Differential Privacy

Sinan Yıldırım

Trustworthy AIGalatasaray Üniversitesi, İstanbul

30 Mart 2024

Motivation

Differential privacy: Definition and examples

Basic Properties

Application: Differentially private stochastic gradient descend

Data analysis vs Privacy

Sensitive data set of *n* individuals: x_1, \ldots, x_n

Two conflicting interests:

- 1. We want to work with sensitive data sets
 - ▶ to perform inference about a population.
 - for optimization
 - etc.
- 2. Individuals contributing to data sets with their sensitive information want to preserve their privacy.

A significant amount of research is devoted to developing useful methods for data analysis while protecting data privacy.

An outline

This lecture:

- Introduction to main concepts and tools of differential privacy
- ► A step-by-step application from data-driven optimization.

Tutorial:

Python implementation of some differentially private algorithms.

Privacy framework

Individual i with sensitive information $x_i \in X$.

Data collected from n individuals: $\mathbf{x} = (x_1, \dots, x_n) \in X^n$.

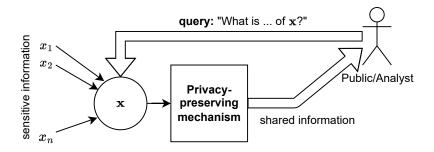
(Statistics of) the x is to be shared with the public for analysis.

Data privacy: main question

How should (statistics of) $\mathbf{x} = (x_1, \dots, x_n)$ be shared so that

- privacy of each individual is protected, and
- ▶ the shared information is useful.

A graphical summary



Some extreme solutions(?)

- ▶ Full transparency: Share $\mathbf{x} = (x_1, \dots, x_n)$.
 - Very useful, but not private.

- ► Full secrecy: Toss a coin and share the outcome.
 - Very private, but not useful.

More sensible alternatives

► **Anonymization:** Remove any identifying information from the data.

▶ Statistic of private data: Do not share $\mathbf{x} = (x_1, \dots, x_n)$; share a statistic.

$$S(x_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

All against one

Both methods are prone to conspiracy by all against one.

- ▶ Imagine individuals 1, 2, ..., n-1 have shared their data $x_1, ..., x_{n-1}$ among themselves.
- $ightharpoonup \Rightarrow x_n \text{ can be found!}$

$$S(x_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} x_i \quad \Rightarrow x_n = nS(x_{1:n}) - \sum_{i=1}^{n-1} x_i$$

Deterministic outputs do not work!

Randomized algorithms

Set of data values (sample space): X

A data set: $\mathbf{x} = (x_1, \dots, x_n) \in X^n$

Set of data sets: $\mathcal{X} = \bigcup_{n=1}^{\infty} X^n$.

Randomised algorithm

A randomized algorithm is essentially a *random* function $A: \mathcal{X} \mapsto \mathcal{Y}$.

The output of the algorithm upon taking an input $\mathbf{x} \in \mathcal{X}$,

$$A(x) \in \mathcal{Y}$$

is a random variable with support domain \mathcal{Y} .

The randomness is due to the inner mechanisms of the algorithm.

Neighboring data sets

 $\mathbf{x} = (x_1, \dots, x_n)$: sensitive data of n individuals.

Neighbouring data sets (replacement)

Datasets $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ are neighbours if they differ by a single element

$$\mathbf{x} = (x_1, \dots, \mathbf{x_k}, \dots, x_n), \quad \mathbf{x'} = (x_1, \dots, \mathbf{x_k'}, \dots, x_n)$$

We want to have a mechanism whose output on x and x' are (probabilistically) similar when x and x' are neighbors.

Differential privacy

Differential privacy (Dwork, 2006)

We say that A is (ϵ, δ) -DP if, for neighbour $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$ and any subset of output values $O \subseteq \mathcal{Y}$,

$$\mathbb{P}\left[A(\mathbf{x}) \in O\right] \leq e^{\epsilon} \mathbb{P}\left[A(\mathbf{x}') \in O\right] + \delta.$$

When $\delta = 0$, we say A is ϵ -DP (pure differential privacy).

Related forms of privacy:

- Reyni differential privacy
- (zero) concentrated differential privacy
- Gaussian differential privacy (GDP)
- Bayesian differential privacy
- etc.

Alternative neighboring relations

Previously, we the neighbor relation replacement. Other relations are possible:

Neighbouring data sets (addition/removal)

Datasets $x, x' \in \mathcal{X}$ are neighbours if one can be obtained from the other by addition or removal of a single element. Examples:

$$\mathbf{x} = (x_1, \dots, \mathbf{x}_k, \dots, x_n), \quad \mathbf{x}' = (x_1, \dots, x_{k-1}, x_{k+1}, \dots, x_n)$$

 $\mathbf{x} = (x_1, \dots, x_k, \dots, x_n), \quad \mathbf{x}' = (x_1, \dots, x_k, \mathbf{x}', x_{k+1}, \dots, x_n).$

Privacy properties can depend on the neighboring relation.

- (ϵ, δ) -DP wrt replacement $\Rightarrow (\epsilon, \delta)$ -DP wrt to add/rem.
- (ϵ, δ) -DP wrt add/rem $\Rightarrow (2\epsilon, (1 + e^{\epsilon})\delta)$ -DP wrt replacement.

Laplace mechanism

The L_1 -sensitivity of a function $S: \mathcal{X} \mapsto \mathbb{R}^d$ is given by

$$\Delta_{S,1} = \sup_{\mathsf{neighbour}\; \boldsymbol{x}, \boldsymbol{x}'} \| S(\boldsymbol{x}) - S(\boldsymbol{x}') \|_1.$$

Laplace mechanism

An algorithm is ϵ -DP if it outputs

$$A(\pmb{x}) = S(\pmb{x}) + V, \quad V_i \overset{\text{i.i.d.}}{\sim} \mathsf{Laplace}\left(rac{\Delta_{S,1}}{\epsilon}
ight), \quad i = 1, \dots, d.$$

All against one - revisited

Now, instead of sharing $S(x_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} x_i$, we share

$$Y = \frac{1}{n} \sum_{i=1}^{n} x_i + V.$$

Even if individuals 1, 2, ..., n-1 have shared their data $x_1, ..., x_{n-1}$ among themselves, x_n cannot be deduced!

$$Y = \frac{1}{n} \sum_{i=1}^{n} x_i + V \quad \Rightarrow x_n = nY - \sum_{i=1}^{n-1} x_i - nV$$

Randomness protects x_n .

Randomized responses

Randomization of binary responses.

Question: Do you approve the president?

ϵ -DP randomization

Answer truly with probability $\frac{e^{\epsilon}}{1+e^{\epsilon}}$; otherwise flip your answer.

Can be extended to $K \geq 2$ categories.

Question: Among K political parties, which one do you support?

ϵ -DP randomization

Answer truly with probability $\frac{e^{\varepsilon}}{K-1+e^{\varepsilon}};$ otherwise answer at random.

Randomized responses provide DP at the local level.

Such a DP guarantee is called Local DP.

Post-processing

One of the useful properties of DP is post-processing.

Post-processing

If A is (ϵ, δ) , then $f \circ A$ is (ϵ, δ) -DP, too.

Note: $f \circ A(\mathbf{x}) = f(A(\mathbf{x}))$.

Meaning: Differential privacy is preserved under post-processing.

Composition

Repeated application of DP algorithms on the same dataset degrade privacy.

K-fold composition

Assume A_k is (ϵ_k, δ_k) -DP for k = 1, ..., K. Application of A_k , k = 1, ..., K on the same input data set results in

$$\left(\sum_{k=1}^K \epsilon_k, \sum_{k=1}^K \delta_k\right)\text{-DP}.$$

This result still holds when an algorithm depends on the outputs of the previous algorithms.

- particularly useful for adaptive/iterative algorithms.

When δ_k 's are 0, the result is tight. With non-zero δ_k 's, other definitions of DP compose better.

Reyni DP and zero-concentrated DP (zCDP)

Renyi divergence

For probability distributions P and Q the Renyi divergence of order $\alpha>1$

$$D_{lpha}(P||Q) := rac{1}{lpha - 1} \ln \mathbb{E} \left[P(x) / Q(x)
ight]^{lpha}$$

If $X \sim P$ and $Y \sim Q$, we $D_{\alpha}(X||Y)$ is equivalent to $D_{\alpha}(P||Q)$.

Reyni DP (Mironov, 2017) and zCDP (Bun and Steinke, 2016)

An algorithm A is (α, ε) -Reyni DP if for all neighbour $x, x' \in X$,

$$D_{\alpha}(A(x)||A(x')) \leq \varepsilon.$$

An algorithm A is is ρ -zCDP if for all neighbor x, x' and $\alpha > 1$,

$$D_{\alpha}(A(x)||A(x')) \leq \alpha \rho$$

Composition properties for Reyni DP and zCDP

Composition theorem for Reyni DP

The composition of (α, ε_i) -Reyni-DP algorithms for $i = 1, \dots, T$ is

$$\left(\alpha, \sum_{i=1}^{T} \varepsilon_i(\alpha)\right)$$
-Reyni DP.

Composition theorem for zCDP

The composition of ρ_i -zCDP algorithms for $i=1,\ldots,T$ is

$$\left(\sum_{i=1}^{T} \rho_i\right)$$
-zCDP.

Gaussian mechanism

The L_2 -sensitivity of a function $S: \mathcal{X} \mapsto \mathbb{R}^d$ is given by

$$\Delta_{S,2} = \sup_{\mathsf{neighbour} \ \textbf{\textit{x}}, \textbf{\textit{x}}'} \| S(\textbf{\textit{x}}) - S(\textbf{\textit{x}}') \|_2.$$

Gaussian mechanism

An algorithm is ρ -zCDP if it outputs

$$Y = S(\mathbf{x}) + V, \quad V_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}\left(0, \frac{\Delta_{S,2}^2}{\rho}\right), \quad i = 1, \ldots, d.$$

Conversions

To be able to convert one DP definition to another offers huge flexibility in designing algorithms.

zCDP to Reyni DP

If an algorithm ρ -zCDP, it is $(\alpha, \alpha\rho)$ -Reyni DP for any α .

Reyni DP to (ϵ, δ) -DP

If an algorithm (α, ε) -Reyni DP, it is $(\epsilon, e^{-(\alpha-1)(\epsilon-\varepsilon)})$ -DP for any $\epsilon > \varepsilon$.

zCDP to (ϵ, δ) -DP

If an algorithm A is ρ -zCDP, then it is (ϵ, δ) for all (ϵ, δ) satisfying

$$\delta > 0$$
, $\epsilon = \rho + 4\rho \ln(1/\delta)$.

More conversions exist.

Privacy amplification by subsampling

Let A be private algorithm that operates on datasets

$$\mathbf{x} = (x_1, \dots, x_n)$$

Consider another algorithm A', who

- Takes a random subsample from x
- ▶ Operates on the subset just like *A*.

Question: What is the privacy of A'?

The answer depends on

- Type of privacy of A,
- ► Type of subsampling
- Neighborhood relation

See Balle et al. (2018); Steinke (2022) for more relations.

Amplification of (ϵ, δ) -DP

Assume *A* is (ϵ, δ) -DP.

Suppose that

- the subsample size is fixed to m and
- ▶ the subsample is drawn by sampling without replacement.
- ▶ the neighborhood relation is replacement.

Then, A' is (ϵ', δ') -DP, where

$$\epsilon' = \ln\left(1 + \frac{m}{n}(e^{\epsilon} - 1)\right), \quad \delta' = \frac{m}{n}\delta.$$

Amplification of Reyni DP

Assume A is $(\alpha, \varepsilon(\alpha))$ -Reyni DP. Meaning: A satisfies $(\alpha, \varepsilon(\alpha))$ -Reyni DP for all $\alpha > 1$

Suppose that

- ightharpoonup each element in x is included in the subsample with γ probability, independently of the other elements (Poisson subsampling).
- the neighborhood relation is addition/removal.

Then, A' is

$$(\alpha, \varepsilon_{\gamma}(\lceil \alpha \rceil))$$
-Reyni DP,

where

$$\varepsilon_{\gamma}(k) = \frac{1}{k-1} \ln \left((1-\gamma)^{k-1} (1+(k-1)\gamma) + \sum_{i=2}^{k} \binom{k}{i} (1-\gamma)^{k-i} \gamma^{i} e^{(i-1)\varepsilon(i)} \right)$$

Application: Differentially private stochastic gradient descend

Differentially private optimization with stochastic gradients

A data-driven optimization problem:

$$\min_{\theta \in \Theta} F(\theta; x_{1:n})$$

where

$$F(\theta; x_{1:n}) := \frac{1}{n} \sum_{i=1}^{n} f(\theta; x_i) + \frac{\lambda}{2} \|\theta\|^2$$

In a data-related framework,

- ▶ y_i: data from individual i,
- \triangleright θ : model parameter,
- ▶ n: the data size.
- \triangleright λ : regularizer (prior?)

Stochastic gradient and Nesterov's accelerated gradient

The gradient vector:

$$\nabla F(\theta; x_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} \nabla f_i(\theta; x_i).$$

Gradient descend:

$$\theta_{t+1} = \theta_t - \alpha \nabla F(\theta_t; x_{1:n}), \quad t \ge 0$$

Stochastic Gradient descend:

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{m_t} \sum_{i \in IL} \nabla f_i(\theta; x_i), \quad t \ge 0,$$

where $U_t \subset \{1, \dots, n\}$ is a random subsample of size $m_t \leq n$.

Differentially private SGD

To achieve (ϵ, δ) -DP after T iterations

DP-SGD

$$\theta_{t+1} = \theta_t - \eta \left(\frac{1}{m_t} \sum_{i \in U_t} \nabla f_i(\theta_t; x_i) + v_t \right)$$

The distribution of the DP noise v_t depends on

- ▶ DP parameters: ϵ, δ .
- ▶ Sensitivity of $\nabla f_i(\theta_t; \cdot)$
- $ightharpoonup m_t$ (privacy amplification by subsampling)
- ▶ T (composition property)

Example: Logistic regression

Let x = (z, y), where

- $ightharpoonup z \in \mathbb{R}^d$ is the feature vector
- ▶ $y \in \{0,1\}$: binary response.

The probability of observing a label "1" given the feature vector z and regression parameter $\theta \in \mathbb{R}^d$ is

$$p(y|z,\theta) = \frac{e^{yz\theta}}{1 + e^{z\theta}},$$

Let

$$f(\theta; x) = -\ln p(y|z, \theta)$$

Estimate θ by minimizing

$$F(\theta; x_{1:n}) := \frac{1}{n} \sum_{i=1}^{n} f(\theta; x_i) + \lambda \|\theta\|$$

Logistic regression - sensitivity

 L_p sensitivity of $\nabla f(\theta, \cdot)$:

$$\Delta_{p}(\theta) = \sup_{x,x'} \|\nabla f(\theta;x) - \nabla f(\theta;x')\|_{p} = 2 \sup_{x} \|x\|_{p}$$

With unbounded data, the sensitivity is ∞ .

Solutions:

▶ If the data is bounded $||x||_p \le B_p/2$ for some $B_p < \infty$, then

$$\Delta_p(\theta) = B_p$$

▶ Clipping: Use a clipped version of $\nabla f(\theta; x')$

$$\widehat{\nabla f(\theta; x)} = \min\{B_p, \|\nabla f(\theta; x)\|_p\} \frac{\nabla f(\theta; x)}{\|\nabla f(\theta; x)\|_p}.$$

The sensitivity of the clipped gradient is B_p .

Scenario 1

We want ϵ -DP after T iterations, using subsampling without replacement with fixed subsample size m < n.

- ▶ By the composition theorem for DP, we need to achieve ϵ/T -DP per iteration.
- Laplace noise is needed to achieve pure DP.

$$v_t \sim \mathsf{Laplace}(\sigma)$$

By amplification due to subsampling, the privacy loss per iteration is

$$\left[\left(e^{B_1/\sigma m}-1\right)\frac{m}{n}+1\right]$$

Equate this to $e^{\epsilon/T}$, and solve for σ :

$$\sigma = \frac{B_1}{m \ln \left[1 + (e^{\epsilon/T} - 1)n/m\right]}$$

Scenario 2

We want (ϵ, δ) -DP after T iterations, without subsampling (m = n).

▶ Find ρ -zCDP that implies (ϵ, δ) -DP.

$$\epsilon =
ho + 2\sqrt{
ho \ln(1/\delta)} \Rightarrow
ho = \sqrt{\ln(1/\delta) + \epsilon} - \sqrt{\ln(1/\delta)}$$

- ▶ By the basic composition theorem for zCDP, we need to achieve ρ/T -zCDP per iteration.
- Gaussian noise is needed for zCDP.

$$v_t \sim \mathcal{N}(0, \sigma^2)$$
 provides $\frac{B_2^2}{n^2 \sigma^2}$

Since the zCDP privacy loss per iteration is ρ/T , we solve

$$\frac{\rho}{T} = \frac{B_2^2}{n^2 \sigma^2}$$

for σ^2 to find

$$\sigma^2 = \frac{TB_2^2}{n^2 \rho^2}$$

Scenario 3

We want (ϵ, δ) -DP after T iterations, with subsampling (m < n).

DP-SGD

For $t = 1, \ldots, T$,

$$\theta_{t+1} = \theta_t - \eta \left(\frac{1}{m} \sum_{i \in U_t} \nabla f_i(\theta_t; x_i) + v_t \right), \quad v_t \sim \mathcal{N}(0, \sigma^2 I)$$

Caution: This time, differently than the other two scenarios, we will assume that the neighboring relation is addition/removal.

Scenario 3: Algorithmic outline

An analytical formula for σ that gives (ϵ, δ) -DP after T iterations using σ is difficult to obtain.

This time, we will take the following approach:

- \triangleright For a fixed noise level is σ and T iterations.
 - 1. Calculate the zCDP of the algorithm for one iteration if full data is used.
 - 2. Convert zCDP to Reyni-DP (because the latter behaves well under subsampling)
 - 3. Find the privacy amplification of a Reyni-DP algorithm in terms of Reyni-DP.
 - 4. Apply composition and find the overall Reyni-DP after T iterations.
 - 5. Convert Reyni-DP to (ϵ, δ) -DP
- \triangleright The resulting DP parameters depend on σ , so lets denote them by $(\epsilon(\sigma), \delta(\sigma))$. We will arrange σ such that

$$\epsilon(\sigma) \le \epsilon, \delta(\sigma) \le \delta$$

and the differences are as small as possible.

Step 1: Find zCDP of a single iteration w.o subsampling

DP-SGD

For $t = 1, \ldots, T$,

$$\theta_{t+1} = \theta_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(\theta_t; x_i) + v_t \right), \quad v_t \sim \mathcal{N}(0, \sigma^2 I)$$

If iterations were performed on the full data set, we would have

$$\frac{B_2^2}{n^2\sigma^2}$$
-zCDP

per iteration.

Step 2: Convert to zCDP to Reyni DP

DP-SGD

For $t = 1, \ldots, T$,

$$\theta_{t+1} = \theta_t - \eta \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(\theta_t; x_i) + v_t \right), \quad v_t \sim \mathcal{N}(0, \sigma^2 I)$$

zCDP to Reyni DP

If an algorithm ρ -zCDP, it is $(\alpha, \alpha\rho)$ -Reyni DP for any α .

Using the theorem

$$\frac{B_2^2}{n^2\sigma^2}$$
-zCDP \Rightarrow $\left(\alpha, \varepsilon(\alpha) := \alpha \frac{B_2^2}{n^2\sigma^2}\right)$ - Reyni DP.

Step 3: Privacy amplification with subsampling

DP-SGD

For $t = 1, \ldots, T$,

$$\theta_{t+1} = \theta_t - \eta \left(\frac{1}{m_t} \sum_{i \in U_t} \nabla f_i(\theta_t; x_i) + v_t \right), \quad v_t \sim \mathcal{N}(0, \sigma^2 I)$$

Under Poisson subsampling, the privacy per iteration is amplified:

 $(\alpha, \varepsilon(\alpha))$ -Reyni DP + Poiss subs. with $\gamma \Rightarrow (\alpha, \varepsilon_{\gamma}(\lceil \alpha \rceil))$ -Reyni DP where, for a subsampling rate of $\gamma \in [0,1]$, we have

$$\varepsilon_{\gamma}(k) = \frac{1}{k-1} \ln \left((1-\gamma)^{k-1} (1+(k-1)\gamma) + \sum_{i=2}^{k} \binom{k}{i} (1-\gamma)^{k-i} \gamma^{i} e^{(i-1)\varepsilon(i)} \right)$$

Step 4: Privacy after T steps

Composition theorem for Reyni DP

The composition of $(\alpha, \varepsilon_i(\alpha))$ -Reyni-DP algorithms for i = 1, ..., T is

$$\left(\alpha, \sum_{i=1}^{T} \varepsilon_i(\alpha)\right)$$
-Reyni DP.

After T steps, the algorithm becomes

$$\left(\alpha, T\epsilon_{\gamma}\left(\left\lceil\alpha\frac{B_2^2}{n^2\sigma^2}\right\rceil\right)\right)$$
-Reyni DP

Step 5: Convert to (ϵ, δ) -DP

Reyni DP to (ϵ, δ) -DP

If an algorithm (α, ε) -Reyni DP, it is $(\epsilon, e^{-(\alpha-1)(\epsilon-\varepsilon)})$ -DP for any $\epsilon > \varepsilon$.

Therefore, the algorithm after T iterations is

$$\left(\epsilon, \exp\left\{-(\alpha - 1)\left[\epsilon - T\epsilon_{\gamma}\left(\left\lceil\alpha \frac{B_{2}^{2}}{n^{2}\sigma^{2}}\right\rceil\right)\right]\right\}\right)$$

for any

$$\epsilon > T\epsilon_{\gamma} \left(\left\lceil \alpha \frac{B_2^2}{n^2 \sigma^2} \right\rceil \right)$$

Play with σ and α to achieve a targeted (ϵ, δ) privacy.

- Balle, B., Barthe, G., and Gaboardi, M. (2018). Privacy amplification by subsampling: Tight analyses via couplings and divergences. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems*, NIPS'18, pages 6280–6290, Red Hook, NY, USA. Curran Associates Inc.
- Bun, M. and Steinke, T. (2016). Concentrated differential privacy: Simplifications, extensions, and lower bounds. In *Proceedings, Part I, of the 14th International Conference on Theory of Cryptography Volume 9985*, pages 635–658, New York, NY, USA. Springer-Verlag New York, Inc.
- Dwork, C. (2006). Differential privacy. In Bugliesi, M., Preneel, B., Sassone, V., and Wegener, I., editors, Automata, Languages and Programming, pages 1–12, Berlin, Heidelberg. Springer Berlin Heidelberg.
- Mironov, I. (2017). Rényi differential privacy. 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pages 263–275.
- Steinke, T. (2022). Composition of differential privacy & privacy amplification by subsampling.