extreme solutions(?)

I Full transparency: Share x = (x1, . . . , xn).
I Very useful, but not private.

I Full secrecy: Toss a coin and share the outcome.
I Very private, but not useful.
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More sensible alternatives

I Anonymization: Remove any identifying information from
the data.

I Statistic of private data: Do not share x = (x1, . . . , xn);
share a statistic.

S(x1:n) = 1
n

n∑
i=1

xi ,
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All against one

Both methods are prone to conspiracy by all against one.

I Imagine individuals 1, 2, . . . , n − 1 have shared their data
x1, . . . , xn−1 among themselves.

I ⇒ xn can be found!

S(x1:n) = 1
n

n∑
i=1

xi ⇒ xn = nS(x1:n)−
n−1∑
i=1

xi

Deterministic outputs do not work!
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Randomized algorithms

Set of data values (sample space): X

A data set: x = (x1, . . . , xn) ∈ Xn

Set of data sets: X =
⋃∞

n=1 Xn.

Randomised algorithm
A randomized algorithm is essentially a random function
A : X 7→ Y.
The output of the algorithm upon taking an input x ∈ X ,

A(x) ∈ Y,

is a random variable with support domain Y.

The randomness is due to the inner mechanisms of the algorithm.
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Neighboring data sets

x = (x1, . . . , xn): sensitive data of n individuals.

Neighbouring data sets (replacement)
Datasets x, x ′ ∈ X are neighbours if they differ by a single element

x = (x1, . . . , xk , . . . , xn), x ′ = (x1, . . . , x ′k , . . . , xn)

We want to have a mechanism whose output on x and x ′ are
(probabilistically) similar when x and x ′ are neighbors.
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Differential privacy

Differential privacy (Dwork, 2006)
We say that A is (ε, δ)-DP if, for neighbour x, x ′ ∈ X and any
subset of output values O ⊆ Y,

P [A(x) ∈ O] ≤ eεP
[
A(x ′) ∈ O

]
+ δ.

When δ = 0, we say A is ε-DP (pure differential privacy).

Related forms of privacy:
I Reyni differential privacy
I (zero) concentrated differential privacy
I Gaussian differential privacy (GDP)
I Bayesian differential privacy
I etc.
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Alternative neighboring relations

Previously, we the neighbor relation replacement. Other relations
are possible:

Neighbouring data sets (addition/removal)
Datasets x, x ′ ∈ X are neighbours if one can be obtained from the
other by addition or removal of a single element. Examples:

x = (x1, . . . , xk , . . . , xn), x ′ = (x1, . . . , xk−1, xk+1, . . . , xn)
x = (x1, . . . , xk , . . . , xn), x ′ = (x1, . . . , xk , x ′, xk+1, . . . , xn).

Privacy properties can depend on the neighboring relation.
I (ε, δ)-DP wrt replacement ⇒ (ε, δ)-DP wrt to add/rem.
I (ε, δ)-DP wrt add/rem ⇒ (2ε, (1 + eε)δ)-DP wrt replacement.
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Laplace mechanism

The L1-sensitivity of a function S : X 7→ Rd is given by

∆S,1 = sup
neighbour x,x′

‖S(x)− S(x ′)‖1.

Laplace mechanism
An algorithm is ε-DP if it outputs

A(x) = S(x) + V , Vi
i.i.d.∼ Laplace

(∆S,1
ε

)
, i = 1, . . . , d .
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All against one - revisited

Now, instead of sharing S(x1:n) = 1
n
∑n

i=1 xi , we share

Y = 1
n

n∑
i=1

xi + V .

I Even if individuals 1, 2, . . . , n − 1 have shared their data
x1, . . . , xn−1 among themselves, xn cannot be deduced!

Y = 1
n

n∑
i=1

xi + V ⇒ xn = nY −
n−1∑
i=1

xi − nV

Randomness protects xn.

15 / 41



Randomized responses
Randomization of binary responses.

Question: Do you approve the president?

ε-DP randomization
Answer truly with probability eε

1+eε ; otherwise flip your answer.

Can be extended to K ≥ 2 categories.

Question: Among K political parties, which one do you support?

ε-DP randomization
Answer truly with probability eε

K−1+eε ; otherwise answer at random.

Randomized responses provide DP at the local level.
Such a DP guarantee is called Local DP.
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Post-processing

One of the useful properties of DP is post-processing.

Post-processing
If A is (ε, δ), then f ◦ A is (ε, δ)-DP, too.

Note: f ◦ A(x) = f (A(x)).

Meaning: Differential privacy is preserved under post-processing.
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Composition
Repeated application of DP algorithms on the same dataset
degrade privacy.

K -fold composition
Assume Ak is (εk , δk)-DP for k = 1, . . . ,K . Application of Ak ,
k = 1, . . . ,K on the same input data set results in( K∑

k=1
εk ,

K∑
k=1

δk

)
-DP.

This result still holds when an algorithm depends on the outputs of
the previous algorithms.
- particularly useful for adaptive/iterative algorithms.

When δk ’s are 0, the result is tight. With non-zero δk ’s, other
definitions of DP compose better.
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Reyni DP and zero-concentrated DP (zCDP)

Renyi divergence
For probability distributions P and Q the Renyi divergence of order
α > 1

Dα(P||Q) := 1
α− 1 lnE [P(x)/Q(x)]α

If X ∼ P and Y ∼ Q, we Dα(X ||Y ) is equivalent to Dα(P||Q).

Reyni DP (Mironov, 2017) and zCDP (Bun and Steinke, 2016)
An algorithm A is (α, ε)-Reyni DP if for all neighbour x , x ′ ∈ X,

Dα(A(x)||A(x ′)) ≤ ε.

An algorithm A is is ρ-zCDP if for all neighbor x , x ′ and α > 1,

Dα(A(x)||A(x ′)) ≤ αρ
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Composition properties for Reyni DP and zCDP

Composition theorem for Reyni DP
The composition of (α, εi )-Reyni-DP algorithms for i = 1, . . . ,T is(

α,
T∑

i=1
εi (α)

)
-Reyni DP.

Composition theorem for zCDP
The composition of ρi -zCDP algorithms for i = 1, . . . ,T is( T∑

i=1
ρi

)
-zCDP.
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Gaussian mechanism

The L2-sensitivity of a function S : X 7→ Rd is given by

∆S,2 = sup
neighbour x,x′

‖S(x)− S(x ′)‖2.

Gaussian mechanism
An algorithm is ρ-zCDP if it outputs

Y = S(x) + V , Vi
i.i.d.∼ N

(
0,

∆2
S,2
ρ

)
, i = 1, . . . , d .
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Conversions
To be able to convert one DP definition to another offers huge
flexibility in designing algorithms.

zCDP to Reyni DP
If an algorithm ρ-zCDP, it is (α, αρ)-Reyni DP for any α.

Reyni DP to (ε, δ)-DP
If an algorithm (α, ε)-Reyni DP, it is (ε, e−(α−1)(ε−ε))-DP for any
ε > ε.

zCDP to (ε, δ)-DP
If an algorithm A is ρ-zCDP, then it is (ε, δ) for all (ε, δ) satisfying

δ > 0, ε = ρ+ 4ρ ln(1/δ).

More conversions exist.
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Privacy amplification by subsampling
Let A be private algorithm that operates on datasets

x = (x1, . . . , xn)

Consider another algorithm A′, who
I Takes a random subsample from x
I Operates on the subset just like A.

Question: What is the privacy of A′?

The answer depends on
I Type of privacy of A,
I Type of subsampling
I Neighborhood relation

See Balle et al. (2018); Steinke (2022) for more relations.
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Amplification of (ε, δ)-DP

Assume A is (ε, δ)-DP.

Suppose that
I the subsample size is fixed to m and
I the subsample is drawn by sampling without replacement.
I the neighborhood relation is replacement.

Then, A′ is (ε′, δ′)-DP, where

ε′ = ln
(
1 + m

n (eε − 1)
)
, δ′ = m

n δ.
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Amplification of Reyni DP

Assume A is (α, ε(α))-Reyni DP.
Meaning: A satisfies (α, ε(α))-Reyni DP for all α > 1

Suppose that
I each element in x is included in the subsample with γ

probability, independently of the other elements (Poisson
subsampling).

I the neighborhood relation is addition/removal.
Then, A′ is

(α, εγ(dαe))-Reyni DP,
where

εγ(k) = 1
k − 1 ln

(
(1 − γ)k−1(1 + (k − 1)γ) +

k∑
i=2

(
k
i

)
(1 − γ)k−iγ i e(i−1)ε(i)

)
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Application: Differentially private stochastic gradient descend

26 / 41



Differentially private optimization with stochastic gradients

A data-driven optimization problem:

min
θ∈Θ

F (θ; x1:n)

where
F (θ; x1:n) := 1

n

n∑
i=1

f (θ; xi ) + λ

2 ‖θ‖
2

In a data-related framework,
I yi : data from individual i ,
I θ: model parameter,
I n: the data size.
I λ: regularizer (prior?)
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Stochastic gradient and Nesterov’s accelerated gradient

The gradient vector:

∇F (θ; x1:n) = 1
n

n∑
i=1
∇fi (θ; xi ).

Gradient descend:

θt+1 = θt − α∇F (θt ; x1:n), t ≥ 0

Stochastic Gradient descend:

θt+1 = θt − α
1

mt

∑
i∈Ut

∇fi (θ; xi ), t ≥ 0,

where Ut ⊂ {1, . . . , n} is a random subsample of size mt ≤ n.
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Differentially private SGD

To achieve (ε, δ)-DP after T iterations

DP-SGD

θt+1 = θt − η

 1
mt

∑
i∈Ut

∇fi (θt ; xi ) + vt



The distribution of the DP noise vt depends on
I DP parameters: ε, δ.
I Sensitivity of ∇fi (θt ; ·)
I mt (privacy amplification by subsampling)
I T (composition property)
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Example: Logistic regression

Let x = (z , y), where
I z ∈ Rd is the feature vector
I y ∈ {0, 1}: binary response.

The probability of observing a label “1” given the feature vector z
and regression parameter θ ∈ Rd is

p(y |z , θ) = eyzθ

1 + ezθ ,

Let
f (θ; x) = − ln p(y |z , θ)

Estimate θ by minimizing

F (θ; x1:n) := 1
n

n∑
i=1

f (θ; xi ) + λ‖θ‖
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Logistic regression - sensitivity
Lp sensitivity of ∇f (θ, ·):

∆p(θ) = sup
x ,x ′
‖∇f (θ; x)−∇f (θ; x ′)‖p = 2 sup

x
‖x‖p

With unbounded data, the sensitivity is ∞.

Solutions:
I If the data is bounded ‖x‖p ≤ Bp/2 for some Bp <∞, then

∆p(θ) = Bp

I Clipping: Use a clipped version of ∇f (θ; x ′)

∇̂f (θ; x) = min{Bp, ‖∇f (θ; x)‖p}
∇f (θ; x)
‖∇f (θ, x)‖p

.

The sensitivity of the clipped gradient is Bp.
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Scenario 1
We want ε-DP after T iterations, using subsampling without
replacement with fixed subsample size m < n.
I By the composition theorem for DP, we need to achieve
ε/T -DP per iteration.

I Laplace noise is needed to achieve pure DP.

vt ∼ Laplace(σ)

By amplification due to subsampling, the privacy loss per
iteration is [

(eB1/σm − 1)m
n + 1

]
Equate this to eε/T , and solve for σ:

σ = B1
m ln

[
1 + (eε/T − 1)n/m

]
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Scenario 2
We want (ε, δ)-DP after T iterations, without subsampling
(m = n).
I Find ρ-zCDP that implies (ε, δ)-DP.

ε = ρ+ 2
√
ρ ln(1/δ)⇒ ρ =

√
ln(1/δ) + ε−

√
ln(1/δ)

I By the basic composition theorem for zCDP, we need to
achieve ρ/T -zCDP per iteration.

I Gaussian noise is needed for zCDP.

vt ∼ N (0, σ2) provides B2
2

n2σ2
Since the zCDP privacy loss per iteration is ρ/T , we solve

ρ

T = B2
2

n2σ2
for σ2 to find

σ2 = TB2
2

n2ρ2
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Scenario 3

We want (ε, δ)-DP after T iterations, with subsampling (m < n).

DP-SGD
For t = 1, . . . ,T ,

θt+1 = θt − η

 1
m
∑
i∈Ut

∇fi (θt ; xi ) + vt

 , vt ∼ N (0, σ2I)

Caution: This time, differently than the other two scenarios, we
will assume that the neighboring relation is addition/removal.
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Scenario 3: Algorithmic outline
An analytical formula for σ that gives (ε, δ)-DP after T iterations
using σ is difficult to obtain.
This time, we will take the following approach:
I For a fixed noise level is σ and T iterations,

1. Calculate the zCDP of the algorithm for one iteration if full
data is used.

2. Convert zCDP to Reyni-DP (because the latter behaves well
under subsampling)

3. Find the privacy amplification of a Reyni-DP algorithm in
terms of Reyni-DP.

4. Apply composition and find the overall Reyni-DP after T
iterations.

5. Convert Reyni-DP to (ε, δ)-DP
I The resulting DP parameters depend on σ, so lets denote

them by (ε(σ), δ(σ)). We will arrange σ such that
ε(σ) ≤ ε, δ(σ) ≤ δ

and the differences are as small as possible.
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Step 1: Find zCDP of a single iteration w.o subsampling

DP-SGD
For t = 1, . . . ,T ,

θt+1 = θt − η
(
1
n

n∑
i=1
∇fi (θt ; xi ) + vt

)
, vt ∼ N (0, σ2I)

If iterations were performed on the full data set, we would have

B2
2

n2σ2 -zCDP

per iteration.
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Step 2: Convert to zCDP to Reyni DP

DP-SGD
For t = 1, . . . ,T ,

θt+1 = θt − η
(
1
n

n∑
i=1
∇fi (θt ; xi ) + vt

)
, vt ∼ N (0, σ2I)

zCDP to Reyni DP
If an algorithm ρ-zCDP, it is (α, αρ)-Reyni DP for any α.

Using the theorem

B2
2

n2σ2 -zCDP ⇒
(
α, ε(α) := α

B2
2

n2σ2

)
- Reyni DP.
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Step 3: Privacy amplification with subsampling

DP-SGD
For t = 1, . . . ,T ,

θt+1 = θt − η

 1
mt

∑
i∈Ut

∇fi (θt ; xi ) + vt

 , vt ∼ N (0, σ2I)

Under Poisson subsampling, the privacy per iteration is amplified:

(α, ε(α))-Reyni DP + Poiss subs. with γ ⇒ (α, εγ(dαe))-Reyni DP

where, for a subsampling rate of γ ∈ [0, 1], we have

εγ(k) = 1
k − 1 ln

(
(1 − γ)k−1(1 + (k − 1)γ) +

k∑
i=2

(
k
i

)
(1 − γ)k−iγ i e(i−1)ε(i)

)
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Step 4: Privacy after T steps

Composition theorem for Reyni DP
The composition of (α, εi (α))-Reyni-DP algorithms for
i = 1, . . . ,T is (

α,
T∑

i=1
εi (α)

)
-Reyni DP.

After T steps, the algorithm becomes(
α,T εγ

(⌈
α

B2
2

n2σ2

⌉))
-Reyni DP
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Step 5: Convert to (ε, δ)-DP

Reyni DP to (ε, δ)-DP
If an algorithm (α, ε)-Reyni DP, it is (ε, e−(α−1)(ε−ε))-DP for any
ε > ε.

Therefore, the algorithm after T iterations is(
ε, exp

{
−(α− 1)

[
ε− T εγ

(⌈
α

B2
2

n2σ2

⌉)]})

for any

ε > T εγ
(⌈

α
B2
2

n2σ2

⌉)
Play with σ and α to achieve a targeted (ε, δ) privacy.
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