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Motivation

Differential privacy: Definition and examples

Basic Properties

Application: Differentially private stochastic gradient descend
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Data analysis vs Privacy

Sensitive data set of n individuals: x1,...,x,

Two conflicting interests:
1. We want to work with sensitive data sets

» to perform inference about a population.
» for optimization
> etc.

2. Individuals contributing to data sets with their sensitive
information want to preserve their privacy.

A significant amount of research is devoted to developing useful
methods for data analysis while protecting data privacy.
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An outline

This lecture:
» Introduction to main concepts and tools of differential privacy

> A step-by-step application from data-driven optimization.

Tutorial:

» Python implementation of some differentially private
algorithms.
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Privacy framework

Individual i with sensitive information x; € X.

Data collected from n individuals: x = (x1,...,x,) € X".
(Statistics of) the x is to be shared with the public for analysis.
Data privacy: main question

How should (statistics of) x = (xi,...,x,) be shared so that

» privacy of each individual is protected, and

» the shared information is useful.
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A graphical summary

query: "What s ... of x?"
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Some extreme solutions(?)

» Full transparency: Share x = (x1,...,X,).
» Very useful, but not private.

» Full secrecy: Toss a coin and share the outcome.
» Very private, but not useful.
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More sensible alternatives

» Anonymization: Remove any identifying information from
the data.

> Statistic of private data: Do not share x = (x1,...,Xp);
share a statistic.

Xln ZXH
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All against one

Both methods are prone to conspiracy by all against one.

» Imagine individuals 1,2, ..., n — 1 have shared their data
X1,...,Xp—1 among themselves.

» = x, can be found!

S(x1:0) = = ZX, = Xp = nS(x1:pn) — ZX,

Deterministic outputs do not work!
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Randomized algorithms

Set of data values (sample space): X
A data set: x = (x1,...,xp) € X"

Set of data sets: X = [Jp—; X".

Randomised algorithm

A randomized algorithm is essentially a random function
A: X = ).
The output of the algorithm upon taking an input x € X,

A(x) € ),
is a random variable with support domain ).

The randomness is due to the inner mechanisms of the algorithm.
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Neighboring data sets

x = (x1,...,Xpn): sensitive data of n individuals.
Neighbouring data sets (replacement)

Datasets x, x' € X are neighbours if they differ by a single element

X= (X1, s Xteyoooy Xn)y X = (X150 Xy, Xn)

We want to have a mechanism whose output on x and x’ are
(probabilistically) similar when x and x’ are neighbors.
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Differential privacy

Differential privacy (Dwork, 2006)
We say that A is (¢,0)-DP if, for neighbour x,x’ € X and any
subset of output values O C ),
P[A(x) € O] < eP[A(X) € O] +.
When § =0, we say A is e-DP (pure differential privacy).

Related forms of privacy:

» Reyni differential privacy
» (zero) concentrated differential privacy
» Gaussian differential privacy (GDP)

» Bayesian differential privacy
> etc.

12/41



Alternative neighboring relations

Previously, we the neighbor relation replacement. Other relations
are possible:

Neighbouring data sets (addition/removal)

Datasets x, x’ € X are neighbours if one can be obtained from the
other by addition or removal of a single element. Examples:

X= (X1, s Xty ooy Xn)y X = (X1ye oy Xk 1y Xkt 1y - - 5 Xn)

X= (X1, s Xy s Xn)y X = (X105 Xk, X Xkt 1y -+ -y Xn)-

Privacy properties can depend on the neighboring relation.
» (¢,0)-DP wrt replacement = (¢, d)-DP wrt to add/rem.
» (¢,0)-DP wrt add/rem = (2¢, (1 + €°)d)-DP wrt replacement.
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Laplace mechanism

The L;-sensitivity of a function S : X — R is given by

Asi= sup [|S(x) = S(x)]s.

neighbour x,x’

Laplace mechanism

An algorithm is e-DP if it outputs

i.i.d

A
A(x) = S(x)+V, V; = Laplace <Sl> i=1,...
€
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All against one - revisited

Now, instead of sharing S(x1.n) = %Z,’-’:l X;, we share

1 n
Y==) x+V.
ni:l

» Even if individuals 1,2,..., n — 1 have shared their data
X1,...,Xp—1 among themselves, x, cannot be deduced!
1 n n—1
Y:fZX,-—FV :xn:nY—Zx,-—nV
n
i=1 i=1

Randomness protects x,,.
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Randomized responses
Randomization of binary responses.
Question: Do you approve the president?

e-DP randomization

Answer truly with probability 1-%6; otherwise flip your answer.

Can be extended to K > 2 categories.
Question: Among K political parties, which one do you support?

e-DP randomization

Answer truly with probability ﬁlee; otherwise answer at random.

Randomized responses provide DP at the local level.
Such a DP guarantee is called Local DP.
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Post-processing

One of the useful properties of DP is post-processing.

Post-processing
If Ais (e,0), then f o A'is (¢,0)-DP, too.

Note: f o A(x) = f(A(x)).

Meaning: Differential privacy is preserved under post-processing.
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Composition

Repeated application of DP algorithms on the same dataset
degrade privacy.

K-fold composition

Assume Ay is (ek, 0x)-DP for k =1,..., K. Application of Ay,
k=1,...,K on the same input data set results in

(i Z 5k) P

k=1

This result still holds when an algorithm depends on the outputs of
the previous algorithms.

- particularly useful for adaptive/iterative algorithms.

When d's are 0, the result is tight. With non-zero J)'s, other

definitions of DP compose better.
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Reyni DP and zero-concentrated DP (zCDP)

Renyi divergence

For probability distributions P and @ the Renyi divergence of order
a>1

L InE[P(x)/ Q)"

o —

Do(P||Q) :=

If X ~ Pand Y ~ Q, we D,(X]||Y) is equivalent to D,(P||Q).

Reyni DP (Mironov, 2017) and zCDP (Bun and Steinke, 2016)
An algorithm A is («, €)-Reyni DP if for all neighbour x, x" € X,

Da(A(X)IIA(X)) < e.
An algorithm A is is p-zCDP if for all neighbor x, x" and o > 1,

Da(A(x)I|A(X)) < ap
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Composition properties for Reyni DP and zCDP

Composition theorem for Reyni DP

The composition of («,e;)-Reyni-DP algorithms for i =1,..., T is

-
(a, Z 5;(&)) -Reyni DP.
i=1

Composition theorem for zCDP

The composition of p;-zCDP algorithms for i =1,..., T is

(50 o

i=1
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Gaussian mechanism

The Lp-sensitivity of a function S : X — RY is given by

Asp = sup [|S(x) = S(x)].

neighbour x,x’

Gaussian mechanism

An algorithm is p-zCDP if it outputs

Y=5Sx)+V, V<N (o,

A2
21 j=1,....d.
P
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Conversions

To be able to convert one DP definition to another offers huge
flexibility in designing algorithms.

zCDP to Reyni DP
If an algorithm p-zCDP, it is («, ap)-Reyni DP for any a.
Reyni DP to (¢, 6)-DP

If an algorithm («, £)-Reyni DP, it is (¢, e~ (*~1(¢=¢))-DP for any
€>¢€.

zCDP to (¢, §)-DP
If an algorithm A is p-zCDP, then it is (¢,0) for all (e, d) satisfying

>0, e=p+4pln(1/9).

More conversions exist.
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Privacy amplification by subsampling
Let A be private algorithm that operates on datasets

x = (X1,...,Xn)

Consider another algorithm A’, who
» Takes a random subsample from x

» Operates on the subset just like A.

Question: What is the privacy of A’?

The answer depends on
» Type of privacy of A,
» Type of subsampling
» Neighborhood relation
See Balle et al. (2018); Steinke (2022) for more relations.
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Amplification of (e, d)-DP

Assume A is (¢,0)-DP.

Suppose that
» the subsample size is fixed to m and
P the subsample is drawn by sampling without replacement.

» the neighborhood relation is replacement.
Then, A is (¢/,0’)-DP, where

¢ =In (1+m(e€—1)>, i ="15
n n
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Amplification of Reyni DP

Assume A is (o, («))-Reyni DP.
Meaning: A satisfies (a, e(a))-Reyni DP for all o > 1

Suppose that

P each element in x is included in the subsample with
probability, independently of the other elements (Poisson
subsampling).

» the neighborhood relation is addition/removal.

Then, A’ is
(a,2(Ta]))-Reyni DP,

where

S0 = =g I ((1 —) L (k=) + Y (k) (- w)“w"e““a"‘))
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Application: Differentially private stochastic gradient descend
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Differentially private optimization with stochastic gradients

A data-driven optimization problem:

in F(6: x0.0
gnel(g (0; x1:n)

where

A
F(0;x1.0) = = Zf@x, §||9||2

In a data-related framework,
» y;: data from individual /,
» 0: model parameter,
> n: the data size.

> \: regularizer (prior?)
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Stochastic gradient and Nesterov's accelerated gradient

The gradient vector:
VF(O; x1.n) = 1 Z V£i(6; x;).
n“
Gradient descend:
Otr1 =0: —aVF(0s; x1:n), t>0
Stochastic Gradient descend:

1
er =t — 0t Vi), 20
mt i€ U

where Uy C {1,...,n} is a random subsample of size m; < n.
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Differentially private SGD

To achieve (€,9)-DP after T iterations

DP-SGD

1
Oiy1=0:—n (m Z V(0 xi) + Vt)

ticu,

The distribution of the DP noise v; depends on
» DP parameters: ¢, 9.
» Sensitivity of V£(6;; )
» m; (privacy amplification by subsampling)
» T (composition property)
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Example: Logistic regression

Let x = (z,y), where
» z c R? is the feature vector
» y €{0,1}: binary response.
The probability of observing a label “1" given the feature vector z
and regression parameter 6 € R is
eyz@
pylz.0) = 15

Let
f(0;x) = —Inp(y|z,0)
Estimate 6 by minimizing

1 n
F(0; x1:n) = - Z £(0;x;) + Al|9||
i=1
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Logistic regression - sensitivity
L, sensitivity of V£(6,-):

B (8) = sup [VF(0; x) = VF(8: ) [, = 25up x],

x,x’

With unbounded data, the sensitivity is oc.

Solutions:
» If the data is bounded ||x||, < B,/2 for some B, < oo, then

Ap(e) = Bp
» Clipping: Use a clipped version of Vf(6; x’)

VF(B:x) = min{B,, wa;x)np}m.

The sensitivity of the clipped gradient is B,,.
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Scenario 1

We want e-DP after T iterations, using subsampling without
replacement with fixed subsample size m < n.

» By the composition theorem for DP, we need to achieve
€/ T-DP per iteration.

» Laplace noise is needed to achieve pure DP.
v¢ ~ Laplace(o)

By amplification due to subsampling, the privacy loss per
iteration is

(eB/om 1T 11
n

e/ T

Equate this to e ', and solve for o:

By
min [1+ (e¢/T —1)n/m]

g =
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Scenario 2

We want (¢,d)-DP after T iterations, without subsampling
(m = n).
» Find p-zCDP that implies (e, §)-DP.

e=p+24/pIn(l/d) = p= \/In(l/é) +e— \/In(l/(S)

» By the basic composition theorem for zCDP, we need to
achieve p/ T-zCDP per iteration.
» Gaussian noise is needed for zCDP.

B2
ve ~ N(0,02) provides n2;2
Since the zCDP privacy loss per iteration is p/ T, we solve
p_ B3
T n?02
for o2 to find
o _ TBS
T n2p2
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Scenario 3

We want (¢, §)-DP after T iterations, with subsampling (m < n).

DP-SGD
Fort=1,..., T,

1
9t+1 = Ht —n (m Z Vf,(@t,x,) + Vt> s Ve ~ N(O,Uzl)

icUt

Caution: This time, differently than the other two scenarios, we
will assume that the neighboring relation is addition/removal.
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Scenario 3: Algorithmic outline

An analytical formula for o that gives (¢,0)-DP after T iterations
using o is difficult to obtain.
This time, we will take the following approach:

» For a fixed noise level is o and T iterations,

1.

2.

3.

4.

5.

Calculate the zCDP of the algorithm for one iteration if full
data is used.

Convert zCDP to Reyni-DP (because the latter behaves well
under subsampling)

Find the privacy amplification of a Reyni-DP algorithm in
terms of Reyni-DP.

Apply composition and find the overall Reyni-DP after T
iterations.

Convert Reyni-DP to (e, d)-DP

» The resulting DP parameters depend on o, so lets denote
them by (e(o0),d(c)). We will arrange o such that

e(o) <€ 0(0) <o

and the differences are as small as possible.
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Step 1: Find zCDP of a single iteration w.o subsampling

DP-SGD
Fort=1,..., T,

1 n
Ory1 =0 —n (n ZVf,—(Ht;X,-) - vt> . ve ~N(0,62%1)

i=1

If iterations were performed on the full data set, we would have

per iteration.
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Step 2: Convert to zCDP to Reyni DP

DP-SGD
Fort=1,..., T,

1 n
Orr1=0:—n (n ZVf,'(Qt;X,-) + Vt) , ve ~N(0,0°1)

i=1

zCDP to Reyni DP
If an algorithm p-zCDP, it is (o, ap)-Reyni DP for any a.

Using the theorem

2

B
-zCDP = (a,z—:(a) = 222> - Reyni DP.
n’c

2
B3
n%c

2
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Step 3: Privacy amplification with subsampling

DP-SGD
Fort=1,..., T,

1
0t+1 :0t—7] ( ZVﬂ(at;Xi)+Vt) 0 VtNN(O,O'2/)

my i€ U

Under Poisson subsampling, the privacy per iteration is amplified:
(o, e(ar))-Reyni DP 4 Poiss subs. with v = (a,e4([a]))-Reyni DP

where, for a subsampling rate of v € [0, 1], we have

S0 = =g I ((1 —) L (k=) + Y (k) (- v)k—"w"e“'-“f“’)
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Step 4: Privacy after T steps

Composition theorem for Reyni DP

The composition of («, €j(«))-Reyni-DP algorithms for
i=1,...,T s

(a, XT: 5;(a)> -Reyni DP.
i=1

After T steps, the algorithm becomes

B2 |
a, Tey an2—a2 -Reyni DP
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Step 5: Convert to (€,0)-DP

Reyni DP to (¢, 6)-DP
If an algorithm («, €)-Reyni DP, it is (e, e~ (@=1)(¢=)).DP for any
€> €.

Therefore, the algorithm after T iterations is

vl ))
> Te, ({anfgz})

Play with o and « to achieve a targeted (e, d) privacy.

for any
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