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ABSTRACT 
Micro-propulsion mechanisms differ from macro 

scale counterparts owing to the domination of viscous 

forces in microflows. In essence, propulsion mecha-

nisms such as cilia and flagella of single celled or-

ganisms can be deemed as nature’s solution to a chal-

lenging problem, and taken as a basis for the design 

of an artificial micro-propulsion system. In this paper 

we present numerical analysis of the flow due to 

oscillatory planar waves propagating on micro strips. 

The time-dependent three-dimensional flow due to 

moving boundaries of the strip is governed by in-

compressible Navier-Stokes equations in a domain 

with moving boundaries, which is modeled by means 

of an arbitrary Lagrangian-Eulerian formulation. The 

fluid medium surrounding the actuator boundaries is 

bounded by a channel, and neutral boundary condi-

tions are used in the upstream and downstream. Ef-

fects of actuation parameters such as amplitude, exci-

tation frequency, wavelength  of the planar waves are 

demonstrated with numerical simulations that are 

carried out by third party software, COMSOL. Func-

tional-dependencies with respect to the actuation 

parameters are obtained for the average velocity of 

the strip and the efficiency of the mechanism.  

 

INTRODUCTION 
Propulsion mechanisms of microswimmers can 

be imitated artificial artificial propulsion systems to 

operate in low Reynolds number environments. A 

series of theoretical work focus on natural mi-

croswimmers and their actuation principles [1-6]. It 

was shown that inside highly viscous fluids with low 

Reynolds number, a conventional time reversible 

swimming action can not yield desired propulsive 

effect due to ‘scallop theorem’ [1].  

Microswimmers, which usually are single celled 

organisms like spermatozoa, employ planar or helical 

wave propagation via their flagellum and cilia called 

organelles [2,3]. Periodic traveling-wave deforma-

tions on the biopolymer tail of the microorganism are 

the result of the balance between the bending stresses 

of the structure and the total stress in the fluid [4]. Sir 

Taylor presented asymptotic solutions of the flow for 

a sinusoidal wave propagating on an infinite inexten-

sible sheet immersed in a viscous fluid [5]. Later, 

Katz presented an asymptotic solution for the infinite 

sheet placed inside a channel [6]. Childress [7] ex-

panded the study to extensible sheet propulsion. Our 

previous work verifies asymptotic results of Taylor 

[5] and Katz [6] by means of numerical solution of 

the two-dimensional time-dependent Stokes flow due 

to plane waves traveling on a finite-length thin mem-

brane inside a channel [8]. Although time irreversible 

wave propulsion is the method utilized by natural 

microswimmers, efficiency of these swimmers is 

found to be very low due to high shear losses [9]. 

Recent, theoretical and experimental studies on 

the propulsion of autonomous swimming robots util-

ize the biological mechanisms [10,11,12]. The 

mechanism is replicated artificially by wave propaga-

tion on an artificial tail made from magnetic fila-

ments attached to blood-cells and driven by alternat-

ing external magnetic fields [13].   

Traveling wave propagation on an electrically 

driven Nafion based tail in centimeter scale proved to 

be viable as a propulsion system [14] at low frequen-

cies. Similarly, three-dimensional numerical investi-

gation of surface acoustic waves created by interdigi-

tal transducers on a thin membrane was carried out as 

an actuation method at large frequencies despite the 

small amplitude of the acoustic waves [15]. Further-
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more it is plausible to suggest that the wave propaga-

tion effect can also be sustained by a series of piezo-

electric material replaced in series and driven out-of-

phase with the shear mode of piezo strips [16,17,18].   

Vertical motion of the fully submerged elastic 

rod tail causes dynamic high and low pressure re-

gions shifting positions resulting in net fluid flow 

between. As the deformation shifts position accord-

ingly with the propagation of traveling waves, high 

and low pressure regions in the vicinity of the mem-

brane demonstrate consequential shifts which result 

in two-dimensional thrust effect.  This resultant shifts 

cause a combinational force interactions between 

swimmer body and surrounding fluid which led to 

translation on both x and y axes, including rotation 

around z axis. 

We present numerical simulations of 3D time-

dependent motion of a conceptual swimming micro-

robot,inside a liquid filled channel due to the propa-

gation of sine-wave deformations on the long conical 

tail attached to a capsule. The motion of the swimmer 

is governed by rigid-body equation of motion which 

incorporates the forces and moments from the motion 

of the fluid governed by incompressible Navier-

Stokes equations subject to continuity in a time-

varying domain that has moving boundaries due to 

the motion of the tail as well as the motion of the 

robot. Mesh displacement due to moving boundaries 

of the membrane is modeled using arbitrary Lagran-

gian-Eulerian formulation [20] incorporating the 

Winslow method [21]. Effects of the amplitude, fre-

quency, wave length and homogeneity of traveling 

waves on the speed, hydraulic power and efficiency 

are demonstrated.  

NOMENCLATURE 
Symbol  Description                                       

Latin Letters 

A  Area                                                    

Bo  Maximum wave amplitude      

H  Channel height            

I  Identity matrix                                 

L  Channel length                                  

P  Liquid pressure                                 

Q  Flow rate                                           

U  Fluid velocity vector                         

W   Width                              

dy  Mesh deformation in Ω                        

f  Excitation frequency [Hz]                            

k  Wave number                                    

fℓ   Membrane length                                                                

n  Surface normal vector                        

t  Spatial time                                       

u  Mesh velocity vector                        

u,v,w  velocity components                       

x,y,z  Spatial coordinates                   

Functions and Groups                                                                          

B  Amplitude expression                          

min  Minimum function                           

Re  Reynolds Number  

Greek Letters                                                                

Π  Mechanical Power exerted on fluid 

Σ  Mono directional full stress tensor  

Ω  Domain occupied by fluid inside    

η  Percentage mechanical efficiency      

λ  Wave length                              

µ  Dynamic viscosity of liquid              

ρ  Liquid density                                   

ω  Angular frequency                                                 

Subscripts and Superscripts                                     
A.av  Area-averaged                                 

av  Time-averaged                               

ch  Channel parameter                             

f  Membrane parameter       

in,out  Inwards/outwards direction             

m  Mesh parameter                                 

T  Transpose                                        

0  Characteristic scale                        

Figure 1: Plane-wave deformations traveling in the x-direction on the tail attached to the head of the robot; side-

view in the z-direction on the x-y symmetry plane. (butun denklemlerde x ve y kullaniliyor (cogunlukla) neden bu-

rada X  ve Y kullaniyoruz. aciklamaktansa duzeltmek daha kolay...) 
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Figure 3: 3D view of conceptual swimming micro robot and the channel; cut into two symmetric pieces in the mid-

dle. 

 

 

Figure 4: 3D view of conceptual swimming micro robot; net propulsion and wave propagation wakes place on op-

posite sides. 

 

METHODOLOGY 
[buraya daha iyi bir giris paragrafi gerekiyor. 4 

serbestlik derecemizin oldugu dogru degil!].  

Motion of the tail, which is perpendicular to the 

wave propagation in the x-direction as shown in Fig. 

1, is limited to the y-axis. and is given by a sinusoidal 

wave-form as a function of time, t, x-position on the 

tail, xf, excitation frequency, ω=2πf, wave number, 

k=2π/λ and the amplitude B, i.e. we have 

( ) ( ), sin ω , 0f f f fy x t B t kx x= − >  (1) 

In Eq. (1), B=B(x,t) encompasses an envelope 

function for the extent of the deformations in the y-

direction and keeps one end free while the other end 

is attached to the body at all times. Furthermore, to 

ensure zero initial conditions, an initial ramp of the 

amplitude of deformations is defined and restricted to 

the first full period: 

( ) ( ) 1
, 1 min ,

C x xcomsh f
f oB x t B e t

f

− −   
= −       

 (2)  

where Csh is the shape constant for amplitude enve-

lope, xcom is the x-coordinate of the center of mass 

which is on the rigid joint between tail and body.  

Translation in x-direction is due to the thrust 

force exerted by the y-direction motion of the tail, 

and calculated from the equation of motion:  

( )

1
S x

S t

x dS
M

Σ= ∫ɺɺ  (3) 
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where, M is the mass of the neutrally buoyant swim-

mer and Σx is the x-component of the full stress ten-

sor, which is given by [23]:  

2

x

u
P

X

u v

Y X

u w

Z X

µ

µ

µ

∂
−

∂

∂ ∂
∑ + ⋅

∂ ∂

∂ ∂
+

∂ ∂

  
    
  =    

 
   

   

n  (4) 

Translation in y-direction is calculated in the 

same manner as in Eq. (3) but with the y-component 

of the full stress tensor as follows 

( )

1
S y

S t

y dS
M

Σ= ∫ɺɺ  (5) 

where 

2y

u v

Y X

v
P

Y

v w

Z Y

∂ ∂
µ +

∂ ∂

∂
∑ µ − ⋅

∂

∂ ∂
µ +

∂ ∂

  
    
  =    
 
   

   

n  (6) 

 

Rotation around the center of mass, which is at 

the rigid connection between the body and the tail of 

the swimmer, in the z-direction is obtained from 

( )

1
z

S t

M dS
J

θ = ∫ɺɺ  (7) 

where, J is the moment of inertia, and the z-moment, 

Mz is given by 

( )
( )

sin cos
x y com

S t

M r dS
z

α α= Σ + Σ∫ . (8) 

In Eq. (8) rcom  is the distance of a point on the 

swimer’s surface from the center of mass of the 

swimmer, and α is the angle between the position 

vector of a point on the swimmer surface and the x-

axis.  

In order to model the flow around the swimmer-

incompressible Navier-Stokes equations are used in 

the time-dependent domain Ω(t): 

 ( ) 2ρ µm P
t

∂ 
+ − ⋅∇ = −∇ + ∇ 

∂ 

U
U u U U  (11) 

0∇⋅ =U  (12)   

where U=[u,v,w]T is the velocity vector, P is pressure, 

ρ is density, and µ is the viscosity of the fluid. The 

time-dependent domain, Ω(t) deforms according to 

the moving boundaries of the swimmer. The um in 

Eq. (11) is the deformation velocity of the mesh used 

in the finite-element solution of Navier-Stokes equa-

tions. Since the mesh deforms only on the swimmer 

boundaries and remains fixed at the channel walls, 

inlet and outlet, a gradual deformation of the mesh is 

specified between the moving swimmer and the fixed 

boundaries.  

Channel walls are subjected to no-slip boundary 

conditions at all times, 

 

( )
( )

( )
( )

,0, , , , , 0

,0, , , , , 0

( ,0, , ) ( , , , ) 0

( , ,0, ) ( , , , ) 0

( , ,0, ) ( , , , ) 0

( , ,0, ) ( , , , ) 0

ch

ch

ch

u x z t u x H z t

v x z t v x H z t

w x z t w x H z t

u x y t u x y W t

v x y t v x y W t

w x y t w x y W t

     
     

= =     
         

    
    

= =    
        

 (13) 

where H is the channel height and Wch is the channel 

width. Tail does not move in z-direction as explained. 

 ( ), , , 0f f fw x y z t =  (14) 

In Eq. (14), xf, yf and zf constitute the time-

dependent position vector on the membrane; yf is 

given by Eq. (1). Y-velocity on the membrane is 

given by the time derivative of the displacement in 

Eq. (1): 

( )
( ),

,
f f

f f

y x t
v x t

t

∂
=

∂
 (15) 

Hence the velocity of a point on the surface of 

the swimmer is obtained by combining the time de-

rivatives of Eq. (1), (3), (5) and (7). 

( )

0

S x

com

f yS

S com

S t

x
r

t t

y y
r

t t t

θ

θ

∂ ∂ 
+ ∂ ∂

 
∂ ∂∂ 

= + + ∂ ∂ ∂
 
 
 
 

U  (16) 

Inlet and outlet surfaces are specified as neutral 

[24] in all simulations which means 

[ ]
0, , ,

0
x y z t

P
=

− + ⋅ =I σ n  (17) 

[ ]
, , ,

0
x L y z t

P
=

− + ⋅ =I σ n  (18) 

and xy-symmetry plane is designated as 

slip/symmetry [24] which means cancelling the tan-

gential forces and the normal velocity on the desig-

nated boundary as in Eq. (19) and (20). 
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[ ]
, , , / 2,

0
chx y z W t

P− + ⋅ =I σ t  (19) 

0⋅ =U n  (20) 

where t is the tangential vector of the designated 

boundary. 

 For the flow at rest, all velocity components are 

specified as zero to guarantee complete stationary 

initial conditions. 

 ( ) ( ), , ,0 , , , 0 ( , , , 0) 0u x y z v x y z w x y z= = =  (21) 

Displacement of the deforming mesh is calcu-

lated from the prescribed displacement given by Eq. 

(1), (3), (5) and (7) by a rubber mesh function, which 

limits the deformation to exterior surfaces are con-

stant at all times. 

0

S com x

m f S com y

x r

y y r

θ

θ

 +
 

∆ = + + β 
 
 

x  (22) 

where β is the rubber mesh function to limit the de-

formation within the channel [19]. The mesh dis-

placement velocity, um, in Navier-Stokes equation is 

found directly from the prescribed mesh deformation:  

 m
t

∂∆
=

∂
mx

u  (23) 

Once um is obtained from Eq. (23), finite-

element representation of Navier-Stokes and continu-

ity equations, are solved subject to boundary condi-

tions given by (),(),()... by the commercial finite ele-

ment analysis package COMSOL, incorporating 

Intel’s MKL that invokes the parallel, PARDISO 

solver in COMSOL.  

Time averaged velocity components of the 

swimming microrobot are also found by integrating 

Eq. (16) and averaging it over simulation time. Tan-

gential and rotational components of the velocity 

vector vanishes in time averaging and can be ne-

glected. Swimmer’s average velocity in the x-

direction is given by,. 

2 /

2

t fo

S
S av

to

dxf
u dt

dt

+

− = ∫            (24) 

Instantaneous rate of work done on the fluid by 

the deforming tail is the area integration of the prod-

uct of the total y-stress and the local y-velocity, i.e. 

( )
f

y f f

A

t v dAΠ = Σ∫   (25) 

where Af is the tail’s surface area. Similarly to Eq. 

(24), time-averaged rate of work done by the tail is 

calculated from: 

 ( )
2

2

t fo

av

to

f
t dt

+

Π = Π∫  (26) 

Efficiency of the swimmer is calculated from the 

ratio between power need to overcome the x-force 

exerted on the overall swimmer and the power input 

calculated by Eq. (26) and (27) as described by 

Froude efficiency formulation [22] 

 

2/

( )
2

t f

x av x

t S t

o

o

dSdt
f

F

+

− Σ= ∫ ∫  (26) 

η x av S av

av

F u− −=
Π

 (27) 

 

Figure 5: Instantaneous y-velocity of the swim-

mer.  
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Figure 6: Instantaneous angular velocity of the 

swimmer.  

RESULTS 
Reference dimensions and properties of the 

swimmer are provided in Table 1 for numerical re-

sults that are presented here. For each simulation, 

about 33000 linear equations are solved for at least 3 

time units that correspond to 3 full cycles and at least 

300 time steps after simulation outputs converge to 

the steady-periodic state within the first cycle. Each 

simulation takes between 2 to 3 hours on a double 

dual-core 3.7 GHz 64-bit Xeon workstation with 

16GB of RAM running on SUSE Linux 10.0 operat-

ing system. Time-averaged quantities are obtained 

from integration over the last two cycles. Unless 

otherwise noted the base case used in the simulations 

corresponds to λ = / 2fℓ , Bo = 0.073xλ, f = 1 Hz, 

and Csh = 6.  

 

Name, symbol Values/dimensions 

Wch 4x10
-3

 [m] 

Channel Height, H 3x10
-3

  [m] 

Channel Length, L 6x10
-3

 [m] 

Tail Length,
fℓ  1.25x10

-3
  [m] 

Head Length, Lh 6.25x10
-4

 [m] 

Head Radius, rh 1.25x10
-4

 [m] 

Tail (membrane) 

width, Wf 

 
2x10

-5
 [m] 

 

Swimmer Mass Mo-

ment of Inertia, J 

 7.073456x10
-12

 

[kg.m
2
] 

Mass of the Swimmer, 

M 

1.713071x10
-8

 

[kg] 

Dynamic Viscosity of 

water, µ 

1.12x10
-3

 [Pa.s] 

Density of water, ρ 999 [kg/m
3
] 

Table 1: Simulation Constants  

 

Figue 7 illustrates the flow field on the symmetry 

plane where large vortex formations take place. Fig-

ure 7 and 8 reveal that the swimmer pushes the fluid 

in the propulsion direction. The ‘vortices’ forming 

behind the tail is due to motion of the tip of the tail.  

 

Figure 7: Swimmer micro robot with planar waves propagating on its tail and leaving a vortex trail.  
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Figure 8: Normalized arrow plot demonstrating the flow field on the symmetry plane. 

Figure 9 demonstrates the relationship between 

the amplitude and the average x-velocity of the micro 

swimmer for all the variables fixed at the base case 

except the amplitude. As amplitude increases the x-

velocity increases quadratically with the amplitude. 

Figure 10 illustrates the effect of amplitude on power 

consumption which clearly shows that power con-

sumption changes proportionally with the square of 

the change in amplitude. These results are in agree-

ment with the asymptotical predictions stated by 

Taylor and Katz [5,6]. Figure 11, shows how swim-

mer efficiency behaves with respect to amplitude. It 

can be observed that efficiency increases very rapidly 

for small amplitudes but starts to plateau before 

reaching to 1%. 

 

Figure 9: Wave amplitude vs. x-velocity for for λ = 

625 µm, f = 1 Hz and Csh = 6. 

 

Figure 10: Wave amplitude vs. hydraulic power 

velocity for for λ = 625 µm, f = 1 Hz and Csh = 6. 

 

 

Figure 11: Wave amplitude vs. swimmer efficiency 

velocity for for λ = 625 µm, f = 1 Hz and Csh = 6. 

 

Figure 12 demonstrates the relationship between 

the frequency and the average x-velocity of the micro 

swimmer for all the variables fixed at the base case 
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except the frequency. As frequency increases the 

average x-velocity increases linearly with the fre-

quency. Figure 13 illustrates the effect of the fre-

quency on the power, and clearly shows that power 

increases proportionally with the square of the fre-

quency. These results agree well with the asymptoti-

cal predictions stated by Taylor and Katz [5,6]. Fig-

ure 14, shows that the frequency does not affect the 

hydraulic efficiency of the swimmer.  

 

Figure 12: Driving frequency vs. Propulsion Veloc-

ity for λ = 625 µm, Bo = 45.625 µm and Csh = 6. 

 

Figure 13: Driving frequency vs. Power Consump-

tion for λ = 625 µm, Bo = 45.625 µm and Csh = 6. 

 

Figure 14: Driving frequency vs. Swimmer Effi-

ciency for λ = 625 µm, Bo = 45.625 µm and Csh = 6. 

Figure 15 demonstrates the relationship between 

the wave length and the average x-velocity of the 

micro swimmer for all variables fixed at the base case 

except the wave length. As wave length increases 

average x-velocity increases linearly with the wave 

length agreeing well with the asymptotic calculations 

of Katz [6]. Figure 16 illustrates the effect of wave 

length on the power showing that as wave length 

increases the power increases with 3/2
nd

 power of the 

wavelength. Figure 17, shows the effect of the wave-

length on the swimmer’s hydraulic efficiency, which 

is not as significant as the effect of the amplitude, but 

more important than the effect of the frequency. In 

our previous results for the 2D and 3D modeling of 

micropumps that utilize the  

 

 

Figure 15: Ratio of Wave Length to Tail Length vs. 

Swimmer Velocity for Bo = 45.625 µm, f = 1 Hz and 

Csh = 6. 

 

 

Figure 16: Ratio of Wave Length to Tail Length vs. 

Power Consumption for Bo = 45.625 µm, f = 1 Hz and 

Csh = 6. 
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Figure 17: Ratio of Wave Length to Tail Length vs. 

Swimmer Efficiency for Bo = 45.625 µm, f = 1 Hz 

and Csh = 6. 

Figure 18 display the relationship between the 

shape constant Csh and the average x-velocity of the 

micro swimmer for all variables fixed at the base case 

except the shape constant itself. The shape constant 

determines where the waves reach to their maximum 

amplitude away from the body of the swimmer. As 

Csh gets closer to 10 the wave propagation becomes 

more homogeneous on the tail hence the leveling 

behavior is expected. Similarly, in  Figure 19 the 

same behavior for power consumption is observed. 

Consistent with the effect of the amplitude, as the 

constant increases efficiency increases approaching to 

a limit eventually. 

 

Figure 18: Shape Constant vs. Swimmer Velocity for 

λ = 625 µm, Bo = 45.625 µm, f = 1 Hz. 

 

 

Figure 19: Shape Constant vs. Power Consumption 

for λ = 625 µm, Bo = 45.625 µm, f = 1 Hz. 

 

 

Figure 20: Shape Constant vs. Swimmer Efficincy 

for λ = 625 µm, Bo = 45.625 µm, f = 1 Hz. 

 

CONCLUSION 
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